文档库 最新最全的文档下载
当前位置:文档库 › cpu运行过程

cpu运行过程

cpu运行过程

cpu运行过程

实验6 CPU组成与机器指令执行实验

肇庆学院计算机学院/软件学院 实验报告 专业计算机学院班级姓名学号 课程名称:CPU组成与机器指令执行实验学年2014—2015 学期1□/ 2□ 课程类别专业必修 限选□任选□实践□ 评分:批阅老师:2016年月日 ●实验目的 (1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机; (2)用微程序控制器控制模型机数据通路; (3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。 ●实验电路 本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。 在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。而在本次实验中,数据通路的控制将由微程序控制器来完成。CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。 ●实验设备 (1)TEC-9计算机组成原理实验系统一台 (2)双踪示波器一台 (3)直流万用表一只 (4)逻辑测试笔一支 ●实验任务 (1)对机器指令系统组成的简单程序进行译码。 将下表的程序按指令格式手工汇编成十六进制机器代码,此项任务应在预习时完成。 地址指令机器代码 00H LDA R0,[R2] 58H 01H LDA R1,[R3] 5DH 02H ADD R0,R1 04H 03H JC +4 94H 04H AND R2,R3 3EH 05H SUB R3,R2 1BH 06H STA R3,[R2] 4BH 07H STP 60H 08H JMP [R1] 84H (2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。 开关控制

cpu指令运行说明

cpu指令运行说明 cpu指令运行说明一计算机每执行一条指令都可分为三个阶段进行。即取指令-----分析指令-----执行指令。 取指令的任务是:根据程序计数器pc中的值从程序存储器读出现行指令,送到指令寄存器。 分析指令阶段的任务是:将指令寄存器中的指令操作码取出后进行译码,分析其指令性质。如指令要求操作数,则寻找操作数地址。 计算机执行程序的过程实际上就是逐条指令地重复上述操作过程,直至遇到停机指令可循环等待指令。 一般计算机进行工作时,首先要通过外部设备把程序和数据通过输入接口电路和数据总线送入到存储器,然后逐条取出执行。但单片机中的程序一般事先我们都已通过写入器固化在片内或片外程序存储器中。因而一开机即可执行指令。 下面我们将举个实例来说明指令的执行过程: 开机时,程序计算器pc变为0000h。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取出存储器中事先存放的指令阶段)和执行指令(分析和执行指令)的循环过程。 例如执行指令:mov a,#0e0h,其机器码为“74h e0h”,该指令的功能是把操作数e0h送入累加器,

0000h单元中已存放74h,0001h单元中已存放e0h。当单片机开始运行时,首先是进入取指阶段,其次序是: 1 程序计数器的内容(这时是0000h)送到地址寄存器; 2 程序计数器的内容自动加1(变为0001h); 3 地址寄存器的内容(0000h)通过内部地址总线送到存储器,以存储器中地址译码电跟,使地址为0000h的单元被选中; 4 cpu使读控制线有效; 5 在读命令控制下被选中存储器单元的内容(此时应为74h)送到内部数据总线上,因为是取指阶段,所以该内容通过数据总线被送到指令寄存器。至此,取指阶段完成,进入译码分析和执行指令阶段。 由于本次进入指令寄存器中的内容是74h(操作码),以译码器译码后单片机就会知道该指令是要将一个数送到a累加器,而该数是在这个代码的下一个存储单元。所以,执行该指令还必须把数据(e0h)从存储器中取出送到cpu,即还要在存储器中取第二个字节。其过程与取指阶段很相似,只是此时pc已为0001h。指令译码器结合时序部件,产生74h操作码的微操作系列,使数字e0h 从0001h单元取出。因为指令是要求把取得的数送到a累加器,所以取出的数字经内部数据总线进入a累加器,而不是进入指令寄存器。至此,一条指令的执行完毕。单片机中pc="0002h",pc 在cpu每次向存储器取指或取数时自动加1,单片机又进入下一取指阶段。这一过程一直重复下去,直至收到暂停指令或循环等待指令暂停。cpu就是这样一条一条地执行指令,完成所有规定cpu指令运行说明二首先,cpu的内部结构可以分为控制

CPU的工作过程

CPU的工作过程 CPU的工作过程 CPU的基本工作是执行存储的指令序列,即程序。程序的执行过程实际上是不断地取出指令、分析指令、执行指令的过程。 CPU从存放程序的主存储器里取出一条指令,译码并执行这条指令,保存执行结果,紧接着又去取指令,译码,执行指令……,如此周而复始,反复循环,使得计算机能够自动地工作。除非遇到停机指令,否则这个循环将一直进行下去。其过程如图3-3所示 图3-3 程序的执行过程 3.2.1 指令的执行过程 几乎所有的冯?诺伊曼型计算机的CPU,其工作都可以分为5个阶段:取指令、指令译码、执行指令、访存取数和结果写回。如图3-4所示。 图3-4 指令的执行过程 1.取指令阶段 取指令(Instruction Fetch,IF)阶段是将一条指令从主存中取到指令寄存器的过程。 PC,依此类推。?PC,若为双字长指令,则(PC)+2?程序计数器PC中的数值,用来指示当前指令在主存中的位置。当一条指令被取出后,PC中的数值将根据指令字长度而自动递增。若为单字长指令,则(PC)+1

2.指令译码阶段 取出指令后,计算机立即进入指令译码(Instruction Decode,ID)阶段。 在指令译码阶段,指令译码器按照预定的指令格式,对取回的指令进行拆分和解释,识别和区分出不同的指令类别及各种获取操作数的方法。 在组合逻辑控制的计算机中,指令译码器对不同的指令操作码产生不同的控制电位,以形成不同的微操作序列;在微程序控制的计算机中,指令译码器用指令操作码找到执行该指令的微程序的入口,并从此入口开始执行。 在传统的设计里,CPU中负责指令译码的部分是无法改变的硬件。不过,在众多运用微程序控制技术的新型CPU中,微程序有时是可重写的,可以通过修改成品CPU来改变CPU的译码方式。 3.执行指令阶段 在取指令和指令译码阶段之后,接着进入执行指令(Execute,EX)阶段。 此阶段的任务是完成指令所规定的各种操作,具体实现指令的功能。为此,CPU 的不同部分被连接起来,以执行所需的操作。 例如,如果要求完成一个加法运算,算术逻辑单元(ALU)将被连接到一组输入和一组输出,输入端提供需要相加的数值,而输出端将含有最后的运算结果。 4.访存取数阶段 根据指令需要,有可能要访问主存,读取操作数,这样就进入了访存取数(Memory,MEM)阶段。 此阶段的任务是:根据指令地址码,得到操作数在主存中的地址,并从主存中读取该操作数用于运算。 5.结果写回阶段 作为最后一个阶段,结果写回(Writeback,WB)阶段把执行指令阶段的运行结果数据“写回”到某种存储形式。结果数据经常被写到CPU的内部寄存器中,以便被后续的指令快速地存取。在有些情况下,结果数据也可被写入相对较慢、但较廉价且容量较大的主存。许多指令还会改变程序状态字寄存器中标志位的状态,这些标志位标识着不同的操作结果,可被用来影响程序的动作。 在指令执行完毕、结果数据写回之后,若无意外事件(如结果溢出等)发生,计算机就接着从程序计数器PC中取得下一条指令地址,开始新一轮的循环,下一个指令周期将正常地顺序取出下一条指令。 许多新型CPU可以同时取出、译码和执行多条指令,体现出并行处理的特性。

指令的执行过程

举个实例来说明指令的执行过程: 开机时,程序计算器PC变为0000H。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取出存储器中事先存放的指令阶段)和执行指令(分析和执行指令)的循环过程。 例如执行指令:MOV A,#0E0H,其机器码为“74H E0H”,该指令的功能是把操作数E0H送入累加器,0000H单元中已存放74H,0001H单元中已存放E0 H。当单片机开始运行时,首先是进入取指阶段,其次序是: 1 程序计数器的内容(这时是0000H)送到地址寄存器; 2 程序计数器的内容自动加1(变为0001H); 3地址寄存器的内容(0000H)通过内部地址总线送到存储器,以存储器中地址译码电跟,使地址为0000H的单元被选中; 4 CPU使读控制线有效; 5 在读命令控制下被选中存储器单元的内容(此时应为74H)送到内部数据总线上,因为是取指阶段,所以该内容通过数据总线被送到指令寄存器。 至此,取指阶段完成,进入译码分析和执行指令阶段。 由于本次进入指令寄存器中的内容是74H(操作码),以译码器译码后单片机就会知道该指令是要将一个数送到A累加器,而该数是在这个代码的下一个存储单元。所以,执行该指令还必须把数据(E0H)从存储器中取出送到CPU,即还要在存储器中取第二个字节。其过程与取指阶段很相似,只是此时PC已为0001H。指令译码器结合时序部件,产生74H操作码的微操作系列,使数字E0H从0001H 单元取出。因为指令是要求把取得的数送到A累加器,所以取出的数字经内部数据总线进入A累加器,而不是进入指令寄存器。至此,一条指令的执行完毕。单片机中PC=0002H,PC在CPU每次向存储器取指或取数时自动加1,单片机又进入下一取指阶段。这一过程一直重复下去,直至收到暂停指令或循环等待指令暂停。CPU就是这样一条一条地执行指令,完成所有规定的功能

计组实验-CPU组成与机器指令执行

对机器指令系统组成的简单程序进行译码 接线 本实验接线比较多,需仔细 接线表

只要把上表同列的信号用线连接即可,一共接线33条. 接好线后,将编程开关拨到"正常位置",合上电源,按CLR#按钮,使TEC-5实验系统处于初始状态. (3)存程序代码,设置通用寄存器R0,R1,R2,R3的第一组值及存储器相关单元的数据 本组的寄存器数据是R0=35H, R1=43H, R2=10H, R3=07H.存储器10H 单元的内容为55H.选择这组数据的目的 是执行ADD R1,R0指令时不产生进位C,从而在执行JC R3指令时不产生跳转,而是顺序执行. ●设置通用寄存器R0,R1,R2,R3的值. 本操作中我们使R0=35H, R1=43H, R2=10H, R3=07H. 1.令DP=0,DB=0,使系统处于连续运行状态.令SWC=0, SWB=1, SWA=1,使系统处于写寄存器状态WRF.按CLR#,使实验 系统处于初始状态.

2.在SW7-SW0上设置一个存储器地址,该存储器地址供设置通用寄存器使用.(该存储器地址最好是不常用的一个地 址,以免设置通用寄存器操作破坏重要的存储器单元的内容.)这里我们将该地址设置为0FFH.按一次QD按钮,将 0FFH写入左端口地址寄存器AR. 3.在SW7-SW0上设置00H,作为通用寄存器R0的寄存器号.按一次QD按钮,将00H写入指令寄存器IR. 4.在SW7-SW0上设置35H.按一次QD按钮,将35H写入IR指定的R0寄存器. 5.在SW7-SW0上设置01H,作为通用寄存器R1的寄存器号.按一次QD按钮,将01H写入指令寄存器IR. 6.在SW7-SW0上设置43H.按一次QD按钮,将35H写入IR指定的R1寄存器. 7.在SW7-SW0上设置02H,作为通用寄存器R2的寄存器号.按一次QD按钮,将02H写入指令寄存器IR. 8.在SW7-SW0上设置10H.按一次QD按钮,将10H写入IR指定的R2寄存器.

CPU组成与机器指令执行实验

CPU组成与机器指令执行实验 一、实验目的 (1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机; (2)用微程序控制器控制模型机数据通路; (3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。 二、实验电路 本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。 在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。而在本次实验中,数据通路的控制将由微程序控制器来完成。CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。 三、实验设备 (1)TEC-4计算机组成原理实验系统一台 (2)双踪示波器一台 (3)直流万用表一只 (4)逻辑测试笔一支 四、实验任务 (1)对机器指令系统组成的简单程序进行译码。 将下表的程序按指令格式手工汇编成十六进制机器代码,此项任务应在预习时完成。 (2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。

开关控制 控制台时序发生器 时序信号 开关控制指示灯信号控制信号时序信号 控制信号 微程序控制器数据通路 指令代码、条件信号 模型计算机连线示意图 (3)将上述任务(1)中的程序机器代码用控制台操作存入内存中,并根据程序的需要,用数码开关SW7—SW0设置通用寄存器R2、R3及内存相关单元的数据。注意:由于设置通用寄存器时会破坏内存单元的数据,因此一般应先设置寄存器的数据,再设置内存数据。 (4)用单拍(DP)方式执行一遍程序,列表记录通用寄存器堆RF中四个寄存器的数据,以及由STA指令存入RAM中的数据(程序结束后从RAM的相应单元中读出),与理论分析值作对比。单拍方式执行时注意观察微地址指示灯、IR/DBUS指示灯、AR2/AR1指示灯和判断字段指示灯的值,以跟踪程序中取指令和执行指令的详细过程(可观察到每一条微指令)。 (5)以单指(DZ)方式重新执行程序一遍,注意观察IR/DBUS指示灯、AR2/AR1指示灯的值(可观察到每一条机器指令)。执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。注意:单指方式执行程序时,四个通用寄存器和RAM中的原始数据与第一遍执行程序的结果有关。 (6)以连续方式(DB、DP、DZ都设为0)再次执行程序。这种情况相当于计算机正常运行程序。由于程序中有停机指令STP,程序执行到该指令时自动停机。执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。同理,程序执行前的原始数据与第二遍执行结果有关。 五、实验步骤和实验结果 (1)对机器指令系统组成的简单程序进行译码。 (2)接线 本实验的接线比较多,需仔细。 1.将跳线开关J1用短路子短接。时序发生器的输入TJI接控制存储器的输出TJ。控制器

CPU组成与机器指令执行周期实验.

5 CPU组成与机器指令执行周期实验 一、实验目的 1. 将微程序控制器同执行部件(整个数据通路联机,组成一台模型计算机。 2. 用微程序控制器控制模型计算机的数据通路。 3. 通过 TEC-5执行由 8条机器指令组成的简单程序, 掌握机器指令与微指令的关系, 牢固建立计算机的整机概念。 二、实验电路 本次实验将前面几个实验中的所有电路,包括运算器、存储器、通用寄存器堆、微程序控制器等模块组合在一起, 构成一台简单的模型机。因此, 在基本实验中, 这是最复杂的一个实验,也将是最有收获的一个实验。 在前面的实验中,实验者本身作为“控制器” ,完成了对数据通路的控制。而在本次实验中, 数据通路的控制将交由微程序控制器来完成。 TEC-5从内存中取出一条机器指令到执行指令结束的一个指令周期,是由微程序完成的,即一条机器指令对应一个微程序序列。 三、实验设备 1. TEC-5计算机组成原理实验系统 1台 2. 逻辑测试笔一支(在 TEC-5上 3. 双踪示波器一台(公用 4. 直流万用表一只(公用 四、实验任务

1. 对机器指令组成的简单程序进行译码。将下表的程序按机器指令格式手工汇编成二进制机器代码,此项任务请在预习时完成。 2. 按照下面框图,参考前面实验的电路图完成连线,工作量大概是:控制台、时序部件、数据通路和微程序控制器之间的连线。控制器是控制部件,数据通路是执行部件,时序发生器是时序部件。注意通用寄存器堆 RF 的 RD1、 RD0、 RS1、 RS0、 WR1、 WR0与 IR3-IR0间的连线。 图 3.9 模型机连线示意图 3. 将任务 1中的程序代码用控制台指令存入内存中,并根据程序的需要,用数码开关 SW7-SW0设置通用寄存器的数据。注意:由于设置通用寄存器时会破坏存储器单元的数据,因此应先设置寄存器中的数据,再设置存储器中的程序和数据。要求使用两组寄存器数据,一组寄存器数据在执行 ADD R1,R0指令时产生进位, 一组寄

cpu指令如何运行的

cpu指令如何运行的 cpu指令是怎么样运行的呢?其实也不复杂!小编来介绍!下面由小编给你做出详细的cpu指令运行说明介绍!希望对你有帮助! cpu指令运行说明一 计算机每执行一条指令都可分为三个阶段进行。即取指令-----分析指令-----执行指令。 取指令的任务是:根据程序计数器PC中的值从程序存储器读出现行指令,送到指令寄存器。 分析指令阶段的任务是:将指令寄存器中的指令操作码取出后进行译码,分析其指令性质。如指令要求操作数,则寻找操作数地址。 计算机执行程序的过程实际上就是逐条指令地重复上述操作过程,直至遇到停机指令可循环等待指令。

一般计算机进行工作时,首先要通过外部设备把程序和数据通过输入接口电路和数据总线送入到存储器,然后逐条取出执行。但单片机中的程序一般事先我们都已通过写入器固化在片内或片外程序存储器中。因而一开机即可执行指令。 下面我们将举个实例来说明指令的执行过程: 开机时,程序计算器PC变为0000H。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取出存储器中事先存放的指令阶段)和执行指令(分析和执行指令)的循环过程。 例如执行指令:MOV A,#0E0H,其机器码为“74H E0H”,该指令的功能是把操作数E0H送入累加器, 0000H单元中已存放74H,0001H单元中已存放E0H。当单片机开始运行时,首先是进入取指阶段,其次序是: 1 程序计数器的内容(这时是0000H)送到地址寄存器; 2 程序计数器的内容自动加1(变为0001H);

3 地址寄存器的内容(0000H)通过内部地址总线送到存储器,以存储器中地址译码电跟,使地址为0000H的单元被选中; 4 CPU使读控制线有效; 5 在读命令控制下被选中存储器单元的内容(此时应为74H)送到内部数据总线上,因为是取指阶段,所以该内容通过数据总线被送到指令寄存器。至此,取指阶段完成,进入译码分析和执行指令阶段。 由于本次进入指令寄存器中的内容是74H(操作码),以译码器译码后单片机就会知道该指令是要将一个数送到A累加器,而该数是在这个代码的下一个存储单元。所以,执行该指令还必须把数据(E0H)从存储器中取出送到CPU,即还要在存储器中取第二个字节。其过程与取指阶段很相似,只是此时PC已为0001H。指令译码器结合时序部件,产生74H操作码的微操作系列,使数字E0H从0001H 单元取出。因为指令是要求把取得的数送到A累加器,所以取出的数字经内部数据总线进入A累加器,而不是进入指令寄存器。至此,一条指令的执行完毕。单片机中PC="0002H",PC在CPU每次向存储器取指或取数时自动加1,单片机又进入下一取指阶段。这一过程一直重复下去,直至收到暂停指令或循环等待指令暂停。

cpu运行过程介绍

cpu运行过程介绍 cpu运行过程介绍一两种说别针intelamd amd工作式:假定数据先存硬盘cpu要处理该数据要先发指令北桥芯片通南桥芯片提供数据通道数据硬盘转存内存cpu内存数据调入cpu缓存通cpu自带指令集处理通cpu缓存转存内存再存入硬盘 intel:intel第二代酷睿处理器高集度南桥芯片再现主板南桥芯片功能集合cpu使其具南桥功能工作式述 需要补充说明由于intel与amd产处理器处理器架设数据处理流水线级数同intel处理器更适合用于处理办公用线性数据amd则适用于处理游戏随机数据amd玩游戏更intel办公说由. cpu运行过程介绍二cpu的工作流程 由晶体管组成的cpu是作为处理数据和执行程序的核心,其英文全称是:central processing unit,即中央处理器。首先,cpu的内部结构可以分为控制单元,逻辑运算单元和存储单元(包括内部总线及缓冲器)三大部分。 cpu的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(程序指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储单元)中,最后等着拿到市场上去卖(交由应用程序使用)。在这个过程中,我们注意到从控制单元开始,cpu就开

始了正式的工作,中间的过程是通过逻辑运算单元来进行运算处理,交到存储单元代表工作的结束。 数据与指令在cpu中的运行 刚才已经为大家介绍了cpu的部件及基本原理情况,现在,我们来看看数据是怎样在cpu中运行的。我们知道,数据从输入设备流经内存,等待cpu的处理,这些将要处理的信息是按字节存储的,也就是以8位二进制数或8比特为1个单元存储,这些信息可以是数据或指令。 数据可以是二进制表示的字符、数字或颜色等等。而指令告诉cpu对数据执行哪些操作,比如完成加法、减法或移位运算。 我们假设在内存中的数据是最简单的原始数据。首先,指令指针(instruction pointer)会通知cpu,将要执行的指令放置在内存中的存储位置。因为内存中的每个存储单元都有编号(称为地址),可以根据这些地址把数据取出,通过地址总线送到控制单元中,指令译码器从指令寄存器ir中拿来指令,翻译成cpu可以执行的形式,然后决定完成该指令需要哪些必要的操作,它将告诉算术逻辑单元(alu)什么时候计算,告诉指令读取器什么时候获取数值,告诉指令译码器什么时候翻译指令等等。 假如数据被送往算术逻辑单元,数据将会执行指令中规定的算术运算和其他各种运算。当数据处理完毕后,将回到寄存器中,通过不同的指令将数据继续运行或者通过db总线送到数据缓存器中。 基本上,cpu就是这样去执行读出数据、处理数据和往内存写数据3项基本工作。但在通常情况下,一条指令可以包含按明确

相关文档