文档库 最新最全的文档下载
当前位置:文档库 › 高压供电系统概述

高压供电系统概述

高压供电系统概述
高压供电系统概述

第一部分强电系统

第1章高压供电系统

1.1 高压供电系统概述

对于物业管理公司来讲,高压供电系统是指从高压进线的产权分界点到变压器之间的线路和设备。

同时使用多台变压器供电的民用建筑物,通常都采用10kV供电。为了提高供电可靠性,建筑物一般都采用双路供电的方式,即电源从两个变电站或者从一个变电站的两个变压器下分别引入。电缆从中心变电站进入建筑物以后,首先进入高压配电室(也称电缆π接室),然后连接到建筑物内变电室的高压柜上。

建筑群内用来改变电压的场所被称为变电室,用来接收和分配电能而不改变电压的场所称为配电室。在一般情况下变电室和主配电室建在同一个地点,建筑面积比较大的建筑物还会再设置分变(配)电室。

1.1.1 供电设备组成

高压配电设备主要由高压进线隔离柜(图1–1)、高压进线柜、计量柜、变压器柜、母线隔离柜、联络柜、互投柜、PT(电压互感器)柜、直流屏、中央信号屏、电流互感器、防雷设备(避雷器)、接地刀闸、高压母线、变压器、继电保护装置等组成;变电设备主要由不同电压等级及不同容量的电力变压器组成。

图1-1 隔离柜图1-2 隔离手车

1.1.1.1 进线隔离柜

组成:主要采用手车式隔离柜(图1–2),内置高压隔离开关。由动触头、静触头、支持瓷瓶或套管瓷瓶、导电铜排、辅助开关、手车机械移动装置等组成,另外可根据用户需要选配带电显示装置。

调度编号:201–2(202–2)

作用:是电气系统中重要的开关电器,其主要功能是:保证高压电器及装置在检修工作时的安全,在高压进线处起隔离电压的作用。在“分”位置时,触头间符合规定要求的绝缘距离,有明显的断开标志;

在“合”位置时,能承载正常回路条件下的电流及规定时间内异常条件(例如短路)下电流的开关设备。

不能用于切断、投入负荷电流和断开短路电流,仅可用于不产生强大电弧的某些切换操作,即它不具有灭弧功能;隔离柜不能单独工作,需与高压断路器配套使用。

1.1.1.2高压进线柜(图1–3)

组成:主要构件是高压断路器(图1–4)。由电流互感器、真空断路器、动力操动机构、车体等组成。其动力操动机构由弹簧储能动力装置及主轴、拐臂、连杆等构成。

调度编号:201(202)

作用:内置高压断路器(或称高压开关),是变配电室主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等。

1.1.1.3计量柜(图1–5)

组成:柜内安装各类计量仪表(图1–6),及电能量采集器、三相三线电子式多功能电能表、高压峰谷表。

调度编号:44(55)

作用:计量实际电能消耗量。

1.1.1.4变压器柜

组成:基本结构与高压进线柜相同。

调度编号:211、212(221、222)

作用:同高压进线柜,主要是切断和接通变压器的空载和负载电流及切断变压器故障、短路等事故电流作用。

注意:向高压电动机等用电设备供电的柜子叫做高压出线柜,这种柜子的结构与变压器柜相近,但是继电保护的设置有较大差异。

1.1.1.5母线隔离柜

组成:基本结构与进线隔离柜相同。

调度编号:245–4

作用:基本与进线隔离柜相同,在两路高压电源间产生明显断开点。

1.1.1.6联络柜

组成:基本结构与高压进线柜相同。

调度编号:245

作用:基本作用与高压进线柜相同,主要是切断和接通两路电源之间高压母线的空载和负载电流及切断高压母线之间的故障、短路等事故电流作用。

1.1.1.7PT柜(图1–7)

组成:主要由PT手车(图1–8)组成,内置电压互感器(图1–9)组成,铁芯、原副绕组、PX系列浇注材料、绝缘磁套、柜体、机械移动装置等。

调度编号:201–9(202–9)

作用:PT柜内置电压互感器(图1–9),它是将10kV电压变换成0.1kV,可向继电保护和计量仪表供电,也可以通过电压互感器为操作系统提供工作电源。

1.1.1.8电流互感器(图1–10、图1–11)

组成:铁芯、线圈、屏蔽层及外壳组成。

作用:它的工作原理和变压器相似,是用来变换交流电流的仪器,用于测量比较大的电

流,向测量仪

表、继电器的电流线圈供电,从而正确反映设备和网络的正常运行和故障情况。

1.1.1.9避雷设备

组成:避雷器有管式和阀式两大类.管式避雷器主要由灭弧室和内外间隙组成。阀型避雷器(图1–12)由接线鼻、磁套、火花间隙、电阻阀片等组成。避雷器用放电计数器是用来监测避雷器放电动作的一种高压电器,其构造由非线性电阻、电磁计数器和一些电子元件组成。

作用:当遭受过电压时,避雷器的非线性伏安特性发挥作用,避雷器处于导通状态,释放过电压能量,从而防止过电压对变配电设备的侵害。

1.1.1.10接地开关柜(图1–13)

组成:内置接地刀闸(图1–14),由支柱绝缘子、静触头、动触刀、主轴、快速弹簧等部件组成。另外,根据用户需要,可配带电显示装置。

调度编号:211–7(212–7)

作用:用于将回路接地的一种机械式开关装置。给变压器进线开关出线侧提供接地保护,用于变压器维修、保养时的安全接地保护。

1.1.1.11直流屏(图1–15)

组成:交流电源、整流装置、充电(稳流+稳压)机、蓄电池组、直流配电系统。

作用:给变配电室内的高压设备和二次回路提供操作、测量、保护等电源。

1.1.1.12 中央信号屏(图1–16)

作用:中央信号屏采用智能微机控制报警装置。可以提供10kV所有开关和0.4kV主开关及母联开关的位置指示信号,全部开关柜的事故及预告信号的音响及光字显示。即各断路器非操作掉闸事故信号及直流系统故障、熔断器熔断、变压器温度过高、变压器风机起动的预告信号。在变电室内往往和直流屏并排安装。

1.1.1.13高压母线(图1–17)

调度编号:4#、5#

组成:铜质导电体、连接螺栓等。

作用:它的作用是汇集、分配电能。

1.1.1.14变压器(图1–18)

组成:硅钢片,一次/二次绕组、绝缘磁套、调压连接片(分接开关)、风机、变压器箱、温控器等。

调度编号:1#变压器(2#变压器等)

作用:它在变配电室内起变换电压的作用。将10kV电压变换成0.4kV电压,以适应用户需要。

1.1.1.15环网柜(图1–19)

组成:高压负荷开关、熔断器、表计。

作用:在一些用电量较小(1250kV A以下)的建筑物内,作为高压柜使用。

环网柜是一组高压开关设备装在金属柜体内或做成拼装间隔式环网供电单元的电气设备,其核心部分采用负荷开关和熔断器,具有结构简单、体积小、价格低、可提高供电参数和性能以及供电安全等优点。原本环网柜是用于10kV中电压网内的一种设备,在这里已经超出了环网配电的范畴而泛指以负荷开关为主开关的高压开关柜。

从供配电的角度来看,对于变压器不超过1250kV A,长期稳定供电,高压开关不频繁操作的这一类中小型用户,环网柜的性能虽不是最完善的,却是足够的。由于环网柜的价格明显低于制式高压柜,因此在城市住宅小区、高层住宅、大型公共建筑、工厂企业,公共照明设施中得到相当广泛的应用。

1.1.1.16预装式变电站(俗称箱式变电站,简称箱变)(图1–20)

组成:高压负荷开关、熔断器,变压器,低压输出断路器。

作用:在用电量较小、操作次数较少的地方,替代土建变电室。

箱式变电站是一种把高压开关设备、配电

变压器、低压开关设备、电能计量设备和无功

补偿装置等按一定的接线方案组合在一起,安

装进一个防潮、防尘、防鼠、防火、防盗、全

封闭、可移动的钢结构箱体内的,全封闭运行

的紧凑型成套配电装置。

箱变高压侧采用熔断器保护,而负荷开

关只起投切转换和切断高压负荷电流的功能,

容量较小。当高压侧出现一相熔丝熔断,低压

侧的电压就降低,塑壳断路器欠电压保护或过

电流保护就会动作,保证不会发生欠压运行现

象。

它适用于额定电压10∕0.4kV三相交流系统中,作为变压和分配电能之用被广泛的应用在工厂、矿山、油田、港口、机场、城市公共建筑,居民小区,高数公路,地下设施等场所。

箱式变电站在发达国家已经得到广泛应用,其数量远超过土建变电室。在我国,由于

箱式变电站在规划中不占用土建面积,同时具有结构简单,故障效率低,维护成本低,占

地面积小,体积小,安装调试简便,成本低廉等等优点,近年来已被越来越多的建设单位

选用。

1.1.2 变电设备的作用

通过开关柜的有效控制,利用变压器将10kV变成0.4kV,以适应客户需要。

高压供电系统与设备的维护和管理

高压供电系统及设备的维护与管理 摘要:动力配电系统是一切生产动力的来源,配电室安全工作千万不要掉以轻心, 为进一步加强配电室设施的安全运行管理,全面掌握设备运行健康状况,及时发现设备存在的问题和消除缺陷;而电机是将电能转换为机械能的动力设备,能带动生产工作,在企业中广泛使用,并且是设备运行的关键.电机的不正当运行将对电动造成不同程度的损坏,但如不及时发现就会造成大的维修费用甚至报废电机;本文简述了炼胶中心配电室的日常检查和注意事项以及大型电机的日常检查、维护保养和故障处理方法,以减少配电系统故障和电动机的大修,确保生产正常进行。 关键词:配电室负荷补偿电容互感器日常检查维护保养电机诊断预知维修节省费用安全生产 1、前言:炼胶中心根据公司设备处要求,结合中心供配电系统及电气设备的实际需求, 专门设立专职巡检人员,主要对中心配电室和大电机进行管理并定期巡视和检查,全面掌握设备运行状况,及时发现设备缺陷和危险点(薄弱点),采取防范措施,保证 中心配电室设备安全稳定运行。 2、设备现状: 在现代企业中,各种类型的生产机械都是按人们所给定的规律运 动通过电机把电能转换成机械能来实现拖动的。电机在生产过程中发 挥着极其重要的作用,但由于大多数电机使用年限较长(有些已属于 高耗能淘汰产品),而且长年累月运行在恶劣的环境中,电机故障和 烧毁现象常有发生,严重影响着生产的安全、可靠、长周期运行。所 以坚持对大型电机的日常检查和维护保养,减少电机故障或及时发现 电机存在的小故障,这样就能预知电机的维修,能很好的安排维修人

员进行处理;如此以来,既避免造成电机大的故障,使维修时间和费用都大大减少,又能合理的安排维修人员检修。 炼胶中心总共有配电、驱动室11间,在每个配电室内均安装有两套监控、烟雾感应报警装置系统,由炼胶中心微机室和设备动力值班室监控;但为了防患于未然,炼胶中心专职巡检人员每天都要对各个配电室进行认真的安全巡视检查。 在炼胶中心(1#、2#、3#车间)大小电机总共约有近1000台电机,其中大型电机有19台(包括240KW的5台、560KW的4台、1000KW的5台、1250KW的1台、1500KW的1台、2300KW 的3台). 下面分别对配电室和大电机的管理要求详细介绍,并通过实践体现其成效和作用: 3、配电室管理要求: 3、1 配电室的每日巡检要求 3、1、1 在满负荷生产用电高峰期,应增加巡视检查次数。 3、1、2 遇大风、雨、雪、雾、冰雹、洪水等恶劣天气,必须进行特殊巡视。对危及安全的线路和设备应采取暂停供电的应急措施。 3、1、3 在障碍异常或事故停电、配电室漏保器动作后,各级人员按照分工必须立即进行巡视检查,查找故障点,排除故障后方可恢复送电。 3、1、4 巡视人员要做到巡视认真,检查到位,应如实填写巡视记录,对于巡视中发现的缺陷、危险点等应及时登记和上报,并提出处理意见。 3、1、5 对危及电力设施运行安全的要及时发送书面隐患通知书,对限期整改的责任者或单位应及时向公司设备处汇报。 3、1、6 对于未按要求进行巡视检查或巡视工作不到位的人员按照安全生生产相关规定和考核办法或经济责任制考核办法严格考核。

高压直流系统

高压直流电源系统介绍 易国华:非常感谢各位利用给我这个汇报的机会,时间关系,我只讲一些重点。简单介绍一下公司,我们公司的产品主要有四大类,一个是通信电源系统,第二在电力系统当中使用的电力操作电源系统,第三是高压直流系统,应急电源。这是我们在电力行业里面使用的电力操作电源系统,主要在变电站、电厂。这是电力操作电源核心,跟我们通信电源相类似,模块等等。这是应急电源,主要是消防上的,一些大的用户电里面实际上是锂电器。这是室内和室外的系统。 今天主要把时间放到高压直流上面,主要是替代UPS的目的。我们数字机房包括一些计算机终端来供电的,既然高压直流是替代UPS的,必须了解这两个之间的区别。高压直流从AC到DC,UPS比高压直流多一个变换。UPS和高压直流相比存在哪些问题呢?第一个主要多了一个变换效率比较低,第二系UPS的输出采用工频滤波损耗大。UPS控制复杂,可靠性降低。UPS的电池在输入端,如果UPS本身出故障,他一定要保证自己不出问题才可以不间断。UPS并机要需要同频、同相、同电位,并机复杂,可靠性低。我说这个东西也简单,它的可靠性越高。高压直流并机是直流并联,只有同电位的问题,控制非常简单。只要电压相同就可以。UPS系统并联数量上受到限制,高压直流是没有这个限制的,我们实际操作当中一般是40台并联。UPS现在机房使用绝大多数都是1+1并联方式,实际负荷单机往往小于40%,这样一来单台机的运行效率很低,70%左右。高压直流现在使用是N+1方式,因此它的符合可以达到70-80%,一般涉及到80%以下。现在的高压直流效率在30%的负载的时候可以做到92%,我们的效率在92%以上。 值得一提是高压直流这种N+1方式维护起来非常的方便,大家知道大型UPS出故障之后大家都傻眼了,没有什么招了。而高压直流由于电池的存在,N+1的系统最大的好处我个人认为实际上是维护,你不太担心他。

高压供电与低压供电系统的区别

10kV高压供电系统与低压380V/220V供电系统的不同点: 首先是中性点接地方式,10kV高压供电系统属中性点不接地系统,而低压380V/220V供电系统中性点必须直接接地; 其次是供电方式,10kV高压供电系统采用三相三线制供电,低压380V/220V供电系统则采用三相四线制供电; 另外,10kV高压配电柜中的主进线柜通常采用下进线,俗称倒进火,即“刀带电”。 我国目前大多采用三相四线制低压供电系统,即380V/220V中性点直接接地低压供电系统。该供电系统具有3条火线,即L1、L2、L3(或A、B、C),一条零线。这条零线之所以称为零线,就是因为它是由变压器二次侧中性点引出的,而二次侧中性点又直接接地,与大地零电位连接。在三相四线制低压供电系统中它既是工作地线,又是保护零线,现在称为PEN线,其中PE是保护零线,N是工作零线,合起来就是PEN线,PEN线表示工作零线兼做保护零线,俗称“零地合一”。下图是三相四线制低压380V/220V供电系统图。 从图中可以看出单相负载(灯泡)一端接火线,另一端接在零线上;三相电动机的三相绕组分别接在三条火线上,而电动机的金属外壳则接在零线(地线)上。从而不难看出,这条零线(地线)既是单相负载(灯泡)的电源回路,又是三相电动机保护接零的保护回路。 这里顺便说说中性点直接接地的问题,变压器二次侧中性点直接接地叫工作接地,按照规程要求其接地电阻不得大于4欧。我们知道10kV高压系统是采用中性点不接地的供电系统,那么为什么380V/220V低压供电系统非要中性点直接接地呢? 在中性点直接接地的380V/220V低压供电系统中,由于中性点直接接地,因此,任何一条火线对地电压都是220V。如果任何一条火线接地的话,都会造成短路,此时会造成开关

10KV供电系统

10KV供电系统在电力系统中的重要位置 电力系统是由发电、变电、输电、配电和用电等五个环节组成的。在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。例如,当系统中的某工矿企业的设备发生短路事故时,由于短路电流的热效应和电动力效应,往往造成电气设备或电气线路的致命损坏还有可能严重到使系统的稳定运行遭到破坏;当10KV不接地系统中的某处发生一相接地时,就会造成接地相的电压降低,其他两相的电压升高,常此运行就可能使系统中的绝缘遭受损坏,也有进一步发展为事故的可能。 10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。因此要全面地理解和执行地区电业部门的有关标准和规程以及相应的国家标准和规范。 由于10KV 系统中包含着一次系统和二次系统。又由于一次系统比较简单、更为直观,在考虑和设置上较为容易;而二次系统相对较为复杂,并且二次系统包括了大量的继电保护装置、自动装置和二次回路。所谓继电保护装置就是在供电系统中用来对一次系统进行监视、测量、控制和保护,由继电器来组成的一套专门的自动装置。为了确保10KV供电系统的正常运行,必须正确的设置继电保护装置。 2. 10KV系统中应配置的继电保护 按照工厂企业10KV供电系统的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置: (1)10KV线路应配置的继电保护 10KV线路一般均应装设过电流保护。当过电流保护的时限不大于0.5s~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。当瞬时电流速断保护不能满足选择性动作时,应装设略带时限的电流速断保护。 (2)10KV配电变压器应配置的继电保护 1)当配电变压器容量小于400KVA时:一般采用高压熔断器保护; 2)当配电变压器容量为400~630KVA,高压侧采用断路器时,应装设过电流保护,而当过流保护时限大于0.5s时,还应装设电流速断保护;对于车间内油浸式配电变压器还应装设气体保护;

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 1低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种

是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。TT系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。 因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。 (3)TN系统: 在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即:过去称三相四线制供电系统中的保护接零。 当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。 1)IT系统:

高压直流供电

高压(240V及以上)直流IDC机房供电方案 高压直流供电系统从提出到实施已有3到5年时间了,其优点在这就不再罗列,相信各位都有了解,比如节能、维护方便等,但也存在一些致命弱点,比如浮地输出绝缘问题、割接安全性问题等,下面我们主要讨论一下直流IDC机房供电方案。 目前IDC机房内服务器基本采用交流输入,主要由UPS通过如并机冗余n+1系统、串并联冗余、双总线、双回路等系统供电方式来提供可靠供电,但往往导致整个系统复杂多变,增加了维护难度和成本。而高频直流模块化开关电源已是成熟产品,供电模式简单、维护方便、成本低、效率高,但与-48伏系统又存在一定差别,主要是一、电压高,操作危险性大; 二、高压直流供电系统输出浮地,对线缆耐压和绝缘程度要求高;三、由于高压直流供电是对现有交流服务器不改造实施,供电安全性可靠性必须有充分认证后再实施,避免引起服务器自带AC-DC变换器高低压保护而停止服务。 至于供电方案仍以分散供电为主,我初步考验以下几种: 一、单系统双路由方式:(目前机房-48V传输供电方式) 该供电方式与目前机房-48V传输供电方式一样,由一套系统提供两路主、备高压 直流电源。 优点:1、采用一套高压直流系统,结构简单,成本低。 2、输出采用双回路,可靠性较高。 3、效率高,但系统负载率可达70%以上。 缺点:仍存在单点故障隐患。

二、双系统双路由供电方案:(类似UPS并机冗余n+1系统) 优点:采用两套系统,可靠性高。 缺点:1、投资大、结构复杂。 2、效率低,但系统负载率必须控制在40%以内。 三、不同系统双路由供电方案:

优点:采用两套不同系统,可靠性高。可在现有系统中实施改造,增加一套高压直流系统,对重要双电源输入服务器实施改造 缺点:1、投资大、结构复杂。 2、效率低,但系统负载率必须控制在40%以内。

高压配电室及供电系统运行维护

高压配电室及供电系统运行维护 甲方: ___________________________________ 乙方: ___________________________________

签订日期: _________ 年_______ 月 ______ 日

甲方:______________________________________ 乙方:______________________________________ 乙方单位作为专业的配电室设施设备的运行维护公司,受聘(委托)于甲方_______ 变配电室设备的运行和保养及维护工作。依据《中华人民共和国合同法》有关规定, 甲乙双方本着平等互利的原则,从事设备运行、维护、巡视、保养工作,一致达成本协议。 第一条运行维护事项 根据《______ 地区电器规程汇编》、《DL408-91电业安全工作规程》、《四川地区用电单 位电气安全工作规程》由乙方从事以下工作: 1、严格执行四川地区电气安全工作规程,电气设备运行管理规程,确保变(配)电系 统的正常运行。 2、乙方按照符合配电室维护资格的要求,定期向变配电室安排工作人员负责项目内变电站的高低压变配电室的设备设施运行管理与设备维护工作,并认真填写日负荷月报表,并严格按甲方规定上报存档。 3、乙方定期做好运行记录和变(配)电设备的巡视工作。如遇紧急情况,乙方值班人员接到通知后应及时赶到现场负责组织处理紧急情况。 4、乙方确保设备运行无安全事故、无人员伤亡事故、无安全隐患(安全隐患包括违反 安全运行操作规程、消防隐患)。乙方应对甲方值班人员定期培训,遵守安全操作规程。 5、乙方及时处理高低压开关柜、变压器、电缆等设备的异常事故,并及时通报甲方负责人。 6、根据成都电业局和甲方对配电工作的要求,有义务配合成都电业局和甲方完成定期性设备和安全用具的预报性实验,并妥善保管相关测试结果。 7、结合季节气候特点,做好季节性预防措施。 8、负责与电业局的职能部门联络,协调日常用电事宜,每月向甲方提交报告,保证项目安

浅谈低压供电系统的几种供电方式

浅谈低压供电系统的几种供电方式 国际电工委员会(IEC)标准规定,低压供电系统按照其形式不同,可分为TT供电系统、TN供电系统和IT供电系统。现在将此3种供电系统作一个简单的论述,并进行综合比较。1供电系统符号的意义第一个字母表示电力(电源)系统的对地关系。T指中性线直接接地;I指所有带电部分与大地绝缘或高阻抗(经消弧线圈)接地。第二个字母表示用电装置处外露的可导电金属部分与大地的关系。T指用电设备外露可导电金属部分与大地有直接的电气连接,而与低压系统的任何接地点无关;N指用电设备外露可导电金属部分与低压系统的接地点有直接的电气连接。第三个字母表示工作零线与保护线的组合关系。S指整个电力系统工作零线(N线)与保护线(PE线)是严格分开的;C指整个电力系统工作零线与保护线是共同使用的即PEN线;(C-S)指系统中有一部分工作零线与保护线是共同使用的。2供电的基本方式2.1 TT供电系统的电源中性点直接接地,并且引出中性线(N),称作三相四线制系统,此系统的用电设备的外壳可导电金属部分通过设备本身的保护接地线(PE)与大地直接连接,称为保护接地系统。 常见的各种低压交流(220/380V,50Hz)供电系统有:IT、TN一C、TN一S、TN一C一S、TT供电系统。 供电的安全性指供电配电时不能伤害人或损坏设备。可靠性指在一

定条件和时间内连续供电的能力。这是电源系统中的一对矛盾,当人身与设备安全性受到危险时,需要切断电源;而切断电源又对用电设备连续供电产生影响。以下对供电系统常用的五种交流电源系统及接地方式进行介绍,并在安全性与可靠性分析进行比较。 IT供电系统及接地方式 IT系统是三相三线式供电及接地系统,该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地,无中性线(俗称零线)N,只有线电压(380V),无相电压(220V),电器设备保护接地线(PE线)各自独立 IT系统在供电距离不长时,供电可靠性高,安全性好。电源侧也可采取中性点经高阻抗接地。 IT系统在一相接地时,单相对地漏电电流小,不破坏电源的电压平衡。一般用于不允许停电的场所,或是严格要求连续供电的地方。 如果一相发生接地故障,通过熔断器F等可以切断该相,其它两相可以供电。而且,用电设备有接地保护,当单相绝缘损坏碰到外壳,使金属外壳呈带电状态时,人员触及带电金属外壳可以避免触电事故的发生。这是因为电流经过两条并联电路流通,一路通过接地线、大

高压供电系统概述

第一部分强电系统 第1章高压供电系统 1.1 高压供电系统概述 对于物业管理公司来讲,高压供电系统是指从高压进线的产权分界点到变压器之间的线路和设备。 同时使用多台变压器供电的民用建筑物,通常都采用10kV供电。为了提高供电可靠性,建筑物一般都采用双路供电的方式,即电源从两个变电站或者从一个变电站的两个变压器下分别引入。电缆从中心变电站进入建筑物以后,首先进入高压配电室(也称电缆π接室),然后连接到建筑物变电室的高压柜上。 建筑群用来改变电压的场所被称为变电室,用来接收和分配电能而不改变电压的场所称为配电室。在一般情况下变电室和主配电室建在同一个地点,建筑面积比较大的建筑物还会再设置分变(配)电室。 1.1.1 供电设备组成 高压配电设备主要由高压进线隔离柜(图1–1)、高压进线柜、计量柜、变压器柜、母线隔离柜、联络柜、互投柜、PT(电压互感器)柜、直流屏、中央信号屏、电流互感器、防雷设备(避雷器)、接地刀闸、高压母线、变压器、继电保护装置等组成;变电设备主要由不同电压等级及不同容量的电力变压器组成。 图1-1 隔离柜图1-2 隔离手车 1.1.1.1 进线隔离柜 组成:主要采用手车式隔离柜(图1–2),置高压隔离开关。由动触头、静触头、支持瓷瓶或套管瓷瓶、导电铜排、辅助开关、手车机械移动装置等组成,另外可根据用户需要选配带电显示装置。 调度编号:201–2(202–2) 作用:是电气系统中重要的开关电器,其主要功能是:保证高压电器及装置在检修工作时的安全,在高压进线处起隔离电压的作用。在“分”位置时,触头间符合规定要求的绝缘

距离,有明显的断开标志; 在“合”位置时,能承载正常回路条件下的电流及规定时间异常条件(例如短路)下电流的开关设备。 不能用于切断、投入负荷电流和断开短路电流,仅可用于不产生强大电弧的某些切换操作,即它不具有灭弧功能;隔离柜不能单独工作,需与高压断路器配套使用。 1.1.1.2高压进线柜(图1–3) 组成:主要构件是高压断路器(图1–4)。由电流互感器、真空断路器、动力操动机构、车体等组成。其动力操动机构由弹簧储能动力装置及主轴、拐臂、连杆等构成。 调度编号:201(202) 作用:置高压断路器(或称高压开关),是变配电室主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故围。高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等。 1.1.1.3计量柜(图1–5) 组成:柜安装各类计量仪表(图1–6),及电能量采集器、三相三线电子式多功能电能表、高压峰谷表。 调度编号:44(55) 作用:计量实际电能消耗量。

浅谈低压供电系统的几种供电方式(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅谈低压供电系统的几种供电 方式(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

浅谈低压供电系统的几种供电方式(最新 版) 国际电工委员会(IEC)标准规定,低压供电系统按照其形式不同,可分为TT供电系统、TN供电系统和IT供电系统。现在将此3种供电系统作一个简单的论述,并进行综合比较。1供电系统符号的意义第一个字母表示电力(电源)系统的对地关系。T指中性线直接接地;I 指所有带电部分与大地绝缘或高阻抗(经消弧线圈)接地。第二个字母表示用电装置处外露的可导电金属部分与大地的关系。T指用电设备外露可导电金属部分与大地有直接的电气连接,而与低压系统的任何接地点无关;N指用电设备外露可导电金属部分与低压系统的接地点有直接的电气连接。第三个字母表示工作零线与保护线的组合关系。S指整个电力系统工作零线(N线)与保护线(PE线)是严格分开的;C指整个电力系统工作零线与保护线是共同使用的即PEN线;(C-S)

指系统中有一部分工作零线与保护线是共同使用的。2供电的基本方式2.1TT供电系统的电源中性点直接接地,并且引出中性线(N),称作三相四线制系统,此系统的用电设备的外壳可导电金属部分通过设备本身的保护接地线(PE)与大地直接连接,称为保护接地系统。 常见的各种低压交流(220/380V,50Hz)供电系统有:IT、TN一C、TN一S、TN一C一S、TT供电系统。 供电的安全性指供电配电时不能伤害人或损坏设备。可靠性指在一定条件和时间内连续供电的能力。这是电源系统中的一对矛盾,当人身与设备安全性受到危险时,需要切断电源;而切断电源又对用电设备连续供电产生影响。以下对供电系统常用的五种交流电源系统及接地方式进行介绍,并在安全性与可靠性分析进行比较。 IT供电系统及接地方式 IT系统是三相三线式供电及接地系统,该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地,无中性线(俗称零线)N,只有线电压(380V),无相电压(220V),电器设备保护接地线(PE线)各自独立

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

高压直流系统学习心得

高压直流设备深入学习心得体会 鉴于交流UPS供电的模式在通信系统中安全性、经济性等方面的问题越来越凸显,主要体现为能耗高、可靠性低、维护扩容难度大及建设成本大。另外由于转型业务、数据通信、各种增值业务平台在电信运营商的比重日趋增大,安全要求、节能要求与电源保障提出了空前高的要求,所以应运而生出现了使用高压直流设备替代传统交流UPS设备的设想及实践实例。 就现在的市场前景及需求,公司组织了一次公司研发的高压直流设备学习,在深入学习的情况下总结一下个人的学习心得体会,探讨一下自己对该类型设备的认知。 一、高压直流设备是什么 随着世界范围内通信行业的高速发展,数据业务的快速增加需求,传统的UPS供电系统的大量应用加剧了通信局站的供电压力,增大了安全隐患,也加大了设备维护工作量。而众所周知直流供电系统的可靠性要远高于UPS供电系统,那么我们能不能找到一种新的供电系统来取代UPS供电系统,消除人们的顾虑呢。因此也就促使产生了一种新型的高压直流供电系统。在国外从上世纪90年代末就已经开始研究,现在因各国的实际供电需求不一也造成此设备输出电压的不一致,譬如我国就采用的是标称为240V的高压直流设备。 高压直流设备系统与传统48V供电系统十分类似,高压直流设备是由多个并联冗余整流器和蓄电池组成的。在正常情况下,整流器将市电交流电源变换为270V、350V或420V 等直流电源,供给受电设备,同时给蓄电池充电。受电设备需要的其它电压等级的直流电源,采用DC/DC变换器变换得到。市电停电时,由蓄电池放电为受电设备供电;长时间市电停电时,由备用发电机组替代市电,提供交流输入电源。与传统的-48V直流电源系统的一样,蓄电池备用时间为1~24h。 二、较UPS的优势 1、能耗低 由于UPS中采用了逆变器,逆变频率为工频50Hz,必须采用工频变压器,所以功率因数低,效率低。正常情况下单机效率一般在60-70%。为保证IT设备用电的安全可靠性,目前通信用UPS电源系统,均配置在线式串联热备份或N+1并机冗余模式;最常见的配置为1+1并机冗余系统或2+1并机冗余系统,这就使得系统效率进一步降低,一般在40-50%,实际使用中业务的发展是一个渐进的过程,兼顾到建设周期和业务发展规划,使得平均使用

高压供电系统应急预案

高压供电系统应急预案 一、总则 本方案是在电网(大网和公司电网)发生事故或紧急限负荷时,我公司供电电网和电气设备遵循的行动纲领,各单位必须服从指挥、严格执行。电力调度要认真做好详细记录备查,并将处理情况及时向公司生产调度汇报沟通。 二、组织领导 电气总指挥:制造部副总工程师、副部长XXX 副指挥:动力车间主任XXX 指挥机构:动力车间电力调度 三、大网事故状态下限负荷应急方案 目前东北电网比较脆弱,大连地区的供电能力也因负荷增加和设备的原因经常告急,并加大了电网出现事故的可能性,为了保证突发事故状态下整个电网的安全运行,市电业局在6月10日召开了全市用电大户限负荷会议,并给我公司在突发事故状态下5分钟内下调3万kW负荷的硬性指标,为保证公司在限负荷情况下有序工作和合理安排生产,经研究提出如下几个应急方案: (一)、当负荷限定不超10000kW时: 1、停下公司全部电炉和全部生产设备 2、保证影响生产设备安全的一类负荷供电。 (二)、当负荷限定不超20000kW时: 1、停下公司全部电炉设备及棒线材厂、初轧厂主轧机和650轧

机 2、保证全公司动力设备供电 3、初轧修磨可生产 (三)、当负荷限定不超30000kW时: 1、停下公司全部电炉设备,停棒线材厂或初轧厂和中型材650轧机 2、保证其它设备生产 (四)、当负荷限定不超40000kW时: 1、停下公司全部电炉设备 2、保证其它设备生产 (五)、当负荷限定不超50000kW时: 1、停下二炼钢厂电炉设备或二炼钢厂停1台电炉和1台LF炉,一炼钢厂停2台电炉和2台LF炉 2、其它设备生产 (六)、当负荷限定不超60000kW时: 1、停二炼一台电炉和一台LF炉 2、保证其它设备生产 当遇到大调限电指令时,原则上按以上分类限负荷,同时要及时监视负荷情况,当有余量或问题时,可与生产调度沟通适当增减设备运行。 四、突发性停电措施 1、停电期间所有在岗人员要坚守岗位,遵守纪律,做好受电的准备

供电系统的分类

什么是TT、TN-C、TN-S、TN-C-S、IT系统? 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 TT方式供电系统 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 带专用保护线的TT方式供电系统 图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。TN系统根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 TN-C方式供电系统

高压直流输电系统概述

高压直流输电系统概述 院系:电气工程学院 班级:1113班 学号:xxxxxxxxxxx 姓名:xxxxxxxxxx 专业:电工理论新技术

一、高压直流输电系统发展概况 高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。 1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程. 我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景. 近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术. 现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜. 一、高压直流输电系统构成 高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。 单极联络线的基本结构如图1所示,通常采用一根负极性的导线,由大地或海水提供回路,采用负极性的导线,是因为负极的电晕引起的无线电干扰和受雷击的几率比正极性导线小得多,但当功率反送时,导线的极性反转,则变为负极接地。由于它只需要一根联络线,故出于降低造价的目的,常采用这类系统,对电缆

浅谈供电系统的接地方式

浅谈供电系统的接地方式 1.绪论 工程施工用电的基本供电系统有(380V)三相三线制、(380/220V)三相四线制、三相五线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面就以上所指各种供电系统做一个简要的分析。 2.供电线路符号小结 2.1国际电工委员会(IEC)规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。如T表示是中性点直接接地;I表示所有带电部分绝缘(不接地)。 2.2第二个字母表示用电装置外露的金属部分对地的关系。如T表示设备外壳接地,它与系统中的其他任何接地点无直接关系;N表示负载采用接零保护。 2.3第三个字母表示工作零线与保护线的组合关系。如C表示工作零线与保护线是合一的(我们称零地合一),如TN-C;S表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,如TN-S。 3.供电的基本方式的使用范围 3.1TN-S:适宜大中公共建筑中的配电系统。 3.2TN-C:适宜三相负荷平衡以及未装设剩余电流保护器的配电系统。 3.3TN-C-S:适宜小区居民住宅楼的配电系统。 3.4TT:是地区供电部门规定采用的配电系统或在TN接地系统中装设剩余电流保护器的配电系统。 3.5IT:适宜诸如消防配电系统、医院手术室等对不间断供电要求高的配电系统。 4.TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1-1所示。 4.1TT方式供电系统特点 4.1.1当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 4.1.2当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统不宜在380/220V供电系统中应用。 4.1.3TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 4.2TT方式供电系统的改进 现在有的施工单位是采用TT系统,施工单位专门安装一组接地装置,引出一条专用接地保护线,以减少需接地装置钢材用量,如图1-2所示。 4.2.1TT方式供电系统的改进的特点 4.2.1.1把新增加的专用保护线PE线和工作零线N分开,共用接地线与工作零线没有电的联系; 4.2.1.2正常运行时,工作零线可以有电流,而专用保护线没有电流;4.2.1.3TT系统适用于用电设备容量小且很分散的场合。 5.TN方式供电系统

新型高压直流输电系统

基于新型换流变压器的特高压直流输电系统的瞬态响应摘要:新型特高压直流输电系统采用了新型电力变换器和一致的感应滤波方法,它的拓扑结构完全不同于已经存在的高压直流输电系统。对于受控系统的变化,也就是说传统高压直流输电系统采用的是一种标准的控制模型,那么新型高压直流输电系统的瞬态响应特征将要相应的改变。参考国际大电网会议上关于高压直流输电的第一个基准模型的主电路参数。这篇论文设计了一个相似的高压直流输电标准模型,该模型是基于换流变压器和一致感应滤波方法的专门特征的,包括了换流变压器和一致感应滤波装置的参数。而且,高压直流输电系统的典型瞬态响应已经通过计算机辅助仿真和电磁暂态仿真,结果表明,采用了标准控制模型的新型高压直流输电系统,有一个很好的瞬态响应特征。而且在外界干扰较大时也能够平稳的运行。 索引词:感应滤波方法,新型换流变压器,新型高压直流输电系统。瞬态响应特征。 1.说明 高压直流输电系统有很高的可控制性。它的有效运行依靠于它的可控制特征的合理运用,给电力系统的期望运行指明了一个方向。总之,新型高压直流输电系统采用了多种等级模型,这种模型为电力系统的控制提供了高效,稳定运行,灵活操作的方法。 新型高压直流输电系统采用了新的电气连接结构,以感应滤波方法取代了传统的被动式反应方法,他可以有效地提高传统高压直流输电中谐波抑制和无功补偿问题的普适性。文章研究了新型换流变压器和感应滤波方法的线路模型和技术特点,工作机制,最终引出了感应滤波的综合优化设计。同时研究了新型高压直流输电系统的稳定运行特征和无功补偿特点。基于以上这些,本篇论文将分析新型高压直流输电系统的典型瞬态响应。 2.新型高压直流输电系统的典型测试系统 新型换流变压器的参数设计: 图一,新型换流变压器的接线图和电压相位图。 在传统的12脉冲高压直流输电系统中,传统的换流变压器经常采用接线方法。它可以为12脉冲的直流系统提供12个相位源。而对与新型的换流变换器,为了达到与传统的换流器的相同效果,它将采用图一所示的接线图。在这种情况下,它不仅能够满足相位变换的要求,而且能够满足感应滤波方法的必要先决条件。他应当满足初次级线圈延长线和公共绕组的限制关系。为了简单讨论,我们选择了新型换流变压器的单相线圈来讨论。依据图

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

相关文档