文档库 最新最全的文档下载
当前位置:文档库 › 我国基因工程药物研究与应用新进展

我国基因工程药物研究与应用新进展

我国基因工程药物研究与应用新进展
我国基因工程药物研究与应用新进展

第26卷第2期2010年4月

‘长春中医药大学学报

Journal9fChangchunUniversityofTraditionalChineseMedicine

v01.26

4.20lO我国基因工程药物研究与应用新进展

贾志杰

(天津中医药大学,天津300193)

摘要:目的介绍我国基因工程药物基础研究与临床应用的最新进展。方法查阅了近5年来我国基因工程药物在基础和临床方面的研究论文,并对基因工程药物按照治疗目的的不同分别作一综述。结果我国基因工程药物在治疗肿瘤、病毒感染、心脑血管以及其他疾病方面均取得了较大的进展。结论基因工程药品将会给人类带来巨大的经济效益和社会效益。

关键词:基因工程药物;肿瘤;病毒感染;心血管疾病

中图分类号:R289.5文献标志码:A文章编号:1007—4813(2010)02—0290—02

近20年来,我国基因药物与疫苗的研究、开发和产业化从无到有获得了快速发展,逐步缩短了与先进国家的差距。本文就近几年来我国基因工程药物在基础和临床研究方面取得的新进展作一概述。

l基因工程药物治疗肿瘤

李振宇等uJ制备慢病毒载体为基础的野生型及突变型单纯疱疹病毒胸苷激酶(HSV.TK/HSV.sr39TK)基因工程T细胞(TK+T及sr39TK+T细胞)并研究应用HSV.sr39.TK/ACV系统进行防治GVHD,以达到减轻前体药物毒性,拓宽前体药物选择范围的目的。高丽等怛J研究基因重组荞麦胰蛋白酶抑制剂(rBTI)诱导HL-60细胞凋亡的作用,结果表明来自蓼科植物的重组养麦胰蛋白酶抑制剂能够有效的抑制HL-60肿瘤细胞的生长,抑制作用呈剂量依赖性,但对正常外周血单核细胞的生长没有影响。本研究为植物小分子蛋白酶抑制剂在抗肿瘤方面的应用提供了新内容,也为基因重组植物蛋白药物的临床应用开创新的思路。进一步研究这类药物有望使其成为一种理想的抗肿瘤靶向治疗药物。

韩明勇等13J采用Lipofectamine2000将携带人IL广18基因的质粒pCDNA3.1-hIL-18转导入Bcap37细胞中,并筛选出阳性克隆。裸鼠致瘤实验和抗瘤实验表明IL-18基因转染降低了Bcap37细胞的肿瘤原性,Ⅱ,18基因修饰的Bcap37细胞具有明显的抗肿瘤作用。该研究为乳腺癌基因工程肿瘤疫苗的研制提供了实验基础。

于2003年经国家食品药品监督管理局(SFDA)批准上市的重组改构人肿瘤坏死因子(册hTNF)属于国家一类新药,是高活性、低毒性的基因工程TNF。

作者简介:贾志杰,硕士研究生。研究方向:制药工程。一290一金阳等【4J对比研究了rmhTNF联合化疗治疗人小细胞肺癌(sCLC)的临床疗效和安全性。结果联合化疗的疗效显著优于单纯化疗,能明显改善SCLC患者的生活质量,且临床应用安全。

2基因工程药物治疗病毒感染

杨延梅等L5J应用安福隆(第二代基因工程a.2b干扰素)治疗慢性乙型病毒性肝炎患者45例,第1个月每天肌肉注射1次安福隆500万U,后改为隔天肌肉注射1次,疗程为6个月;与给予甘利欣、维生素c等保肝药物治疗的对照组47例进行了比较。结果治疗组肝功能复常率、HBV.DNA阴转率、naeAg阴转率、HBeAb阳转率均明显高于对照组并有显著统计学意义(P<0.01)。该临床研究证明安福隆治疗慢性乙型病毒性肝炎疗效确切。胡立华等【6J观察了重组基因工程药物干扰素(IFlNa-Ib)与胸腺肽al联合治疗慢性乙型肝炎的疗效,治疗组32例采用IFl一Na-Ib干扰素500万U肌肉注射,开始时1次/d,持续2周,此后3次/周,连续24周;胸腺肽al1.6nag皮下注射2次/周,两次相隔3—4d,结果其显效率为62.5%,明显高于单一使用IFlNa.Ib治疗(显效率为33.3%)的对照组。两组HBeAg阴转率分别为78.I%和33.3%;HBV.DNA阴转率分别为71.8%和30.O%;治疗组疗效明显优于对照组,显示联合用药的强大抗病毒活性,是目前治疗慢性乙型肝炎较为理想的方案。

左冰[7]采用a一1型基因工程干扰素(rHuIF-N.a1)与无环鸟苷(AcV)联合治疗24单纯疱疹病毒性角膜炎患者,获得满意效果,全组24例中(30只眼),治愈或基本治愈29只眼,治愈率为96.67%,平均治愈天

第26卷第2期20lO年4月

长春中医药大学学报

JournalofCkancehunUniversityofTraditionalChineseMedicine

V01.26

4,2010

数为13.20d。其中树枝状角膜炎及地图状角膜炎治愈率为100%,平均治愈天数为5.42d及10.10d。盘

状角膜炎治愈率为83.33%,平均治愈天数为18.20do该临床研究证明应用驴l型基因工程干扰素可达到提高疗效,缩短病程的目的。

3基因工程药物治疗心脑血管疾病

余蓉等旧J通过计算机分子设计,预测了水蛭素12肽通过柔性肽(Gly)3与r-PA连接形成的融合蛋白的空间结构与功能,并构建了表达该融合蛋白的工程菌,融合蛋白表达后通过复性,得到了分子设计预期的具有较高溶栓抗凝双功能活性的新型蛋白。该研究首次将重组水蛭素HV3的C末端12肽与rPA基因融合,具有作用半衰期更长,选择性更高,抗原性、出血性等副作用更小等特点。体外活性分析证实该工程融合蛋白具有良好的抗凝纤溶双功能,具有成为新一代溶栓药的潜力。余榕捷等引9利用PCR方法扩增纳豆激酶酶原(pro-NK)基因,并克隆到表达载体pET3c上,构建表达pro-NK和载体上22氨基酸短肽的融合蛋白的表达质粒pENK,表达质粒pENK分别转化溶源化宿主菌BL21(DE3)pLysS和BL21(DE3)pLysS+,获得表达菌pENK-(DE3)pLysS和pENK.(DE3)pLysS+。SDS-PAGE结果显示两菌株均表达

42kD的目的蛋白。纤维蛋白平板法显示表达产物具溶栓的活性,本研究为开发纳豆激酶成为新一代溶栓药物奠定了基础。

4基因工程药物治疗其他疾病

成骨生长肽(OGP)是一种促进体外成骨细胞增殖和体内成骨的多肽。利用人工合成的人成骨生长肽基因(hOGPgene),与质粒pTVa2重组,转化大肠杆菌E.coliBL21(DE3),经异丙基硫代.pD.半乳糖苷(ⅣrG)诱导,融合蛋白在E.coli中得到表达,经一步亲和层析纯化得到重组人成骨生长肽(recombinanthumanosteogenicgrowthpeptide,IhoGP)。体外实验证明rhOGP对成纤维细胞(NIH3T3)的增殖有促进作用,体内实验证明rhOGP加速兔移植骨成活,使血清中碱性磷酸酶活性增高,骨钙素增高。rhOGP促进成骨,有可能成为治疗骨移植及骨折愈合的有效药

物[10]。

粱宁生等【11]将不同浓度的重组P№与不同的菌株在37℃共同孵育2h,然后铺琼脂板,次13记录每一琼脂板上的菌落生成数(CFU),计算出PLA2作用后细菌生存率和杀灭95%细菌(Ijcl95)的PEA2浓度。结果PLA2对金黄色葡萄球菌、枯草芽胞杆菌、表皮葡萄球菌、粪肠球菌等革兰阳性(G+)菌有较强杀菌作用,PLA2LD95的范围在6~400ng/mE,对耐甲氧西林金黄色葡萄球菌(MRSA)也有较强的作用,氓

为400叫InL。该研究表明重组人血小板型PLA2对革兰阳菌有较强的杀菌作用,具有发展成为新型抗菌药物的巨大潜力。

5结语

基因工程技术的运用使药品开发发生了根本性的转变,治疗性蛋白质分子设计与工程化已取得突破性进展,如今基因工程药物已进入第三代蛋白质治疗药物发展阶段。通过基因工程手段可以使过去一些生产困难的产品,如激素、酶、抗体等生物活性物质明显提高产品质量与收率,同时大幅度降低生产成本,提高患者的用药水平和生活质量。基因工程技术应用于药物研制是一项造福于人类的宏伟工程,随着科学技术的发展,基因工程药品必将会给人类带来巨大的经济效益和社会效益。

参考文献:

[1]李振宇,徐开林,潘秀英,等.HSV.TK/HSV.sr391K基因工程T细胞的研制[J].中国免疫学杂志,2007,23:999.1003.[2]高丽,李玉英,张政,等.重组养麦胰蛋白酶抑制剂对HL-60细胞的促凋亡作用[J].中国实验血液学杂志,2007,15(1):59-62.

[3]韩明勇,刘奇,唐步坚,等.IDl8基因转导乳腺癌细胞肿瘤原性的改变及抗瘤作用的研究[J].山东大学学报:医学版,2007,45(7):714-717.

[4]金阳,熊先智,陶晓南,等.重组改构人肿瘤坏死因子对小细胞肺癌化疗的干预[J].中国医院药学杂志,2006,26(3):270-272.

[5]杨延梅,徐永升,杨洁.安福隆治疗慢性乙型病毒性肝炎疗效观察[J].生物医学工程与I临床,2007,11(2):141.142.[6]胡立华,苏文霞.干扰素联合胸腺肽al治疗慢性乙型肝炎32例分析[J].新疆医学,2006,36:20-21.

[7]左冰.24例单纯疱疹病毒性角膜炎临床分析[J].医药论坛杂志,2003,24(17):43.

[8]余蓉,韦利军,李灵玲,等.抗凝,溶栓双功能水蛭素12肽.瑞替普酶融合蛋白的模拟、构建与表达[J].药物生物技术,2007,14(3):168.172.

[9]余榕捷,谢秋玲,洪岸,等.纳豆激酶酶原基因的克隆、融合表达及活性测定[J].中国病理生理杂志,2003,19(6):757.761.

[103余琼,周凌云,林雪松,等.重组人成骨生长肽的表达。纯化和活性的研究[J].中国生物化学与分子生物学报,2004。

20(4):467-472.

[II]梁宁生,李艳,杨帆,等.重组人血小板型磷脂酶A2杀菌作用的研究[J].中华医院感染学杂志,2004,14(10):1081.1083.I收稿日期-'2009—12—22l

?_——291?-——

基因工程药物发展进程

基因工程药物发展进程 药剂3班张楠 07106330 学习了药学分子生物学后,我对基因工程药物产生了浓厚的兴趣,通过生物化学和分子生物学的学习以及课下翻阅相关资料,让我对基因工程药物有了新的认识: 1 基因工程药物 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。在医学和兽医学中应用正逐步推广。 以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。 目前有很多基因工程对人类的贡献典例。长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。这是基因工程药物对人类的贡献典例之一。 基因工程药物另一个重要应用就是干扰素的生产。当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。使大多数病人没有使用干扰素的能力。1980

药物分析复习题

药物的专属鉴别试验是证实某一种药物的依据,它是根据每一种药物化学结构的差异及其所引起的物理化学特性不同,选用某些特有的灵敏的定性反应,来鉴别药物的真伪。 氧瓶燃烧法系将有机药物放入充满氧气的密闭的燃烧瓶中进行燃烧,并将燃烧所产生的欲测物质吸收于适当的吸收液中,然后根据欲测物质的性质,采用适宜的分析方法进行鉴别、检查或测定含卤素有机药物或含硫、氮、硒等其它元素的有机药物。 比旋度——偏振光透过长1d m 并每1ml含有旋光性物质1g的溶液,在一定的波长与温度下测得的旋光度称之。(符号[ ]) 准确度是指用特定方法测得的生物样品浓度与真实浓度的接近程度,可用相对回收率表示,即采用“回收率”或“加样回收率”得到的药物自样品中回收率。 微生物检定法─以抗生素对微生物的杀伤或抑制程度为指标来衡量抗生素效价的一种方法。其测定方法有稀释法、比浊法、管碟琼脂扩散法生物药物:利用生物体、生物组织或器官等成分,综合运用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法制得的一大类药物。 基因工程药物:先确定对某种疾病具有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因进行分离、纯化或人工合成,利用重组DNA 技术加以改造,最后将该基因导入可以大量生产的受体细胞中不断繁殖或表达,并能进行大规模生产具有预防和治疗这种疾病的蛋白质,通过这种方法生产的药物称为基因工程药物。 效价测定:采用国际或国家参考品,或经国家检定机构认可的参考品,以体内或体外法测定其生物学活性,并标明其活性单位。 电泳法是指带电微粒如蛋白质、核苷酸、其他微粒分子或离子在电场的作用下,向其对应的电极方向按各自的速度泳动而使组分分离,再进行检测或计算百分含量的方法。 中药指纹图谱中药材或中药制剂经适当处理后,采用一定的分析手段,得到的能够标定该中药材或中药制剂特性的共有峰的图谱。

生物技术专业综述

生物技术专业综述 作为生物技术专业的一名学生,我认为我们应该知道以下内容,以方便我们更好的了解我们所学的内容,这将对我们以后的学习以及就业都有帮助。 我们所学的主要课程:微生物学、细胞生物学、生物化学、遗传学、学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等。 生物技术的定义:应用生命科学研究成果,以人们意志设计,对生物或生物的成分进行改造和利用的技术。现代生物技术综合分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、化学、物理学、信息学、计算机等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。 生物技术的发展:生物技术是全球发展最快的高技术之一。70年代发明了重组DNA技术和杂交瘤技术。80年代建立了细胞大规模培养转基因技术,现代生物技术(基因工程)制药开始于八十年代初,特别是发明了pcr技术,使现代生物技术的发展突飞猛进,90年代,随着人类基因组计划以及重要农作物和微生物基因组计划的是害死和信息技术的渗透,相继发展起了功能基因组学,生物信息学,组合化学,生物芯片技术以及一系列的自动化分析测试和药物筛选技术和装备。目前,各种新兴的生物技术已被广泛地应用于医疗,农业,生物加工,资源开发利用,环境保护,并对制药业等产业的发展产生了深刻的影响。近些年来,以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术发展迅猛,并日益影响和改变着人们的生产和生活方式。所谓生物技术(Biotechnology)是指“用活的生物体(或生物体的物质)来改进产品、改良植物和动物,或为特殊用途而培养微生物的技术”。生物工程则是生物技术的统称,是指运用生物化学、分子生物学、微生物学、遗传学等原理与生化工程相结合,来改造或重新创造设计细胞的遗传物质、培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品。简言之,就是将活的生物体、生命体系或生命过程产业化的过程。生物工程包括基因工程、细胞工程、酶工程、发酵工程、生物电子工程、生物反应器、灭菌技术以及新兴的蛋白质工程等,其中,基因工程是现代生物工程的核心。基因工程(或称遗传工程、基因重组技术)就是将不同生物的基因在体外剪切组合,并和载体(质粒、噬菌体、病毒)的DNA连接,然后转入微生物或细胞内,进行克隆,并使转入的基因在细胞或微生物内表达,产生所需要的蛋白质。 目前,有60%以上的生物技术成果集中应用于医药产业,用以开发特色新药或对传统医药进行改良,由此引起了医药产业的重大变革,生物制药也得以迅速发展。生物制药就是把生物工程技术应用到药物制造领域的过程,其中最为主要的是基因工程方法。即利用克隆技术和组织培养技术,

基因工程药物发展的历史及启示

基因工程药物发展的历史及启示 吴岚晓1,郭坤元1,秦 煜2 (11第一军医大学珠江医院血液科,广东广州510282;21第一军医大学南方医院创伤骨科,广东广州510282) 摘要:基因工程诞生20余年,运用于医药行业,研制和开发基因工程药物,已取得长足进展。迄今为止,已有近100 个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有无比强大的生命力。 就基因工程药物发展史进行概述,会从中得到许多启示。 关键词:基因工程;药物;科学;技术 中图分类号:R-02 文献标识码:A 文章编号:1002-0772(2002)12-0011-03 Developing History and the E nlightenment of G enetic E ngineering Drug W U L an-xiao,GUO Kun-yuan,QIN Y u (1.Depart ment of Hem atology,Zhujiang Hospital,First Military Medical U niversity,Guangz hou510282,China;2. N anf ang Hospital,First Military U niversity,Guangz hou510282,China) Abstract:G enetic engineering has made remarkable development in the area of drug production and research since it ap2 peared twenty years ago.More than100new geneitc engineering drugs have been used in clinic,and more drug-projects are undergoing.It can be predicted that genetic engineering drug will make more and more influence in people’s life.A perspective view about genetic engineering drug developing history was made in this article and some philosophic opinions inspired from it were discussed. K ey Words:genetic engineering;drug;science;technology 1 基因工程原理和技术 基因工程是在分子水平上人工改造生物遗传性,创造世间新的生物物种技术,亦称DNA重组或分子克隆,包括基因和载体的制备、切割和连接,重组DNA的转移、表达及产物分离等。基因的制备方法有,多聚酶链反应、互补文库、基因组文库、染色体DNA的酶切分离、酶合成法和化学合成法等,迄今为止,已制备人胰岛素、人尿激酶、人生长激素、人α-干扰素及生长因子等多种药物的基因。载体是能将外源性目的基因运输至宿主细胞的小分子DNA,目前大抵有细菌质粒、嗜菌体DNA及病毒DNA构建人工载体,如pBR322、Charon系列、Cos2 mid、反转录病毒、腺病毒及其相关病毒的DNA,此外,尚有酵母人工染色体DNA,及哺乳动物人工染色体DNA等。载体和含目的基因的DNA分别经限制性内切酶切割后,两者混合通过连接酶连接构成重组DNA,经转化、转导、转染、激光打孔、微注射或基因枪等技术,可转移至宿主内,获得基因工程细胞,后者经培养和表达,即可产生相应的基因工程药物。近年来还发现不用载体也不重组,将编码完整的DNA片段或mRNA直接注射内实现完全表达,表明非重组DNA和mRNA可被细胞直接吸收和表达,既简化了基因操作程序,也修正了基因工程基本概念,又促进了基因工程药物的发展,同时还为基因治疗提供了新理论和新途径。 2 基因工程药物发展的历史 应用基因工程技术,研制和开发的药物称为基因工程药物。它是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物基因转移至宿主细胞进行繁殖和表达,最终获得相应药物。包括蛋白质类生物大分子、初级代谢产物,如苯丙氨酸及丝氨酸等以及次生代谢产物抗生素等。自20世纪70年代初基因工程药物诞生以来,基因工程药物发展十分迅速。 ? 1 1 ? 医学与哲学2002年12月第23卷第12期总第259期

基因工程与生物药物

基因工程与生物药物 姓名:李华龙 班级:生物制药1301 学号:1302150003

摘要 自1972 年DNA重组技术诞生以来,生命科学进入了一个崭新的发展时期。以基因工程为核心的现代生物技术已应用到农业、医药、轻工、化工、环境等各个领域。它与微电子技术、新材料和新能源技术一起,并列为影响未来国计民生的四大科学技术支柱, 而利用基因工程技术开发新型生物药物更是当前最活跃和发展迅猛的领域[ 1]。从1982年美国Lilly 公司首先将重组人胰岛素投放市场,标志着世界第一个基因工程药物的诞生。基因工程制药作为一个新兴行业得到各国政府的大力支持, 各国都积极研究和开发各种基因工程药物,并取得了丰硕成果。本文通过对基因工程药物的开发、应用和研究方法等研究进展进行综述。Abstract Since 1972, DNA recombinant technology was born, life science has entered a new period of development.Gene engineering as the core of modern biotechnology has been applied to agriculture, medicine, light industry, chemical industry, environment and other fields . It and microelectronic technology, new materials and new energy technologies together, tied for the four future beneficial to the people's livelihood the big pillar of science and technology, and using genetic engineering technology to develop new biological drugs is the most active and rapidly developing field. From the United States in 1982 Lilly's first recombinant human insulin on the market, marking the birth of the world's first gene engineering medicine. Genetic engineering pharmaceutical as an emerging industry has received great support from governments the countries are actively research and development of various genetic engineering drugs, and achieved fruitful results. In this paper, through the development of gene engineering medicine, research and Application Research progress is reviewed in this paper. 关键词 基因工程、生物药物、研究进展、应用 Genetic engineering、biological medicine、research progress,、application

基因工程药物

基因工程药物 周长征 第一部分概述 一、基因工程药物 (一)基因工程药物的概念 基因工程药物是以基因组学研究中发现的功能性基因或基因的产物为起始材料,通过生物学、分子生物学或生物化学、生物工程等相应技术制成的、并以相应分析技术控制中间产物和成品质量的生物活性物质产品,临床上可用于某些疾病的诊断和治疗。基因药物类型广泛,包括重组蛋白质药物、人源化单克隆抗体、基因治疗药物、重组蛋白质疫苗、核酸药物等10多种类型。 生产基因工程药物的基本方法是:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。若目的基因直接在人体组织靶细胞内表达,就称为基因治疗。 例如,乙肝表面抗原(HBSAg)的产生也受DNA 调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中(所谓表达载体,是因为它可以把这段DNA的功能发挥出来)再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。 干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准唯一一种治疗丙型病毒性肝炎的药物。通常情况下人体内干扰素基因处于休眠状态,血中一般检测不到。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg 干扰素,需要人血8000ml,其成本高得惊人。获取1磅(453g)纯干扰素,其成本高达200亿美元。1980年后,采用基因工程进行生产,其基本原理及操作流程与乙肝疫苗十分类似。现在要获取1磅纯干扰素,其成本不到1亿美元。 (二)基因工程药物的发展 1973年,Cohen等人首次将带有Tet r基因和链霉素抗性基因(Str r)的两种大肠杆菌质粒成功地进行了重组,获得了可以复制并只有双亲质粒遗传信息的重组质粒,拉开了基因工程研究的序幕。1974年他们对具有Amp r和红霉素抗性基因(Emp r)的金黄色葡萄球菌质粒

(完整版)微生物与制药综述

微生物制药的研究进展 姓名:李青嵘 班级:生工102 学号:1014200044

摘要 本文通过对历史文献的检索,从微生物生产维生素,微生物生产多价不饱和脂肪酸,微生物生产抗生素,微生物生产抗癌物质,微生物生产医用酶制剂等五个方面综述了微生物制药的研究进展。 关键词:微生物,制药,发酵工程 1.前言 随着生物技术的迅猛发展,在医药领域的许多方面取得了巨大的进展.,其中采用微生物制药,具有生产工艺简单,生产成本低廉,产品产量高,产品纯度高,可大规模工业化生产等优势,同样得到了巨大的发展。从传统工艺,如利用发酵工程生产抗生素、酶制剂以及B-胡萝卜素等;到现今的利用转基因技术生产干扰素、胰岛素、生长因子等几十种新药和疫苗。本文着重综述了微生物的发酵工程在医药研究和生产中应用的最近进展,主要包括生产维生素、多价不饱和脂肪酸、抗生素、抗癌物质医用酶制剂等五个方面。 2.研究内容 2.1.微生物生产维生素 维生素是六大生命要素之一, 为整个生命活动所必需。β-胡萝卜素、VC、VE是目前应用最为广泛,效果最为显著的三种维生素,它们的作用分别是:β-胡萝卜素是强力抗氧化剂, 有抑制癌细胞增殖和提高机体免疫力等作用。V C 和V E 均是抗氧化剂, 前者可阻止、破坏自由基形成,还具有激活免疫系统细胞的活力,刺激机体产生干扰素以抵御外来侵染因子。至于VE可产生抗体,增强机体免疫力。目前,上述的“三素”以实现了微生物工业化生产。 目前,β-胡萝卜素主要是由三孢布拉霉菌生产,在1998年,陈涛等[1]已经针对三孢布拉霉菌的特点,优化发酵工艺,在3M3的发酵罐中发酵120h,生产的β-胡萝卜素产量已达到1146.5mg/L。虽然,传统的工艺生产β-胡萝卜素的产量高,生产周期比较短,但是传统的工艺复杂,成本过高,不利于大规模工业化生产。故,目前许多课题组专注于开发新的生产β-胡萝卜素的菌种或改进传统工艺。据近年所发表的期刊文献,目前,采用红酵母发酵生产β-胡萝卜素是一种工艺简单,成本低廉的方法,虽然在产量方面较传统方法的低很多,但是该方法仍具有很大的发展潜力。何海燕等[2]采用粘红酵母R3-35摇瓶发酵84h,生产的β-胡萝

基 因 工 程 药 物 的 发 展 前 景

基因工程药物的发展前景 周先建2003年4月12日 一、概况 自从DNA重组技术于1972年诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。目前,世界各国都将基因工程及其逐渐加速的产业化进程视为国民经济的新增长点,展开了激烈的市场竞争。到1999年底为止,全球至少已有近 3000家生物工程公司在从事生物药品与基因产品研究与开发。据不完全统计,在欧美诸国,已经上市的基因工程药品接近一百种,大约还有超过300种以上的药物处于临床试验阶段,约2000种在研究开发中,形成了一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益。 基因工程药物的定义:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药或疫苗。这就称为基因工程药物。若目的基因直接在人体组织靶细胞内表达,就成为基因治疗,但目前尚没有基于基因治疗技术的药物被正式批准。 基因工程药物因为其疗效好,副作用小,应用范围广泛而成为各国政府和企业投资研究开发的热点领域,大量的基因工程药品连续问世,年产值达数十亿美元。自1982年问世以来,基因工程药物成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约五十多个药品已广泛应用于治疗癌症、肝炎、发育不良、糖尿病、囊纤维变性和一些遗传病上,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用。其原因在于,基因工程制药物的研究与开发多是以对疾病的分子水平上的有了解为基础的,往往会产生意想不到的高疗效。 基因工程制造药行业在近二十年中的飞速发展是以分子遗传、分子生物、分子病理、生物物理等基础学科的突破,以及基因工程、细胞工程、发酵工程、酶工程和蛋白质工程等基础工程学科的高速进展为后盾的。基因工程药物的开发时间为5-7年,比开发新化学单体(10-12年)要短一些,当然这也与各国政府的支持有关。据报道,开发活性蛋白生物创新药的成功率按开发的5个阶段大致是:临床前的成功率为15%,一期临床为27%,二期临床为40%,三期临床为80%,注册登记为90%,总体成功率大大高于化学药。适应症不断延伸也是蛋白类药物的一大特点。例如,rhG-CSF,91年上市时批的适应症是化疗并发中性粒细胞减少,到95年11月13日止,又增加了骨髓移植,严重慢性中性粒细胞减少及外周及外周血干细胞移植等适应症。因此,基因工程生物药物发展包括新品种和新适应症两个方面。 二、美国基因工程药物的发展前景

项目研究-一种治疗真菌病的基因工程药物

一种治疗真菌病的基因工程药物 ——赛内汀的研制 病原微生物是危害人类健康的一大杀手,千百年来人类为此付出了巨大的代价。真菌病,尤其是浅部真菌病,在我国较为常见。近几年来,随着免疫抑制剂的广泛应用,烧伤抢救、放射治疗、器官移植的广泛进行,特别是免疫缺陷患者,尤其是艾滋病患者的不断增加,真菌病的发病率有逐渐增加的趋势。据报道艾滋病患者中约有1/3并发各种真菌病而致死。目前临床上应用的抗真菌药物主要有2大类,一类是化学制剂:包括染料类制剂,如龙胆紫、结晶紫;碘制剂,如碘化钾、聚维酮;脂肪酸类制剂,如十一烯酸、十一烯酥锌;咪唑类药物,如克霉唑、咪康唑;丙烯胺类制剂,如萘替芬、特比萘芬;以及其他化学制剂,如土槿酸、氟胞嘧啶等。另一类是抗生素类药物:包括多烯类抗真菌抗生素,如制霉菌素、碘古霉素等;非多烯类抗真菌抗生素,如灰黄霉素、萨拉霉素。近几年来,也出现了一些新的抗真菌新药如阿莫芬类、两性霉素B脂质体、萨普康唑、β-1,3葡聚糖合成酶抑制剂等等。这些抗真菌药物大都是通过破坏真菌的代谢途径或阻断大分子的生物合成来达到抗真菌效果,这样就容易使病原真菌产生抗药性;同时对宿主细胞也产生了一定的毒性。目前临床上对病原细菌的防治也仍然局限于抗生素类药物。抗生素类药物的使用对抑杀细菌起了极其重要的作用,但同时也造成了耐药性菌株的产生和人体的过敏反应。随着生物工程特别是基因工程技术的迅猛发展,蛋白质及多肽类药物不断问世。蛋白质及多肽类药物是当今生物技术及制药工业中最为活跃的领域之一,已经显示出了巨大的社会效益和经济效益。美国FDA已批准的蛋白质及多肽类药物就有人胰岛素、人生长激素、干扰素(INF-α、β、γ)、组织纤溶酶原激活剂(t-PA)、促红细胞生成素(EPO)、粒细胞集落刺激因子(G-CSF)、白细胞介素-2(IL-2)等。利用基因工程手段,在宿主生物中表达生产重组蛋白及多肽,然后分离纯化表达产物,用于药物的研制及开发,已成为生物制药的重要组成部分。抗菌肽是生物体免疫诱导产生的一种具有生物活性的小分子多肽,分子量在2000-7000D左右,由20-60个氨基酸残基组成。目前报道的抗菌肽类,大多对细菌具有广谱的抗性。但对丝状病原真菌无明显的抑杀作用。令人欣喜的是,Pascale Fehlbaum等在E.coli 诱导的斑腹刺益蝽(Podisus.maculiventris)的血淋巴中分离了一种21aa的多肽-Thanatin,研究发现,Thanatin对细菌和真菌都具有广谱抗性。它抑制的细菌包括革兰氏阳性菌:浅绿气杆菌 93

我国基因工程药物的发展现状

我国基因工程药物的发展现状 以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术在近几十年来的发展中受到了全球科技界和企业界的普遍关注,有许多专家认为21世纪将是生命科学的世纪。现代生物技术之所以能受到各界的重视,一方面是由于现代生物技术发展迅速,用途广泛,生物技术的应用范围已遍及医药、农业、食品、能源、环保等各个领域;另一方面是由于现代生物技术可以解决人类发展所面临的许多难题,如人口膨胀、粮食短缺、资源枯竭、环境污染等。人们越来越认识到了生物技术在全球经济进程中的重要性和必要性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为基本资源,因此其原料具有再生性,同时生物系统生产产品产生的污染物少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。 基因工程(genetic engineering )又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体 细胞内复制、转录、翻译表达的操作。 基因工程制药的出现是因为,许多药品的生产是从生物组织中提取的,受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若利用基因工程将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物, 不但能解决产量问题,还能大大降低生产成本。

一、产业现状及地位 1989年,中国批准了第一个在中国生产的基因工程药物一一重组人干扰素,标志着中国生产的基因工程药物实现了零的突破。重组人干扰素是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个中国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,中国基因工程制药产业从无到有,不断发展壮大。1998年,中国基因工程制药产业销售额已达到了7.2 亿元人民币。截止1998年底,中国已批准上市的基因工程药物和疫苗产品共计15种。国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,中国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,中国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%预计2000年中国基因工程药物销售额将达到22.8亿元人民币。 基因工程在制药业中具有广阔的发展前景,中国的基因制药行业 已经初具规模,但与世界发达国家存在差距,主要表现在具有自主知识产权的产品较少,产业规模小、经济效益低。基因制药产业面临着历史性的机遇,主要表现在政府支持、资源丰富、基因信息公开、国际交流

基因工程在医药方面的应用

基因工程在医学上的研究进展

基因工程在医学上的研究进展 摘要:从世纪年代发展起来的基因工程技术在短短的多年中得到了飞速发展,并已成为生物技术的核心技术。目前基因工程技术及其应用已进入了人类生活的各个领域,而在医学上则最为活跃,发展最为迅速。本文就基因工程在基因工程药物、基因诊断、基因治疗的研究做一综述。 关键词:基因工程基因药物基因治疗基因诊断 .基因工程药物 基因工程药物是指利用基因工程技术研制和生产的药物,主要包括细胞因子、抗体、疫苗、激素和寡核苷酸药物等,它们对预防、诊断和治疗人类的肿瘤、心血管疾病、糖尿病、类风湿性疾病、各种遗传病和传染病等有重要的作用。自世纪年代初第一种基因工程产品—人胰岛素投放市场以来,以基因工程药物为主导的基因工程产业就已经成为全球发展最快的产业之一[]。 基因工程激素类药物 年首次从牛的脑垂体中分离出生长激素,年又从人脑垂体中分离出生长激素,年人生长激素的氨基酸序列被确定,终于在年美国食品与药物管理局批准了第一代重组人生长激素上市[];年在美国诞生了世界上第一种基因工程药物——重组人胰岛素[]。 基因工程药物治疗肿瘤 高丽等[]研究基因重组荞麦胰蛋白酶抑制剂()诱导细胞凋亡的作用,结果表明来自蓼科植物的重组养麦胰蛋白酶抑制剂能够有效的抑制肿瘤细胞的生长,抑制作用呈剂量依赖性,但对正常外周血单核细胞的生长没有影响;韩明勇等[]采用将携带人广基因的质粒.转导入细胞 中,并筛选出阳性克隆;李振宇等[]制备慢病毒载体为基础的野生型及突变型单纯疱疹病毒胸苷激酶(./.)基因工程细胞(及细胞)并研究应用../系统进行防治,以达到减轻前体药物毒性,拓宽前体药物选择范围的目的。 基因工程药物治疗病毒感染 杨延梅等[]证明安福隆治疗慢性乙型病毒性肝炎疗效确切;胡立华等[]观察了重组基因工程药物干扰素()与胸腺肽联合治疗慢性乙型肝炎的疗效,显示联合用药的强大抗病毒活性,是目前治疗慢性乙型肝炎较为理想的方案;左冰[]采用一型基因工程干扰素(.)与无环鸟苷()联合治疗单纯疱疹病毒性角膜炎患者,获得满意效果。 通过转基因动植物生产的基因药物 世纪年代初,等人已成功的培育出一种转基因绵羊,其乳腺能分泌抗胰蛋白酶();年月,以色列的科学家们,经过长达年得辛勤研究,培育出转基因山羊“吉迪”,它携带有人血清蛋白基因;年月,我国上海医学遗传与复旦大学遗传所获得首批与人凝血第九因子基因整合的转基因山羊,能在乳汁中分泌出有活性的能治疗血友病的人凝血第九因子;年月,中国科学院动物所科研人员,在对农药产生抗性的昆虫中成功克隆出解毒酶基因。[] .基因诊断 基因诊断又称诊断,主要是从基因水平确定病变基因及其定位。目前已建立起多种病变基因的诊断和治疗方法,如扩增靶序列法、限制性片段长度多态性分析法()、与芯片杂交病变图谱法等。 唐氏综合征产前基因诊断

基因工程药物的设计研究进展和应用前景

基因工程药物研究与应用新进展 郭小周 生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 摘要:自20 世纪70 年代基因工程诞生以来,以DNA重组技术为核心的现代生物技术一直是人们研究的热点,本文主要介绍了基因药物的定义、获得途径、一些前沿技术以及基因药物的应用与发展前景。 关键词:生物技术药物基因工程药物基因发展前景 1. 引言 近年来1953年Waston和Crick发现遗传物质DNA的双螺旋结构,给整个生物学乃至整个人类社会带来了一场革命。此后,一系列有关遗传信息即基因研究的成果很快的向应用和开发拓展。1972年,美国斯坦福大学P.Berg博士研究小组使用EcorRⅠ,第一次在体外获得了包括SV40 DNA和λ噬菌体DNA的重组DNA分子。1973年,S.Cohen等将两中分别编码卡那霉素和四环素的抗性基因相连,构建出重组的DNA分子,然后转化大肠杆菌,获得了既抗卡那霉素又抗四环素的转化子菌落,这是第一次成功的基因克隆实验,标志着基因工程的诞生。1977年Boyer首次获得生长激素抑制因

子的克隆,1982年第一个基因工程重组产品——人胰岛素被批准应用,进入市场。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态。基因工程药物已经形成一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益,由于基因药物的出现,可以大大改善人类的生命质量,对于一些重大疾病的治疗将会有新的突破。 2 基因工程 2.1 基因 基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),知道合成特定的蛋白质,使基因得以表达。 2.2 基因工程 基因工程是利用重组DNA技术,在体外对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出需要的基因产物。 3 基因药物 基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。 基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。 利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和

生物制药工艺学课程综述

《生物制药工艺学》 课程综述 姓名:赵梦娜 学号:2012302290034 学院:武汉大学药学院药学2班指导老师:刘静 时间:2015年7月4日

《生物制药工艺学》课程综述 摘要:生物制药和生物技术在目前的医药行业应用广泛,在人类的疾病的治疗预防和诊断等方面有着十分重要的作用,研究开发生物药品,运用各种生物化学物理技术相结合,最大化的为人类的健康事业做贡献。 关键词:生物制药,生物技术,生物活性物质 Abstract:The biological pharmaceutical and biotechnology are widely used in the current pharmaceutical industry and they play an important role in the treatment and prevention and diagnosis of human disease. Scientists should make full their efforts to research and create original drugs to make contribute to the human health career by using all kinds of biological chemical physics technology. Key words: biological pharmaceutical, biotechnology, biological active substances 生物制药是利用生物活体来生产药物的方法,生物药物的特点是药理活性高、毒副作用小,营养价值高。目前生物技术药物主要包括治疗性多肽、抗体、细胞因子、疫苗、蛋白质、激素、酶、可溶性受体以及核酸类药物等[1]。生物制品是应用普通或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种生物和人源的组织和体液等生物材料制备的,用于人类疾病预防、治疗和诊断的药品[2]。目前生化药物来源于动物、植物、海洋生物和微生物的组织、器官、细胞和代谢产物等,需要采取一定的技术进行生物活性物质的提取处理、分离纯化和鉴定等。生物制药前景广阔,在国内外市场和人类疾病的治疗等方面有广阔的应用前景。 1.生物活性物质的提取 1.1酸碱盐溶液提取法:用酸碱盐溶液可以提取水溶性盐溶性的生化物质。该类溶剂提供 了一定的离子强度、PH和相应的缓冲能力。 1.2表面活性剂提取法:表面活性剂由亲水和疏水官能团,在水油界面分布时有分散、乳 化和增溶的作用。 1.3有机溶剂提取法:分为固-液提取和液-液萃取,前者常用于脂类、脂蛋白和膜结合蛋 白,有机溶剂选取采用相似相溶原理;后者利用溶质在两互不相容的溶剂中溶解度的差异将溶质从一项转移到另一项中[2]。 2.生化活性物质的浓缩与干燥 生化活性物质的浓缩分为盐析、有机溶剂沉淀、葡聚糖凝胶、PEG、超滤和真空减压浓缩等方法;干燥分为减压、喷雾和冷冻干燥等方法。 3.生物活性物质的分离和纯化

基因工程药物的综述

基因工程药物的研究及进展 摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。 关键词:基因工程,药物,现状,发展 1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。 基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。第一、二代基因药物的研制和生产已经成熟。从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。 2 基因工程药物的研究现状 2.1国外基因工程药物研究现状 随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。1976年,世界第一家应用重组DNA 技术开发新药的公司Genentech建立,l982年第一个基因重组药物——基因重组人胰岛素在美国投放市场以来,生物医药产业以一种前所未有的速度迅猛发展。如在基因重组制药产业中做出过卓越贡献的Genentech和Amgen公司,早期的几个“重型炸弹”的基因重组

单克隆抗体药物综述

单克隆抗体药物综述 摘要: 通过淋巴细胞杂交瘤技术或基因工程技术制备单克隆抗体药物,已经成为生物制药领域的一个重要方面,由于单克隆抗体药物专一性强、疗效显著,因此成为近年来研究的热点药物之一。此文就单抗药物的分类、应用进行了综述,并对其应用前景及存在的不足作了概述。 关键词:单克隆抗体抗体药物靶向联用 自1975 年Koeh ler 和M ilstein 首先报道利用小鼠杂交瘤细胞制备单克隆抗体以来, 经过近30 年的发展, 单抗技术在生命科学研究及医学实践方面作出了杰出的贡献, 已经成为了现代生物技术产业的支柱之一。 然而, 尽管单抗推动了生物诊断技术的革命, 但是在将单抗应用于人体疾病的治疗方面, 却在长时间内迟迟没有进展。早期的临床试验结果都不尽人意, 这是因为鼠源单抗应用于人体有许多限制]. 现今上市的单抗药物, 治疗的领域主要集中在肿瘤、自身免疫疾病、器官移植排斥及病毒感染等领域。由于单抗具有明确的作用位点, 与靶位点亲和力高, 而且通过改造的抗体其免疫原性大大减弱, 这些因素使得单抗在临床治疗中具有特异性强、见效快、副作用较低等优点, 因而单抗治疗有着广阔的前景。目前, FDA 批准上市的17 个单抗药物中即有8 个是用于治疗淋巴细胞肿瘤、乳腺癌及结直肠癌等, 而在开发阶段的单抗也有一半以上是与治疗各种癌症相关。可以预见, 在未来几年来将有更多的治疗性单抗药物上市, 其市场份额将进一步扩大。 目前, 单抗类药物的市场销售逐年提升的年均增长幅度在20%以上, 表现强劲。用于治疗非霍奇金淋巴瘤的单抗药物R ituxan 已成为世界第一的抗肿瘤药物, 2003 年销售为14 . 89亿美元, 2002 年为11 . 63 亿美元, 在2002 年全球最畅销前50位商标名处方药中排名43 位。用于治疗关节炎的单抗药物Rem icade, 2002 年销售额为12 . 97 亿美元, 当年全球药物销售排名第37 位。2000 年世界单抗药物的销售额为22 . 05 亿美元, 据 F ro st&Sullivan 预测, 到2003 年销售额将达到47 亿美元。 下面就单克隆抗体药物的研究进展作一综述。 1单克隆抗体药物的分类 单抗药物一般分为:治疗疾病(尤其是肿瘤)的单抗药剂、抗肿瘤单抗偶联物、治疗其他疾病的单抗。单抗药剂针对的靶点通常为细胞表面的疾病相关抗原或特定的受体。如:最早被美国FDA批准用于治疗肿瘤的单抗药物利妥昔单抗;抗肿瘤单抗偶联物,或称免疫偶联物( Immunoconjugate) , 由单抗与有治疗作用的物质(如:放射性核素、毒素和药物等)两部分构成,其中包括放射免疫偶联物、免疫毒素、化学免疫偶联物,此外还有酶结合单抗偶联物、光敏剂结合单抗偶联物等。 2作为肿瘤治疗药剂的单克隆抗体药物 表1概括了近年来美国FDA 批准上市的5 个治疗肿瘤的单克隆抗体药物的基本情况,下面具体加以介绍。 2. 1利妥昔单抗

相关文档
相关文档 最新文档