文档库 最新最全的文档下载
当前位置:文档库 › 4-1泊松过程的定义

4-1泊松过程的定义

随机过程poisson过程 中科大

Poisson 过程 1.考虑电子管中的电子发射问题.设单位时间内到达阳极的电子数目N 服从参数为λ的Poisson 分布,而每个电子携带的能量各自不相关且与N 独立,并均服从于区间[1,2]上的均匀分布.记单位时间内阳极接收的能量为S .求S 的期望和方差. 2.设{X (t ),t ≥0}为一个独立增量过程,且X (0)=0,分别记V (t ),R (t,s )为{X (t ),t ≥0}的方差函数和协方差函数,证明:R (t,s )=V (min {t,s }). 3.设N (t )是一强度为λ的Poisson 过程,s,t >0,试求: (a)P(N (s )=k |N (s +t )=n )=?k =1,...,n ; (b)E[N (s )N (s +t )]=? (c)Cov(N (s ),N (s +t ))=? (d)E[N (s +t )|N (s )]的期望和分布; (e)E[W k |N (t )=n ]=?E[W k ]=?(W k 为第k 个事件发生的时刻) 4.某路口蓝车,白车和黄车的到达分别为强度λ1,λ2和λ3的Poisson 过程,且相互独立.试求:(a)第一辆蓝车到达的平均时间和第一辆车到达的平均时间; (b)蓝车首先到达的概率; (c)蓝车先于黄车但落后于白车的概率; (d)在相继到达的两辆蓝车之间,恰有k 辆车到达的概率以及数学期望; (e)在t 0处观察到一辆黄车,在接下来恰有k 辆蓝车连续到达的概率以及数学期望. 5.设要做的试验的次数服从参数为λ的Poisson 分布,试验有n 个可能的结果,每次试验出现第j 个结果的概率为p j ,∑n j =1p j =1.若各次试验相互独立,并以X j 记第j 个结果发生的次数,试求E[X j ]、Var[X j ],j =1,...,n .又问X j 服从什么分布?且X 1,...,X n 是否相互独立?为什么? 6.某人甲负责订阅杂志.设前来订阅杂志的人数服从强度为6的Poisson 过程,每人分别以概率1/2,1/3,1/6订阅1季,2季,3季杂志,且各人的选择相互独立.现以N i (t )表示(0,t ]时段内订阅i 季杂志的人数,i =1,2,3. 1

泊松分布

概率论大作业 --泊松分布 班级:11011001班 姓名:郭敏 学号:2010302612 2013年1月10日

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 泊松分布在现实生活中应用非常广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。在某些函数关系泊松分布起着一种重要作用,例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质以及基本相关知识, 并讨论了这些知识在实际生活中的重要作用。 关键词:泊松分布性质及其应用、二项分布、泊松过程

近数十年来,泊松分布日益显示其重要性,成了了解概率论中最重要的几个分布之一。 一、泊松分布的由来 在历史上泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入。 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。又设0>=λn np 是常数, 则{}λλ-∞ →= =e k k x P k n n ! lim 。 证明 由λ=n np 得: {}()()n n k n k k n k n n n k n n k n n k k n n n k x P ?--??? ??-??????? ??? ??--????? ??-???? ? ?-?= ? ? ? ??-??? ??+--==λλλλ11121111!1!11 显然,当k = 0 时,故λ -n e k} x P{→=。当k ≥1 且k → ∞时,有 λλ-?-→? ? ? ??-→??? ??--????? ??-???? ??-?e n n k n n n n k n 1,11121111 从而{}λ λ-→ =e k k x P k n 1 ,故{}λλ-∞ →= =e k k x P k n n ! lim 。 在应用中,当p 相当小时(一般当p<=0.1)时,用下面近似公式 np k e k np p n k b -≈! )(),;( 对于不同λ值得泊松分布图:

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

Poisson过程

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

正确理解-泊松分布-通俗解释

正确理解-泊松分布-通俗解释

年由贝尔发明,一台电话由几个部分构成”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一比如在一段个常数(比 如一直是200人),而应该符合某种随机规律: 学生的概率是10%,来180个学生的概率是假如在1个小时内来200个20%'般认为,这种随机规 若要公式化定义,那就是:若 当一个随 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在 只会做题”的阶段,因为试卷上不会出现请发表一下你对泊松公式的看法”这 样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一 样东西,那么我们就有必要停下来去思考一下诸如为什么要有泊松分布?” 泊松分布的物理意义是什么?”这样的哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:电话是 一种机器,两个距离很远的人可以通过它进行交谈”而不会说:电话在1876 律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布, 随机变量X只取非负整数值0,1,2,…,且其概率分布服 从"k!则随机变量X的分布称为泊松分布,记作P(入。)这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (/中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。生活中,当 机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜 F某区域中的白血球等等,以固定的平均瞬时速率入或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地

应用随机过程实验2-泊松过程

应用随机过程实验2 —泊松过程 一.准备知识 1.泊松过程 2.非齐次泊松过程 3. 复合泊松过程 二.作业 1. 设()1X t 和()2X t 分别是参数为1λ和2λ的相互独立的泊松过程, (1)模拟()1X t 和()2X t ,并画图; (2)生成随机过程()()()12Y t =X +X t t ,并画图; (3)计算(){}Y t ,t 0≥ 的平均到达率与+1λ2λ的相对误差。 2. 设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,假设每位购买商品的顾客的花费i X 独立同分布,且服从正态分布2X (,)i N μσ:,1,2,3,i =L ,令()Y t 是t 时刻购买商品的顾客数,()Z t 是t 时刻商品的营业额,0t ≥ , (1)试模拟随机过程(){},0Y t t ≥,并画图,计算随机过程(){},0Y t t ≥ 的均值函数与pt λ的相对误差; (2)试模拟随机过程(){},0Z t t ≥,并画图,计算随机过程(){}t ,t 0Z ≥ 的均值函数与pt λμ的相对误差。

3. 某路公共汽车从早晨5时到晚上9时有车发出,乘客流量如下:5时按平均乘客为200人/小时计算;5时至8时乘客平均到达率线性增加,8时到达率为1400人/小时;8时至18时保持平均到达率不变;18时到21时到达率线性下降,到21时为200人/小时,假定乘客数在不重叠的区间内是相互独立的,令()X t 是t 时刻到达公共汽车的总人数, (1)计算早晨5时到晚上9时的乘客到达率,并画图; (2)模拟从早晨5时到晚上9时的乘客到达过程(){}X t ,t 0≥。

随机过程期末复习题

随机过程期末复习题库(2015) 一、填空题 1.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 2.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 3.设随机变量服从泊松分布,且,则 2 . 4.已知随机变量的二阶矩存在,且的矩母函数为,则. 5.已知随机变量的二阶矩存在,且的特征函数为,则 . 6.设是平稳序列,其协方差函数为,请给出的均值具有遍 历性的一个充分条件:. 7.设是平稳过程,其协方差函数为,请给出的均值具有遍历性 的一个充分条件:. 8.已知平稳过程的均值,协方差函数为,则该过程的自相关函数 . 9.设为两个随机事件,,则 0.6 . 10.设为二随机变量,,则 2 . 11.已知随机变量的矩母函数为,则服从的分布是参数为的 泊松分布. 12.是二维正态分布,即,. 13.设随机变量的数学期望均存在,则. 14.为随机事件,随机变量的数学期望存在,则 . 15.在强度为的泊松过程中,相继事件发生的间隔时间是相互独立的随机变量,且服从均 值为的同一指数分布. 16.设是强度为的泊松过程,表示第个事件发生的时刻,则的分布函 数为. 17.设是强度为的泊松过程,表示第个事件发生的时刻,则. 18.设是强度为的泊松过程,表示第个事件发生的时刻,则

. 解由定理3.2.3,在已知的条件下,事件发生的个时刻的条件联合分布函数与个在区间上相互独立同均匀分布的随机变量的顺序统计量的联合分布函数相同.故对,有 从而, 19.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 20.设,是速率为的泊松过程. 则对于, . 21.设,是速率为的泊松过程. 对于, . 解对于,有 增量与独立 22.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则对,. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 23.设是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔,则. 24.设是强度为的泊松过程,表示第个事件发生的时刻,则 . 25.设是强度为的泊松过程,表示第个事件发生的时刻,则服从参 数为和的分布. 26.非齐次泊松过程,其强度函数为,则 . 解对于,有

随机过程第三章 泊松过程

第三章 泊松过程 3.1 泊松过程 定义3.1 计数过程:随机过程{}(),0N t t ≥称为一个计数过程,若()N t 表示从0到时 刻t 为止某一事件A 发生的总数,它是一个状态取非负整数、时间连续的随机过程。计数过程满足以下条件: (1)()0N t ≥,且取值非负整数; (2)若s t <,则()()N s N t <; (3)对于s t <,()()N t N s -表示时间区间(,]s t 内事件A 发生的次数。 如果在不相交的时间区间中发生的事件个数是独立的,则称计数过程有独立增量过程。如时刻t 已发生的事件A 的次数即()N t ,必须独立于时刻t 和t s +之间所发生的事件数即 (()())N t s N t +-。 如果在任一时间区间内发生的事件A 的次数的分布只依赖于时间区间的长度,则称计数过程为平稳增量过程。即对一切12t t <及0s >,在区间12(,]t s t s ++中事件A 的发生次数即21(()())N t s N t s +-+与区间12(,]t t 中事件A 的发生次数即21(()())N t N t -具有相同的分布,则过程有平稳增量。 泊松过程是计数过程的最重要类型之一,其定义如下。 定义3.2 泊松过程:计数过程{}(),0N t t ≥称为参数为λ(0λ>)的泊松过程,如果满 足: (1)()0N t =; (2)过程有独立增量; (3)在任一长度为t 的区间中事件的个数服从均值为t λ的泊松分布。即对一切s ,0t ≥, {}()(),0,1,2,! n t t P N t s N s n e n n λλ-+-=== 从条件(3)可知泊松过程有平稳增量且[()]E N t t λ=,于是可认为λ是单位时间内发生事件A 的平均次数,一般称λ是泊松过程的强度或速率。 为确定一个任意的计数过程是泊松过程,必须证明它满足上述三个条件。其中,条件

随机过程题库1

随机过程综合练习题 一、填空题(每空3分) 第一章 1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则 n X X X 21的特征函数是 。 2. )(Y X E E 。 3. X 的特征函数为)(t g ,b aX Y ,则Y 的特征函数为 。 4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。 5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则 n X X X 21的特征函数是 。 6.n 维正态分布中各分量的相互独立性和不相关性 。 第二章 7.宽平稳过程是指协方差函数只与 有关。 8.在独立重复试验中,若每次试验时事件A 发生的概率为)10( p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ n n X 是 过程。 9.正交增量过程满足的条件是 。 10.正交增量过程的协方差函数 ),(t s C X 。 第三章 11. {X(t), t ≥0}为具有参数0 的齐次泊松过程,其均值函数为 ; 方差函数为 。 12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1 ,2 ,3 且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。 13.{X(t), t ≥0}为具有参数0 的齐次泊松过程,

n s X s t X P )()( 。 ,1,0 n 14.设{X(t), t ≥0}是具有参数0 的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。 15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。 16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t)相互独立,则在[0,t]内到达汽车总站的乘客总数是 (复合or 非齐次)泊松过程. 17.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过3人的概率是 . 第四章 18. 无限制随机游动各状态的周期是 。 19.非周期正常返状态称为 。 20.设有独立重复试验序列}1,{ n X n 。以1 n X 记第n 次试验时事件A 发生,且 p X P n }1{,以0 n X 记第n 次试验时事件A 不发生,且p X P n 1}0{,若有 1,1 n X Y n k k n ,则}1,{ n Y n 是 链。 答案 一、填空题 1.)(t g n ; 2.EX ; 3.)(at g e ibt 4.;Y 是 5. n i i t g 1 )(; 6.等价 7.时间差; 8.独立增量过程; 9. 0)()()()(3412 t X t X t X t X E 10.}),(min{2 t s X 11.t t ;; 12. 000 )(11t t e t f t 00)()()(321321t t e t f t 13.t n e n t !)( 14. n 15.240000 16.复合; 17.43 71 e

泊松分布

2.2.19 泊松分布的图形及最值 泊松分布同二项分布一样,首先是单调增加,然后再单调递减.所以,泊松分布P(λ)的最值情况如下: (1)若λ是整数,则泊松分布在X=λ-1和X=λ处概率值最大; (2)若λ不为整数,则存在整数m有λ-1< span="">,此时泊松分布在X=m 处的概率最大. 注,这些最值的推导分析如同二项分布的分析,即通过比值P{X=k}/P{X=k-1}来推导. 2.2.20 服从泊松分布的例子 泊松分布是重要的离散型分布,它在实际中有着广泛的应用.泊松分布的应用重要集中在三个领域. 1.社会生活对某服务的需求.如 (1)电话交换台在一段时间内的呼叫次数; (2)公共汽车站在一段时间内的乘客数; (3)某餐厅在一段时间内等待就餐的顾客数; (4)某售票窗口接待的顾客数; (5)某医院每天前来就诊的病人数; (6)某地区某癌症的发病人数;?? 2.物理学和生物学领域.如 (1)放射性物质的放射粒子落在某区域的质点数; (2)显微镜下某区域中的血球数目; (3)显微镜下某区域中的细菌数目; (4)数字通讯中传输数字时发生误码的个数; (5)一段时间内某放射性物质发射出的粒子数; (6)一段时间内某容器内部的细菌数;?? 3.大量试验中稀有事件出现的次数.

(1)一页中印刷错误出现的次数; (2)大量螺钉中不合格品出现的个数; (3)三胞胎出生的次数; (4)某路口在一段时间内发生事故的次数; (5)某机器在一段时间内出现故障的次数; (6)某城市在一段时间内出现火灾(或地震)的次数; (7)一纺锭在一段时间内发生断头的次数; (8)特大洪水发生的年数;?? 注稀有事件是指在试验中出现的概率很小的事件,也称小概率事件.如,火山爆发、地震、彩票中大奖等等. 2.2.24 泊松分布(3)-例7 例2.2-7 某一城市每天发生火灾的次数X服从参数λ=0.8的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. 解由概率的性质及泊松分布的定义,得 P{X≥3}=1-P{X<3}=1-P{X=0}-P{X=1}-P{X=2} =1-e-0.8(0.800!+0.811!+0.822!) ≈0.0474.■ 2.2.25 泊松分布(4)-例8 例2.2-8 某公司生产一种产品300件,根据历史生产记录知废品率为0.01,问现在这300件产品经检验废品数大于5的概率是多少? 解把每件产品的检验看作一次伯努利试验,它有两个结果:A={正品},Aˉ={废品},检验300件产品就是作300次独立的伯努利试验.用X表示检验出的废品数,则 X~b(300,0.01), 从而问题变为计算P{X>5}. 由于n>100,np=3<10,故泊松分布可以很好地近似计算二项分布.记λ=np=3,于是得 P{X>5}=∑k=6300b(k;300,0.01)=1-∑k=05b(k;300,0.01)≈1-∑k=053\spacekk

关于泊松分布及其应用

关于泊松分布及其应用 论文提要: 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 摘要泊松分布做为概率论中的一种重要分布,在管理科学、运筹学及自然科学的某些实际问题中都有着广泛的应用。本文对泊松分布产生的过程、定义和性质做了简单的介绍,分析了泊松分布在生物学研究中的应用。 关键词泊松过程泊松分布应用 摘要:泊松分布作为大量试验中稀有事件出现的频数的概率分布的数

学模型, 它具有很多性质。研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松分布; 定义;定理;应用;例题;指数失效律; 数学期 望; 方差 一、 泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 0 , , ,2 ,1 0 k ,! k} X P{>===-λλλ e k k 则()()λλλλλλλλ λ =?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()()() λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑212 2 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+==

相关文档