文档库 最新最全的文档下载
当前位置:文档库 › 数列(含答案)

数列(含答案)

数列(含答案)
数列(含答案)

数列

学校:___________姓名:___________班级:___________考号:___________

1.已知各项均为正数的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为( )

A .16

B .8

C ..4 2.在等比数列{}n a 中,13465

10,4

a a a a +=+=,则公比q 等于( ) A .2 B .

12 C .-2 D .12

- 3.在等差数列{}n a 中,134610,4a a a a +=+=,则公差d 等于( ) A .1 B .1- C .2 D .-2 4.在等差数列{}n a 中,若32a =,则{}n a 的前5项和5S =( ) A .5 B .10 C .12 D .15

5.已知数列12463579{}1(),18,log ()n n n a a a n N a a a a a a ++=+∈++=++满足且则等于( )

A .2

B .—2

C .—3

D .3

6.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=

( )

A.33

B.72

C.84

D.189

7.已知等差数列{}n a 的前n 项和为n S ,若125a a +=,349a a +=,则10S 为( ) A .55 B .60 C .65 D .70 8.设n S 是等差数列{}n a 的前n 项和,1532,3,a a a ==,则9S =( ) A.72- B.54- C.54 D.72

9.221

lim 2n n n n

→∞+=-___________.

10.已知数列}{n a 满足)2()

1(,21111≥-=-=

--n n n a

a a a a n n n n ,则该数列的通项公式=n a _________.

11.在等差数列{}n a 中,已知295a a +=,则573a a +的值为 . 12.在各项均为正数的等比数列{a n }中,已知a 1+a 2+a 3=2,a 3+a 4+a 5=8,则

a 4+a 5+a 6= .

13.在等比数列{}n a 中,22a =,516a =,则10a = .

14.已知{}n a 是公比为q 的等比数列,且231,,a a a 成等差数列. ⑴求q 的值;

⑵设{}n b 是以2为首项,q 为公差的等差数列,其前n 项和为n S ,当n ≥2时,比较n S 与n b 的大小,并说明理由.

15.在数列{}n a 中,,31=a )n n 2,n 2-n 21*-∈≥+=且(n n a a (1)求32,a a 的值;

(2)证明:数列{}n a n +是等比数列,并求{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S .

16.已知等比数列{}n a 中,12a =,318a =,等差数列{}n b 中,12b =,且

123123420a a a b b b b ++=+++>.

⑴求数列{}n a 的通项公式n a ; ⑵求数列{}n b 的前n 项和n S .

17.三个不同的数成等差数列,其和为6,如果将此三个数重新排列,他们又可以成等比数列,求这个等差数列。

18.在等差数列{a n }中,n S 为其前n 项和)(*

∈N n ,且.9,533==S a (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设1

1

+=

n n n a a b ,求数列{}n b 的前n 项和n T .

19.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12

l o g n n b a =.

(1)求1a ,2a 的值;

(2)求数列{}n b 的通项公式;

(3)若11,0,n n n c c b c +-==求证:对任意*231113

2,4

n n n N c c c ≥∈+++< 都有

参考答案

1.B 【解析】

试题分析:∵4a 与14a

的等比中项为

2

4147118a a a a ?=?==,

∴71128a a +≥==,∴7112a a +的最小值为8. 考点:1.等比中项;2.等比数列的性质;3.基本不等式. 2.B 【解析】

试题分析:由???

??==???

???=+=+??????=+=+218

4510451015

1312116431q a q a q a q a a a a a a . 考点:等比数列.

3.B 【解析】

试题分析:由12525421024102

55

2526431-=--=????==????==???

?=+=+a a d a a a a a a a a . 考点:等差数列.

4.B 【解析】

试题分析:53510S a ==. 考点:等差数列及其前n 项和. 5.D 【解析】

试题分析:∵11n n a a +=+,∴{}n a 是等差数列,∴1d =,∴

579246()927a a a a a a d ++=+++=,

∴35793log ()log 273a a a ++==.

考点:1.等差数列的定义;2.等差数列的通项公式;3.对数的运算.

6.C 【解析】

试题分析:设等比数列

{}

n a 的公比为q ,则0q >,由于13a =,

212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=?+?+?=,故选C.

考点:等比数列的性质

【解析】

试题分析:()()341295a a a a +-+=-,即44,1d d ==,得12a =,据等差数列前n 项和公式()112

n n n S a n d -=+

得()

1010101210652

S ?-=?+

=,选C .

考点:等差数列的通项公式与求和公式. 8.B 【解析】

试题分析:1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以

9198

99298542S a d ?=+

=?-?=-,选B.

考点:1.等差数列的通项公式;2.等差数列的求和公式. 9.

12

【解析】

试题分析:这是“

”型极限,方法是分子分母同时除以分子分母的最高次幂,2

221111lim lim 22

2n n n n n n n

→∞→∞+

+==--.

考点:“

”型极限. 10.

1

3-n n

【解析】

试题分析:∵11(2)(1)

n n n n a a a a n n n ---=

≥-,∴111(1)n n n n a a a a n n ---=-,∴11111

1n n a a n n --=--,

21111112a a -=-,32111123

a a -=-,…,111111n n a a n n --

=--,∴1111

1n a a n -=-,∴11

3n a n

=-, ∴31

n n

a n =

-. 考点:1.累加法求通项公式;2.裂项相消法求和.

【解析】

试题分析:∵295a a +=,∴572932()10a a a a +=+=. 考点:等差数列的性质. 12.16 【解析】

试题分析:设此数列公比为q ,由3458a a a ++=得,222

1238a q a q a q ++=

,而1232a a a ++=,所以24,2q q ==,所以()456345+2816a a a q a a a ++=+=?=.

考点:等比数列通项公式.

13.512 【解析】 试题分析:由

35

2

a q a =,得38q =,所以2q =,故51051632512a a q ==?=. 考点:等比数列的通项公式. 14.(1)1或2

1

-

(2)详见解析. 【解析】

试题分析:(1)等比数列中的等差数列问题,解题关键要根据题意列方程,该题可利用等差中项列方程,可得q 的值;(2)求出等差数列{}n b 的前n 项和n S 和通项公式n b ,可以根据解析式的特点选择作商比较或者作差比较法,n 的范围要注意.

试题解析:(1)由题设,2213a a a +=即q a a q a 112

12+=.012,02

1=--∴≠q q a ∴=q 1或2

1

-. (2)若,1=q 则2

312)1(22n

n n n n S n +=?-+=, 当.02

)

2)(1(,21>+-=

=-≥-n n S b S n n n n 时 故.n n b S >

若,2

1

-=q 则49)21(2)1(22n n n n n S n +-=-?-+=, 当,4

)

10)(1(,21---

==-≥-n n S b S n n n n 时

故对于+∈N n ,当92≤≤n 时,n n b S >;当10=n 时,n n b S =;当11≥n 时,n n b S <. 考点:1、等差数列的通项公式和前项n 和;2、比较法;3、等比数列的通项公式. 15.(1)13,632==a a ;(2)证明详见解析,n a n n -2

1

+=;(3)2

8

2

22

++-=+n n S n n .

试题分析:(1)赋值:令3,2==n n ;(2)涉及到等差数列,等比数列的证明问题,只需按照定义证明即可,∴利用等比数列的定义证明,利用等比数列通项公式可求出

{}n a n +的

通项公式,从而求出n a ;(3)根据通项公式求n S ,常用方法有裂项相消法,错位相减法,分组求和法,奇偶并项求和法.

试题解析:(1)令2=n ,,6212==a a 令3=n ,131223=+=a a . (2)

21

2-n 21(111=-+++=-++---n a n

a n a n a n n n n ),∴数列{}n a n +是首项为4,公比为2的等比数

列,∴n a n a n n n n n -=∴=?=+++-1112,224. (

3

{}

n a 的通项公式

n

a n n -21+=,∴

=

+---=+++-++=+2

)

1(21)21(4)............21()2

.........22(1

32n n n S n n n 2

8

2

22

++-

+n n n . 考点:1、赋值法;2、等比数列的定义;3、分组求和法求数列前n 项和. 16.(1) n a =132-?n ;(2)n n S n 2

1

232+=. 【解析】

试题分析:(1)等比数列{}n a 中,有两个参数,所以和q a 1知道两个条件12a =,318a =,可确定,所以和q a 1可求n a ;(2)求数列的前n 项和,首项考虑数列{}n b 的通项公式,然后根据通项公式的特点选择合适的求和方法,对等差数列{}n b 而言,已知也知道两个条件,所以可求{}n b 的通项公式,从而可求n S . 试题解析:(1)∵

,

3,9,182,18223±===∴=q q q a 当3=q 时,

,62=a 2026321>=++a a a ,当3-=q 时,,62-=a 2014321<=++a a a ,不满足

题意,所以3=q ,n a =132-?n .

(2)由已知8,243,2433432==∴=++b b b b b ,d 228+=,∴3=d ,∴

n n n n S n 2

1

23321)-n 22+=?+

=(. 考点:1、等比数列的通项公式;2、等差数列的前项n 和. 17.8,2,4-,或4-2,8, 【解析】

试题分析:可以先将成等差的这三个数设出来,设为d a a d a +-,,,由和为6,可求得

2=a ,重新排列后,又成 等比数列,根据等比中项分类讨论,可解.

试题解析:设成等差数列的这三个数为d a a d a +-,,()0≠d ,则

6)()=-+++d a a d a (,∴2=a ,这三个数为d d +-2,2,2,

当d -2为等比中项时:),(d d +=2(2)-22

∴0=d (舍去),或6=d ,等差数列为:

-4,2,8.

当2为等比中项时:)2)(2(4d d +-=,∴0=d (舍去).

当d +2为等比中项时:)-2222

d d ()(=+,∴0=d (舍去),或6-=d ,等差数列为8,2,

-4.

综上所述:等差数列为-4,2,8,或8,2,-4.

考点:1、等差数列和等比数列运算;2、分类讨论思想. 18.(Ⅰ)21n a n =-;(Ⅱ)21

n n

T n =

+. 【解析】 试题分析:(Ⅰ)根据等差数列的通项公式,求出首项和公差即可解答;(Ⅱ)由{a n }的通项公式得到{}n b 的通项公式,然后根据数列的特征求前n 项和. 试题解析:(Ⅰ)由已知条件得11

25,

369,a d a d +=??+=?

2分

解得11,2,a d == 4分 ∴21n a n =-.

6分

(Ⅱ)由(Ⅰ)知,21n a n =-, ∴111111

()(21)(21)22121

n n n b a a n n n n +=

==--+-+ 9分

1211111111(1)()()(1)233521212

2121n n n T b b b n n n n ??=+++=

-+-++-=-=??-+++??

. 12分

考点:1.等差数列;2.数列求和. 19.(1)1211

,832

a a ==

;(2)21n b n ∴=+;(3)见试题解析. 【解析】

试题分析:(1)分别令1,2n n ==可求得12,a a 的值;(2)利用n S 与n a 的关系式,先求n a ,再利用已知条件12

log n n b a =求得数列{}n b 的通项公式;(3)先利用累加法求得n c ,再利用

裂项相消法求和

23111

n

c c c +++ ,进而可证明不等式. 试题解析:(1)由11612S a =-,得11612a a =-,解得11

8

a =

. 1分 22612S a =-,得()122612a a a +=-,解得21

32

a =

. 3分 (2)由612n n S a =- ①,

当2n ≥时,有11612n n S a --=- ②, 4分 ①-②得:

11

4

n n a a -=, 5分 ∴数列{}n a 是首项11

8a =,公比14q =的等比数列 6分

1

21

1

1111842n n n n a a q

-+-??

??∴==?= ? ???

??

, 7分

21

11221log log 212n n n b a n +??

∴===+ ?

??

. 8分

(3) 1=21n n n c c b n +-=+,

∴()11=211n n n c c b n ---=-+, (1) ()122=221n n n c c b n ----=-+, (2)

322=221c c b -=?+,

211=211c c b -=?+, (1n -) 9分

(1)+(2)+ +(1n -)得()2

11=21+2+3++11=1n n c c b n n n --=-+-- , 10分

∴()()=11n c n n -+, 11分

()()1111111211n c n n n n ??==- ?-+-+??

, 12分 ∴

231111*********=1232435211n c c c n n n n ??+++-+-+-++-+- ?--+??

11113111=1+221421n n n n ????--=-+ ? ?++????

, 13分 111021n n ??+> ?+??

, ∴

231113

4

n c c c +++< 对任意*2,n n N ≥∈均成立. 14分 考点:1、数列通项公式的求法;2、数列前n 项和的求法;3、数列不等式的证明.

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

《数列》单元测试题(含答案)

《数列》单元练习试题 一、选择题 1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( ) (A)1 (B )2 (C )3 (D )0 2.一个等差数列的第5项等于10,前3项的和等于3,那么( ) (A )它的首项是2-,公差是3 (B)它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则 =24a S ( ) (A )2 (B)4 (C)2 15 (D )217 4.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( ) (A)54S S < (B )54S S = (C)56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,133 1+-=+n n n a a a (∈n N*),则=20a ( ) (A)0 (B)3- (C )3 (D) 23 6.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( ) (A)130 (B)170 (C)210 (D)260 7.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( ) (A)5481a a a a +>+ (B )5481a a a a +<+ (C)5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数 列有( ) (A )13项 (B)12项 (C)11项 (D)10项 9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=????a a a a ,那么 30963a a a a ???? 等于( ) (A)210 (B)220 (C)216 (D)215 10.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:

数列试题及答案

新课标人教版必修5高中数学 第2章 数列单元检测试卷 1. 已知等差数列}{n a 的前n 项和为S n ,若854,18S a a 则-=等于 ( ) A .18 B .36 C .54 D .72 2. 已知{}n a 为等差数列,{}n b 为等比数列,其公比1≠q ,且),,3,2,1(0n i b i =>,若 1 1b a =, 11 11b a =,则 ( ) A .66b a = B .66b a > C .66b a < D .66b a >或66b a < 3. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列的前13项之和为 ( ) A .156 B .13 C .12 D .26 4. 已知正项等比数列数列{a n },b n =log a a n , 则数列{b n }是 ( ) A 、等比数列 B 、等差数列 C 、既是等差数列又是等比数列 D 、以上都不对 5. 数列{}n a 是公差不为零的等差数列,并且1385,,a a a 是等比数列{}n b 的相邻三项,若 52=b ,则n b 等于 ( ) A. 1)35(5-?n B. 1 )35(3-?n C.1)53(3-?n D. 1 )5 3(5-?n 6. 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是 ( ) A. 42 B.45 C. 48 D. 51 7. 一懂n 层大楼,各层均可召集n 个人开会,现每层指定一人到第k 层开会,为使n 位开 会人员上下楼梯所走路程总和最短,则k 应取 ( ) A. 21n B.21(n—1) C.2 1 (n+1) D.n为奇数时,k=21(n—1)或k=21(n+1),n为偶数时k=2 1 n 8. 设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( ) A.S 4<S 5 B.S 4=S 5 C.S 6<S 5 D.S 6=S 5 9. 等比数列{}n a 的首项11a =-,前n 项和为,n S 若32 31 510=S S ,则公比q 等于 ( ) 11 A. B.22 - C.2 D.-2 10. 已知S n 是等差数列{a n }的前n 项和,若S 6=36,S n =324,S n -6=144(n >6),则n 等于 ( ) A .15 B .16 C .17 D .18 11. 已知80 79--= n n a n ,(+∈N n ),则在数列{n a }的前50项中最小项和最大项分别是 (

数列的概念单元测试题含答案百度文库

一、数列的概念选择题 1.在数列{}n a 中,12a =,1 1 1n n a a -=-(2n ≥),则8a =( ) A .1- B . 12 C .1 D .2 2.数列{}n a 的通项公式是2 76n a n n =-+,4a =( ) A .2 B .6- C .2- D .1 3.已知数列{} ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( ) A .13i =,33j = B .19i =,32j = C .32i =,14j = D .33i =,14j = 4.已知数列{}n a ,若()12* N n n n a a a n ++=+∈,则称数列{}n a 为“凸数列”.已知数列{} n b 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5 B .5- C .0 D .1- 5.在数列{}n a 中,已知11a =,25a =,() * 21n n n a a a n N ++=-∈,则5a 等于( ) A .4- B .5- C .4 D .5 6.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n n x b x -+=的实数根, 则10b 等于( ) A .24 B .32 C .48 D .64 7.在数列{}n a 中,114a =-,1 11(1)n n a n a -=->,则2019a 的值为( )

A . 45 B .14 - C .5 D .以上都不对 8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072 B .2073 C .2074 D .2075 9. 3 … … ,则 ) A .第8项 B .第9项 C .第10项 D .第11项 10.已知数列{}n a 的通项公式为2 n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞ B .(),2-∞ C .(),1-∞ D .(),0-∞ 11.已知数列{}n a 的前n 项和为n S ,已知1 3n n S +=,则34a a +=( ) A .81 B .243 C .324 D .216 12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时, 1 1 12()n n n S S S S 恒成立,则15S 等于( ) A .210 B .211 C .224 D .225 13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( ) (注:()() 2222 1211236 n n n n ++++++= ) A .1624 B .1198 C .1024 D .1560 14.设数列{},{}n n a b 满足*172 700,,105 n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a > B .43a b D .44

数列测试题及标准答案

必修5《数列》单元测试卷 一、选择题(每小题3分,共33分) 1、数列?--,9 24,7 15,5 8,1的一个通项公式是 A .1 2)1(3++-=n n n a n n B .1 2) 3()1(++-=n n n a n n C .1 21 )1()1(2--+-=n n a n n D .1 2) 2()1(++-=n n n a n n 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( ) A 4- B 4± C 2- D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10- 5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为 ( ) A .-2 B .1 C .-2或1 D .2或-1 6、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ). A . 2 45 B .12 C . 4 45 D .6 7、已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ). A .7 B .16 C .27 D .64 8、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是 A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为 A .6 B .8 C .10 D .12 10、 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

数列知识点及典型例题

数列知识点及典型例题 一、 知识点 一、 选择题:本大题共10个小题;每小题5分,共50分 1、数列 的一个通项公式是( D ) A. B . C . D . 2、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( C )A.8 B.-8 C.±8 D. 3、已知数列{}n a 是等比数列,若,a a a a 41813229=+则前30项的和=30S (B ) A 、154, B 、15 2, C 、15 21?? ? ?? D 、153, 12) 1(3++-=n n n a n n 1 2) 3()1(++-=n n n a n n 121 )1() 1(2--+-=n n a n n 1 2) 2()1(++-=n n n a n n ?--,9 24 ,715,58,18 9

4、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( B ) A .15. B .17. C .19. D .21 5、等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则( D ) A 、18 B 、36 C 、54 D 、72 6、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( C ) A . -1221 B .-21.5 C .-20.5 D .-20 二、填空题:本大题共4小题;每小题4分,共16分。 7、已知数列的通项公式74+=n a n ,则其中三位数的个数有255个 8、设等差数列}{n a 的前n 项和为n S ,若2010S S =,则30S 的值是0。 三、解答题:本大题共7小题,共84分。 11、已知等差数列{}n a 中,公差为,1=d 且9999=s ,求+++852a a a 15a +Λ的值。 解法一:9999=S ,{}n a 是等差数列 所以 992 98 99991=?+ d a ,又1=d ,481-=a 所求量为首项为-47,公差为3的前5项和S 5=…… 12、⑴在等比数列{}n a 中,若,a a ,a a 6243224=+=-求首项1a 和公比q 。 ⑵设等比数列{}n a ,n s 是它的前n 项和,若,s s s 9632=+求公比q 。 解:⑴由已知有:24131=-q a q a 及6211=+q a q a 得5 1 1= a , 5=q ⑵当1=q 时,{}n a 是常数列,则根据,s s s 9632=+得1111863a a a =+,01=a , 因为{}n a 是等比数列,01≠a 故1≠q 。 当1≠q 时,()()() q q a q q a q q a --= --+--1121111916131,解得321-=q 。 13、三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数

数列单元测试卷含答案

数列单元测试卷 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置. 第Ⅰ卷(选择题) 一.选择题:本大题共12小题,每小题5分,共60分。每小题给出的四个选项中,只有一 项是符合题目要求的. 1.数列3,5,9,17,33,…的通项公式a n等于() A.2n B.2n+1 C.2n-1 D.2n+1 2.下列四个数列中,既是无穷数列又是递增数列的是() A.1,1 2, 1 3, 1 4,… B.-1,2,-3,4,… C.-1,-1 2,- 1 4,- 1 8,… D.1,2,3,…,n 3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.() A.2 C.6 D.7 4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为() A.49 C.51 D.52 5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是() A.90 C.145 D.190 6.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=() A.1 C.4 D.8 7.等差数列{a n}中,a2+a5+a8=9,那么关于x的方程:x2+(a4+a6)x+10=0()

A .无实根 B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根 8.已知数列{a n }中,a 3=2,a 7=1,又数列? ?????11+a n 是等差数列,则a 11等于( ) A .0 D .-1 9.等比数列{a n }的通项为a n =2·3n - 1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( ) A .第5项 B.第12项 C .第13项 D .第6项 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则 A .1 033 034 C .2 057 D .2 058 11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) C. 约等于1 12.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示: 则第七个三角形数是( ) A .27 C .29 D .30 第II 卷(非选择题) 二、填空题(本题共4小题,每小题5分,共20分)

数列练习题(含答案)

数列测试题(答案在底部) (本测试共18题,满分100分,时间80分钟) 日期 姓名 得分 一、填空题:(共十小题,每题4分,共40分) 1. 数列{n a }的通项公式是41n a n =-,n s 为前几项和,若数列为等差数列,则实数t=__________. 2.。的等比中项为和_______27log 4log 89 3.223233(33)(333)(3333)_____________n n n S S =+++++++++++=L L 已知,则。 4.在等差数列n a {}中,当()r s a a r s =≠时,n a {}必定是常数数列,然而在等比数列n a {}中,对某些正整数r 、s (r s ≠)时,当r s a a =时,数列n a {}不是常数列的一个例子是__________________________________________________。 5. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列{n a }是等和数列且1a =2,公和为5,那么这个数列的前n 项和的计算公式为n S =__________________。 6.设数列{n a }的通项公式是2n a n c =+(c 是常数),且2468102 30,a a a a a ++++=则{n a }的前n 项和的最小值为_________. 7.数列2,5,11,20,x ,47,…中x 等于___________。 8.在100以内能被3整除但不能被7整除的所有自然数的和等于_________。 9.某流感病毒是寄生在宿主的细胞内的,若该细胞开始时2个,记为02a =,它们按以下规律进行分裂,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,,3小时后分裂成10个并死去1个,……记n 小时后细胞的个数为n a ,则n a =___________(用n 表示)。 10.已知一个数列n a {}的各项是1或3两个数值。首项为1,且在第K 个1和第K+1个1之间有(2K-1)个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…….则第12个1为该数列的第_________项。 二、选择题:(共四小题,每题4分,共16分) 11.等差数列等于,则中,若8533 5,53}{S S S a n ==( )

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

数列基础测试题及答案

数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则|m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大 自然数n 是( ). A .4005 B .4006 C .4007 D .4008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+ f (5)+f (6)的值为 . 12.已知等比数列{a n }中, (1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

中职数学试卷:数列(带答案)

数学单元试卷(数列) 时间:90分钟 满分:100分 一、 选择题(每题3分,共30分) 1.数列-1,1,-1,1,…的一个通项公式是( ). (A )n n a )1(-= (B )1 )1(+-=n n a (C )n n a )1(--= (D )2sin π n a n = 2.已知数列{}n a 的首项为1,以后各项由公式 给出, 则这个数列的一个通项公式是( ).

(A)(B) (C) (D) 3.已知等差数列1,-1,-3,-5,…,则-89是它的第()项;

(A)92 (B)47 (C)46 (D)45 ,则这个数列() 4.数列{}n a的通项公式5 a =n 2+ n (A)是公差为2的等差数列(B)是公差为5的等差数列 (C)是首项为5的等差数列(D)是首项为n的等差数列 5.在等比数列{}n a中,1a =5,1= S=(). q,则 6 (A)5 (B)0 (C)不存在(D) 30 6.已知在等差数列{}n a中,=3, =35,则公差d=().(A)0 (B)?2 (C)2 (D) 4 7.一个等比数列的第3项是45,第4项是-135,它的公比是().

(A )3 (B )5 (C ) -3 (D )-5 8.已知三个数 -80,G ,-45成等比数列,则G=( ) (A )60 (B )-60 (C )3600 (D ) ±60 9.等比数列的首项是-5,公比是-2,则它的第6项是( ) (A ) -160 (B )160 (C )90 (D ) 10 10.已知等比数列,8 5,45,25…,则其前10项的和=10S ( ) (A ) )211(4510- (B ))211(511- (C ))211(59- (D ))2 11(510- 二、填空题(每空2分,共30分) 11.数列2,-4,6,-8,10,…,的通项公式=n a 12.等差数列3,8,13,…的公差d= ,通项公式=n a ___________,8a = . 13.观察下面数列的特点,填空: -1,21, ,41,51-,6 1, ,…,=n a _________。 14.已知等差数列=n a 5n-2,则=+85a a ,=+103a a ,=+94a a . 15.数列{}n a 是等比数列, ,3,11==q a 则=5a . 16.一个数列的通项公式是 ),1(-=n n a n 则=11a ,56是这个数列的第 项. 17. 已知三个数13,,13-+A 成等差数列,则A = 。 18.等差数列{}n a 中,,2,1001-==d a 则=50S . 三、解答题(每题10分,共40分) 19.等差数列{}n a 中,64=a ,484=S ,求1a .

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

相关文档
相关文档 最新文档