文档库 最新最全的文档下载
当前位置:文档库 › 卡尔曼滤波实验报告

卡尔曼滤波实验报告

卡尔曼滤波实验报告
卡尔曼滤波实验报告

实验:卡尔曼滤波实现

实验报告姓名:学号:日期:(以下内容用五号字书写,本页空白不够可续页)

题目 ##

姓名:学号:日期:(以下内容用五号字书写,本页空白不够可续页)

Kalman滤波在运动跟踪中建模

目录 一、kalman滤波简介 (1) 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

(整理)Kalman滤波在运动跟踪中的建模.

目录一、kalman滤波简介 1 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

多智能体系统中一致性卡尔曼滤波的研究进展.

第 46卷第 2期 2011年 4月 西南交通大学学报 J OURNAL OF SOUTHW EST JI A OTONG UN I VERSI T Y V o. l 46 N o . 2 A pr . 2011收稿日期 :2010 02 01 作者简介 :马磊 (1972-, 男 , 教授 , 博士 , 研究方向是网络化控制和多机器人系统 , E m ai:l m ale@i s w jt u . edu. cn , l . 文章编号 :0258 2724(2011 02 0287 07 DO I :10. 3969/.j i ssn . 0258 2724. 2011. 02. 019 多智能体系统中一致性卡尔曼滤波的研究进展 马磊 1 , 史习智 2 (1. 西南交通大学电气工程学院 , 四川成都 610031; 2. 上海交通大学机械系统与振动国家重点实验室 , 上海 200240 摘要 :从多智能体系统中一致性问题的基本概念、算法收敛性和性能分析出发 , 总结了基于一致性方法的分布式卡尔曼滤波的研究进展 . 从基于局部通讯的滤波器构造方法、信息加权和滤波器参数优化等方面对研究现状进行了评述 . 最后 , 讨论了信息损失、量化一致性和随机异步算法等前沿问题 , 以期促进相关研究 . 关键词 :一致性 ; 多智能体系统 ; 图拉普拉斯算子 ; 信息融合 ; 分布式卡尔曼滤波中图分类号 :TP242 文献标志码 :A

R ecent Developm ent on Consensus Based Kalman Fi ltering in M ulti agent System s MA Lei 1 , S H I X izhi 2 (1. Schoo l o f E lectr i ca lEng i neeri ng , Southwest Jiao tong U nivers it y , Chengdu 610031, Ch i na ; 2. Sta te K ey L aboratory o fM echanical Syste m s and V ibra tion , Shangha i Ji ao t ong U n i v ers it y , Shangha i 200240, Ch i na Abst ract :Recent deve l o pm ent of the distributed K al m an filtering usi n g the consensus m ethod w as addressed . The concep, t conver gence and perfor m ance ana l y sis of consensus prob le m s i n m ulti agent syste m s w ere i n tr oduced , and severa l aspects o f t h e consensus based K al m an filtering were discussed in deta ils , i n c l u d i n g filter constructi o n based on loca l co mmunicati o n , i n for m ation w eighti n g and para m eter opti m ization . F i n ally , so m e fronti e rs o f the research on the consensus m ethod , such as i n f o r m ation loss , quantized consensus and stochastic asynchronous a l g orithm s , w ere briefly d iscussed to pro m ote the related research . K ey w ords :consensus ; mu lti agent syste m; graph Laplacian; i n for m ation f u si o n ; distri b uted K al m an filtering

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用 摘要:机动卡尔曼算法(VD 算法)在扩展卡尔曼滤波诸算法中原理较为简单,目标跟踪效果也较好。 一. 模型建立 (1) 非机动模型(匀速直线运动) 系统模型 )()()1(k GW k X k X +Φ=+ 其中 ?????? ????? ???=)()()()()(k V k y k V k x k X y x ; ? ? ??????????=Φ10001000010001 T T ; ????? ? ? ???? ???=10200102T T G ? ?? ???=)()()(k W k W k W y x ; 0)]([=k W E ; kj T Q j W k W E δ=)]()([ 测量模型为: )()()(k V k HX k Z +=; 其中 ?? ? ???=01000001H )(k V 为零均值,协方差阵为R 白噪声,与)(k W 不相关。 (2) 机动模型 系统模型 );(*)()1(k W G k X k X m m m m m +Φ=+ 其中

?? ? ? ??? ? ?? ??????????=)()()()()()()(k a k a k V k y k V k x k X m y m y m y m m x m m ;??? ???????????? ?????=Φ100 00 00100000100020100000100200 122 T T T T T T m ;??? ???????????????????=10012040020422T T T T G m 0)]([=k W E m , kj m m m Q j W k W E T δ=)]()([ 观测模型与机动模型的相同,只是H 矩阵为m H 。 ?? ? ???=000100000001m H 二.Kalman 滤波算法 作为一般的Kalman 滤波算法其算法可以描述如下: )1/1(?)1/(?--Φ=-k k X k k X T T G k GQ k k P k k P )1()1/)1()1/(-+Φ--Φ=- 1])1/([)1/()(-+--=R H k k HP H k k P k K T T )]1/()()[()1/(?)/(?--+-=k k HX k Z k K k k X k k X )1/()()1/()/(---=k k HP k K k k P k k P 起始估计值为 ()()()()()()()221/?2/2221/x x x y y y z z z T z z z T ????-??????=????????-???? X 起始估计的估计误差为 (2)(1)(2)(1)2(2/2)(2) (1)(2)(1)2x x x x y y y y v v v T u T v v v T u T -?? ??-?? ?+?? =??-?? -???+???? X 起始估计的估计误差协方差矩阵为

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

基于卡尔曼滤波的目标跟踪研究_毕业设计

毕业设计 设计题目:基于卡尔曼滤波的目标跟踪研究 姓名 院系信息与电气工程学院 专业电气工程及其自动化 年级 学号 指导教师 2012年4月24 日

独创声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 此声明的法律后果由本人承担。 作者签名: 二〇一年月日 毕业论文(设计)使用授权声明 本人完全了解鲁东大学关于收集、保存、使用毕业论文(设计)的规定。 本人愿意按照学校要求提交论文(设计)的印刷本和电子版,同意学校保存论文(设计)的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文(设计);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文(设计)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 论文作者(签名): 二〇一年月日

目录 引言 1.绪论 1.1研究背景 1.1.1卡尔曼滤波提出背景 1.1.2 应用范围 1.2本文研究的主要内容 2 2.初步认识卡尔曼滤波 2 2.1关于卡尔曼 2.2滤波及滤波器问题浅谈 2 2.3 卡尔曼滤波起源及发展 3.估计原理和卡尔曼滤波 2 4.卡尔曼滤波的实现 4.1卡尔曼滤波的基本假设 5 4.2卡尔曼滤波的特点 5 4.3卡尔曼滤波基本公式 6 4.4卡尔曼滤波参数的估计和调整 5.卡尔曼滤波的相关知识 5.1 8 5.2 8 5.3 9 6.卡尔曼滤波器的设计 7.目标跟踪模型的建立 8.结合数学模型进行matlb编程 9.目标跟踪仿真 10.结论11 11.参考文献11 12.致谢12 13 15 16

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告

2014 年 4 月 GPS 静/动态滤波实验 一、实验要求 1、分别建立GPS 静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS 数据进行Kalman 滤波。 2、对比滤波前后导航轨迹图。 3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度 (m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 310()w t ?=+X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程

可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 2 2 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) 2.2 GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: x x x x y y y y z z z z w w w εετεετεετ?=-+????=-+????=-+?? 1 11 (6) 其中,i τ(,,i x y z =)为对应马尔科夫过程的相关时间常数,(,,)i w i x y z =为零均值高斯白噪声。

北航卡尔曼滤波实验报告_GPS静动态滤波实验

卡尔曼滤波实验报告 2014 年 4 月 GPS静/动态滤波实验 一、实验要求 1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。 2、对比滤波前后导航轨迹图。

3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 (deg) 度(m) (1) 所以离散化的状态模型为: (2) 可以表示为: (3) 矩阵。 5m ,采用克拉索夫斯基地球 6378245m 6356863m (4) 2.2 GPS 动态滤波 动态滤波基于当前 统计模型,在地球坐标系下解算。选取系统的状态变量为 (5)

式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: ε τεετεετ-=- =-1 1 (6) 白噪声。 (7) (8) 系统噪声为: (9) 量测量为纬度动态量测值、经度动态量测值、高度和三向速度量测值。由于滤波在地球 坐标系下进行,为了简便首先将纬度、经度和高度转化为三轴位置坐标值,转化方式如下: (10) 量测方程为: (11)

综上,离散化的Kalman滤波方程为: (12) 离散化的系统噪声协方差阵为: 2 [ π ?] ? k x = +<0 “当前”加速度 (13) 离散化量测噪声协方差阵为:diag = R 三、实验结果 3.1 GPS静态滤波

卡尔曼滤波与组合导航课程报告

卡尔曼滤波与组合导航》课程实验报告 实验 捷联惯导 /GPS 组合导航系统静态导航实验 实验序号 3 姓名 陈星宇 系院专业 17 班级 ZY11172 学号 ZY1117212 日期 2012-5-15 指导教师 宫晓琳 成绩 、实验目的 ① 掌握捷联惯导 /GPS 组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导 /GPS 组合的基本原理; ③掌握捷联惯导 /GPS 组合导航系统静态性能; ④了解捷联惯导 /GPS 组合导航静态时的系统状态可观测性; 、实验原理 ( 1)系统方程 X FX GW 系统噪声矢量由陀螺仪和加速度计的随机误差组成,表达式为: 2)量测方程 和 H 分别为捷联解算与 GPS 的东向速度、北向速度、天向速度、纬度、经度和高度之 差;量测矩阵 H H V H P T ,H P 03 6 diag R M H, (R N H )cos L, 036 , H V 033 diag 1, 1, 1 039 ,v v V E v V N v V U v L v v H 为量测噪声。 量测噪声 v E v N T v U L h x y z x y z 其中, E 、 N 、 U 为数学平台失准角; v E 、 v N 、 v U 分别为载体的东向、北向和天向速度误差; L 、 、 h 分别为纬度误差、经度误差和高度误差; x 、 y 、 z 、 x 、 y 、 z 分别为陀螺随 机常值漂移和加速度计随机常值零偏。(下 标 系统的噪声转移矩阵 G 为: E 、N 、 U 分别代表东、北、天) C b n 3 3 0 9 3 3 3 C n C b 9 3 15 6 系统的状态转移矩阵 w w w w F 组成内容为: w z F 06N 9 F S F M ,其中 F N 中非零元素为可由惯导误差模型获得。 F S C b n 3 3 0 3 3 3 3 C b n 3 3 96 量测变量 z V E V N V U L H , , V E 、 V N 、 V U 、 L 、 X U

卡尔曼滤波研究综述

卡尔曼滤波研究综述 1 卡尔曼滤波简介 1.1卡尔曼滤波的由来 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 1.2标准卡尔曼滤波-离散线性卡尔曼滤波 为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避免受噪声影响;对系统状态是非直接可观测的。在以上假设前提下,得到系统的状体方程和观测方程。

X ?? 1-1 式中:X k 为状态向量,L k 为观测向量,Φk,k-1为状态转移矩阵,U k-1为控制向量,一 般不考虑,Γk,k-1,B k 为系数矩阵,Ωk-1为系统动态噪声向量,Δk 为观测噪声向量,其 随机模型为 E(Ωk ) =0;E(Δk ) =0;cov(Ωk ,Ωj ) = D Ω(k )δkj , cov(Δk ,Δj ) = D k (k )δkj ;cov(Ωk ,Δj ) =0;E(X 0) =μx(0) var(X 0) = D(X 0);cov(X 0,Ωk ) =0;cov(X 0,Δk ) =0. 1-2 卡尔曼滤波递推公式为 X ∧(k/k) = X ∧(k/k-1)+J k (L k -B k X ∧(k/k-1)), D(k/k) = (E-J k B k )D x (k/k-1), J k = D x (k/k-1)BT k [B k D x (k/k-1)]B T k +D Δ(k)]-1, X ∧ (k/k-1) =Φk ,k-1X ∧ (k-1/k-1), D x (k/k-1) =Φk ,k-1D x (k-1/k-1)ΦT k ,k-1+Γk ,k-1D Δ(k-1)ΓT k ,k-1. 1-3 2 几种最新改进型的卡尔曼滤波算法。 2.1 近似二阶扩展卡尔曼滤波 标准的卡尔曼滤波只适用于线性系统,而工程实际问题涉及的又大多是非 线性系统,于是基于非线性系统线性化的扩展卡尔曼滤波(EKF)在上世纪70年代 被提出,目前已经成为非线性系统中广泛应用的估计方法。近似二阶扩展卡尔曼 滤 波方法(AS-EKF)基于线性最小方差递推滤波框架,应用均值变换的二阶近似从 而得到非线性系统的递推滤波滤波框架 该滤波基于线性最小方差递推框架,状态X 的最小方差估计为

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告 2014 年4 月 GPS静/动态滤波实验 一、实验要求 1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。 2、对比滤波前后导航轨迹图。

3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度(m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 31 0()w t ?=+&X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程 可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 22 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W & (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为:

卡尔曼滤波文献综述

华北电力大学 毕业设计(论文)文献综述 所在院系电力工程系 专业班号电自0804 学生姓名崔海荣 指导教师签名黄家栋 审批人签字 毕业设计(论文)题目基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究

基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究 一、前言 “频率”概念源于针对周期性变化的事物的经典物理学定义,由于电力系统中许多物理变量具有(准)周期性特征,故这一概念得到广泛应用【1】。 电网频率是电力系统运行的主要指标之一,也是检测电力系统工作状态的重要依据,频率质量直接影响着电力系统安全、优质、稳定运行。因此,频率检测和预测在电网建设中起着至关重要的作用。 随着大容量、超高压、分布式电力网网络的形成以及现代电力电子设备的应用,基于传统概念的电力系统频率和测量技术在解决现代电网频率问题上遇到了诸多挑战。 目前,用于频率检测和预测的方法很多,主要有傅里叶变换法、卡尔曼滤波法、最小均方误差法、正交滤波器法、小波变换法、自适应陷波滤波器以及它们和一些算法相结合来解决电网频率检测和预测问题。 本文着重讲述卡尔曼滤波原理、分类以及它在电力系统频率检测中的应用历程进行系统性分析,并对今后的研究方向做出展望。 二、主题 1 常规卡尔曼滤波 常规卡尔曼滤波是卡尔曼等人为了克服维纳滤波的不足,于60年代初提出的一种递推算法。卡尔曼滤波不要求保留用过的观测数据,当测得新的数据后,可按照一套递推公式算出新的估计量,不必重新计算【2】。 下面对其进行简单介绍: 假设线性离散方程为 1k k k k x A x ω+=+(1) k k k k z H x ν=+ (2) 式子中:k x n R ∈为状态向量;m k z R ∈为测量向量;k ωp R ∈为系统噪声或过程噪 声向量;k νm R ∈为量测噪声向量;k A 为状态转移矩阵;k H 为量测转移转移矩阵。假设系统噪声和量测噪声是互不相关的高斯白噪声,方差阵为k Q 、k R ,定义/1k k x ∧ -=1(|)k k E x y - 其他递推,则卡尔曼滤波递推方程如下: 状态1步预测为 /1k k x ∧ -=k A 1k x ∧ -(3) 1步预测误差方差阵为 /1k k P -=1k A -1k P -1T k A -+1k Q -(4) 状态估计为 k x ∧=/1k k x ∧-+k K (k z -k H /1k k x ∧ -)(5)

相关文档