文档库 最新最全的文档下载
当前位置:文档库 › 变种、变型、栽培种

变种、变型、栽培种

变种、变型、栽培种

在学名和变种名之间要加上var.,cv.,f.等缩写,

var. 的意思是变种(varietas),即形成了稳定的可遗传的特征差异,

cv. 的意思是栽培变种(cultivar),即人工培育的变种,

f. 的意思是变型(forma),即偶然发生的变异,没有形成新的变种。

一般认为紫叶小檗是人工培养出来的栽培变种,所以用cv. ;

但是也有人认为它还不构成一个变种,只是一个变型,所以也有用f.的

三、植物的分类单位(unit)

界regnum、门division、纲classis、目order、科family、属genus、种species 亚种ssp、变种var、变型f、品种cv

混凝土的变形性能

6.5 混凝土的变形性能 混凝土的变形包括非荷载作用下的变形和荷载作用下的变形。非荷载下的变形,分为混凝土的化学收缩、干湿变形及温度变形;荷载作用下的变形,分为短期荷载作用下的变形及长期荷载作用下的变形——徐变。 一、非荷载作用下的变形 (一)化学收缩(自生体积变形) 在混凝土硬化过程中,由于水泥水化物的固体体积,比反应前物质的总体积小,从而引起混凝土的收缩,称为化学收缩。 特点:不能恢复,收缩值较小,对混凝土结构没有破坏作用,但在混凝土内部可能产生微细裂缝而影响承载状态和耐久性。 (二)干湿变形(物理收缩) 干湿变形是指由于混凝土周围环境湿度的变化,会引起混凝土的干湿变形,表现为干缩湿胀。 1.产生原因 混凝土在干燥过程中,由于毛细孔水的蒸发,使毛细孔中形成负压,随着空气湿度的降低,负压逐渐增大,产生收缩力,导致混凝土收缩。同时,水泥凝胶体颗粒的吸附水也发生部分蒸发,凝胶体因失水而产生紧缩。当混凝土在水中硬化时,体积产生轻微膨胀,这是由于凝胶体中胶体粒子的吸附水膜增厚,胶体粒子间的距离增大所致。 2.危害性 混凝土的干湿变形量很小,一般无破坏作用。但干缩变形对混凝土危害较大,干缩能使砼表面产生较大的拉应力而导致开裂,降低混凝土的抗渗、抗冻、抗侵蚀等耐久性能。 3.影响因素 (1)水泥的用量、细度及品种 水灰比不变:水泥用量愈多,砼干缩率越大;水泥颗粒愈细,砼干缩率越大。 (2)水灰比的影响 水泥用量不变:水灰比越大,干缩率越大。 (3)施工质量的影响 延长养护时间能推迟干缩变形的发生和发展,但影响甚微;采用湿热法处理养护砼,可有效减小砼的干缩率。

(4)骨料的影响 骨料含量多的混凝土,干缩率较小。 (三)温度变形 温度变形是指混凝土随着温度的变化而产生热胀冷缩变形。混凝土的温度变形系数α为(1~1.5)×10-5/ ℃ ,即温度每升高1℃,每1m胀缩0.01~0.015mm。温度变形对大体积混凝土、纵长的砼结构、大面积砼工程极为不利,易使这些混凝土造成温度裂缝。可采取的措施为:采用低热水泥,减少水泥用量,掺加缓凝剂,采用人工降温,设温度伸缩缝,以及在结构内配置温度钢筋等,以减少因温度变形而引起的混凝土质量问题。 二、荷载作用下的变形 (一)混凝土在短期作用下的变形 混凝土是一种由水泥石、砂、石、游离水、气泡等组成的不匀质的多组分三相复合材料,为弹塑性体。受力时既产生弹性变形,又产生塑性变形,其应力应变关系呈曲线,如图。卸荷后能恢复的应变ε弹是由混凝土的弹性应变引起的,称为弹性应变;剩余的不能恢复的应变ε塑,则是由混凝土的塑性应变引起的,称为塑性应变。 混凝土的弹性模量:在应力-应变曲线上任一点的应力σ与其应变ε的比值,称为混凝土在该应力下的变形模量。影响混凝土弹性模量的主要因素有混凝土的强度、骨料的含量及其弹性模量以及养护条件等。 图6.5.1 混凝土在压力作用下的应力-应变曲线 (二)砼在长期荷载作用下的变形——徐变(Creep) 混凝土在持续荷载作用下,除产生瞬间的弹性变形和塑性变形外,还会产生随时间增长的变形,称为徐变。如图6.5.2。

钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算 一、填空题: 1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的适用性、耐久性。 2、规范规定,根据使用要求,把构件在荷载标准值作用下产生的裂缝和变形控制在允许范围内。 3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的拉应力超过混凝土的抗拉强度,就将在该截面上产生垂直于拉应力方向的裂缝。 4、平均裂缝间距就是指裂缝出齐后的裂缝宽度的平均值。 5、平均裂缝间距的大小主要取决于钢筋和混凝土之间的粘结强度。 6、影响平均裂缝间距的因素有纵筋配筋率、纵筋直径、纵筋表面形状、混凝土保护层厚度。 7、钢筋混凝土受弯构件的截面抗弯刚度是一个变量,它随着荷载值和 加荷时间而变化。 8、钢筋应变不均匀系数的物理意义是反映裂缝之间受拉混凝土与纵向受拉钢筋应变的影响程度。 9、变形验算时一般取同号弯矩区段内弯矩最大截面抗弯刚度作为该区段的抗弯刚度。 10、规范用用长期效应组合挠度增大系数来考虑荷载长期效应对刚度的影响。 二、判断题: 1、混凝土结构构件只要满足了承载力极限状态的要求即可。(×) 2、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。() 4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。() 6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。() 7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。() 8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规范允许的范围之内。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、规范控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。() 11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。()

混凝土的技术性能

混凝土的技术性能 1)混凝土拌合物的和易性 2)混凝土的强度 3)混凝土的变形性能 4)混凝土的耐久性 影响混凝土强度的因素主要有原材料及生产工艺方面的因素。 原材料方面的因素包括: 1)水泥强度与水灰比 2)骨料的种类、质量和数量 3)外加剂 4)掺合料 生产工艺方面的因素包括: 1)搅拌与振捣 2)养护的温度和湿度 3)龄期 混凝土的耐久性 1)抗渗性 2)抗冻性 3)抗侵蚀性 4)混凝土的碳化(中性化) 5)碱骨料反应 混凝土外加剂的主要功能包括: 1)改善混凝土或砂浆拌合物施工时的和易性; 2)提高混凝土或砂浆的强度及其他物理力学性能; 3)节约水泥或代替特种水泥; 4)加速混凝土或砂浆的早期强度发展; 5)调节混凝土或砂浆的凝结硬化速度; 6)调节混凝土或砂浆的含气量; 7)降低水泥初期水化热或延缓水化放热; 8)改善拌合物的泌水性; 9)提高混凝土或砂浆耐各种侵蚀性盐类的腐蚀性; 10)减弱碱骨料反应; 11)改善混凝土或砂浆的毛细孔结构; 12)改善混凝土的泵送性; 13)提高钢筋的抗锈蚀能力; 14)提高骨料与砂浆界面的粘结力,提高钢筋与混凝土的 握裹力; 15)提高新老混凝土界面的粘结力等。 按外加剂的主要使用功能分为以下四类: 1)改善混凝土拌合物流变性能的外加剂。包括各种减 水剂、引气剂和泵送剂等。 2)调节混凝土凝结时间、硬化性能的外加剂。包括混凝 剂、早强剂和速凝剂等 3)改善混凝土耐久性的外加剂。包括引气剂、防水剂和 阻锈剂等。 4)改善混凝土其他性能的外加剂。包括膨胀剂、防冻剂、 着色剂等。 外加剂的适用范围 1)混凝土中掺入减水剂,若不减少拌合用水量,能显 著提高拌合物的流动性;当减少水而不减少水泥时,可提高混凝土强度;若减水的同时适当减少水泥用 量,则可节约水泥。同时,混凝土的耐久性也能得到显著改善。 2)早强剂可加速混凝土硬化和早期强度发展,缩短养 护周期,加快施工进度,提高模板周转率。多用于冬 期施工或紧急抢修工程。 3)缓凝剂主要用于高温季节混凝土、大体积混凝土、 泵送与滑模方法施工以及远距离运输的商品混凝土 等,不宜用于日最低气温5℃以下施工的混凝土,也 不宜用于有早强要求的混凝土和蒸汽养护的混凝 土。缓凝剂的水泥品种适应性十分明显,不同品种水 泥的缓凝效果不相同,甚至会出现相反的效果。因此,使用前必须进行试验,检测其混凝效果。 4)引气剂是在搅拌混凝土过程中能引入大量均匀分 布、稳定而封闭的微小气泡的外加剂。引气剂可改善 混凝土拌合物的和易性,减少泌水离析,并能提高混 凝土的抗渗性和抗冻性。同时,含气量的增加,混凝 土弹性模量降低,对提高混凝土的抗裂性有利。由于 大量微气泡的存在,混凝土的抗压强度会有所降低。 引气剂适用于抗冻、防渗、抗硫酸盐、泌水严重的混 凝土等。 5)膨胀剂能使混凝土在硬化过程中产生微量体积膨 胀。膨胀剂主要有硫铝酸钙类、氧化钙类、金属类等。 膨胀剂适用于补偿收缩混凝土、填充用膨胀混凝土、灌浆用膨胀砂浆、自应力混凝土等。含硫铝酸钙类、硫铝酸钙──氧化钙类膨胀剂的混凝土(砂浆)不得用于长期环境温度为80℃以上的工程;含氧化钙类 膨胀剂配制的混凝土(砂浆)不得用于海水或有侵蚀 性水的工程。 6)防冻剂在规定的温度下,能显著降低混凝土的冰点, 使混凝土液相不冻结或仅部分冻结,从而保证水泥的水化作用,并在一定时间内获得预期强度。含亚硝酸 盐、碳酸盐的防冻剂严禁用于预应力混凝土结构;含 有六价铬盐、亚硝酸盐等有害成分的防冻剂,严禁用 于饮水工程及与食品相接触的工程,严禁食用;含有硝铵、尿素等产生刺激性气味的防冻剂,严禁用于办 公、居住等建筑工程。 7)泵送剂是用于改善混凝土泵送性能的外加剂。它由 减水剂、调凝剂、引气剂、润滑剂等多种组分复合而成。泵送剂适用于工业与民用建筑及其他构筑物的泵送施工的混凝土;特别适用于大体积混凝土、高层建 筑和超高层建筑;适用于滑模施工等;也适用于水下 灌注桩混凝土。

混凝土早期变形的基本特征及影响因素

混凝土早期变形(自收缩、塑性收缩)的基本特征及影响因素 (1)塑性收缩机理及影响因素。 在混凝土浇筑数小时后,其表面开始沉降,常出现水平的小裂缝,这种在塑性阶段出现的体积收缩常称为塑性收缩。塑性收缩开裂在路面和平板的水平面最普遍,水在这些面上有可能快速蒸发,裂缝出现将破坏表面完整性,降低耐久性。 机理:塑性收缩只要是由于两个方面的作用:一方面,混凝土浇筑密实后,由于混凝土原材料存在的密度、质量、形状等差异,在重力作用下必然要出现粗大的骨料下沉和密度较小的水上浮,即沉降和泌水同哦你是进行,对于大水灰比或明显泌水的混凝土,上表面的水分蒸发后,混凝土的体积比发生沉降和泌水前的体积有所减少;另一方面,但混凝土表面失水速率大于从混凝土内部泌出速率时,在混凝土的表面及一定深度内就会出现毛细孔,就会出现凹月面,根据Young 方程,混凝土就会受到很大的附加压力,又由于此时混凝土尚未硬化,弹性模量很低,因此开始出现塑性收缩。同时若混凝土表面的抗拉强度低于限制收缩导致的拉应力时,开始出现塑性收缩。 影响因素:导致塑性收缩的原因很多,包括泌水或沉降、基础或模板或骨料吸水、水分的快速蒸发、水泥浆体积的减小、模板的肿胀或沉陷等。 (2)自收缩及影响因素。 如果在养护期间除了拌合时所加的水之外没有补充水分,即使没有水分向四周散失,混凝土也将开始内部干燥,因为水分被水化所消耗。然而,体积收缩只有在低w/c(﹤0.3)的混凝土中出现,而且由于掺入活性火山灰(如硅灰)而增大。该现象称为自干燥并以自收缩(也称为化学收缩)的形式出现。 自干燥产生的所有结果常被形成的钙矾石或游离MgO水化引起的膨胀所掩盖。 影响因素: (1)水泥:水泥水化是混凝土产生自收缩的最根本原因,水泥水化产生化学减缩,而水化反应消耗水分产生白干燥收缩。水泥熟料中各矿物水化反应时引 起的减缩各不相同,一般从大到小排序为:C 3A,C 3 S,C 2 S。水泥细度越细,化学 活性越高,水化速率越快,水化程度越高,水泥的自收缩越大. (2)矿物掺和料:一般硅灰掺量越大,自收缩越大;由于掺入硅灰后,提高了水泥水化程度,使水化产物数量增加,混凝土中孔隙细化,因此掺入硅灰后不但增加了混凝土的干燥收缩,也大大增加了混凝土的自收缩。当矿渣粉细度小于400m2/kg时,对减小混凝土自收缩有利,随矿渣掺量的增大,自收缩减小;但当细度大于400m2/kg时,矿渣活性明显提高,引起自收缩增大,混凝土自收缩随其掺量的增大而增大;当掺量大于75%时,自收缩因胶凝材料活性减低而使得混凝土自收缩减小;粉煤灰、石灰石粉、憎水石英粉,随其掺量的增大,混凝土自收缩减小。 (3)胶凝材料含量:单位体积水泥用量加大,既增加了混凝土中产生自收缩的水泥石部分,又相应的减少了混凝土中限制收缩作用的骨料部分,因此单位体积水泥用量越多,混凝土各龄期的自收缩就越大,且自收缩的增加大于水泥用量的增加幅度。 (4)水胶比:混凝土自收缩随水胶比的减小和水泥石微结构的致密而增加。 (5)养护条件:养护温度对自收缩的影响规律如下:①不掺矿物掺和料的

钢筋混凝土构件的变形

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。 第9章 钢筋混凝土构件的变形、裂缝验算及耐久性 一、填空题 1.混凝土构件裂缝开展宽度及变形验算属于 正常使用 极限状态的设计要求,验算时材 料强度采用标准值,荷载采用标准值、准永久值。 2. 增大构件截面高度 是提高钢筋混凝土受弯构件抗弯刚度的最有效措施。 3.平均裂缝宽度计算公式中,sk σ是指 裂缝截面处的纵向钢筋拉应力 ,其值是按荷载 效应的 标准 组合计算的。 4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度增大而 增大 ,随纵筋配筋率增 大而 减小 。 5.钢筋混凝土受弯构件挠度计算中釆用的最小刚度原则是指在 相同符号 弯矩范围内, 假定其刚度为常数,并按 最大弯矩 截面处的最小刚度进行计算。 6.裂缝间纵向受拉钢筋应变不均匀系数ψ是指 裂缝间受拉纵筋平均应变与裂缝截面处的受拉纵筋应变 之比,反映了裂缝间 拉区混凝土 参与工作的程度。 7.结构构件正常使用极限状态的要求主要指在各种作用下的 裂缝宽度 和 变形 不应 超过规定的限值。 8.结构的耐久性设计要求是指结构构件应满足 设计使用年限 的要求。 9.混凝土结构应根据 使用环境类别 和 结构类别 进行耐久性设计。 10.在荷载作用下,截面受拉区混凝土中出现裂缝,裂缝宽度与 受拉纵筋应力 几乎成 正比。 11.钢筋混凝土和预应力混凝土构件,按 所处环境类别 和 结构类别 确定相应的裂缝 控制等级最大裂缝宽度限值。 12.平均裂缝间距与 混凝土保护层厚度 、 纵向受拉钢筋直径 、 纵向受拉钢筋表面特征系数 及 纵向钢筋配筋率 有关。 13.轴心受拉构件的平均裂缝宽度为 构件裂缝区段 范围内 钢筋的平均伸长与相应水平处构件侧表面混凝土平均伸长 之差。 14.最大裂缝宽度等于平均裂缝宽度乘以扩大系数,这个系数是考虑裂缝宽度的 随机性 以及 长期荷载作用 的影响。 15.受弯构件的最大挠度应按荷载效应的 标准 组合,并考虑荷载 长期作用 影响进 行计算。 16.结构构件正截面的裂缝控制等级分为 三 级。 17.环境类别中一类环境是指 室内正常环境 。

膨胀剂对混凝土变形性能的影响

第!"卷第#期#$$%年&月 南京航空航天大学学报 ’()*+,-(./,+01+23+145*6178(.95*(+,)71:6;967*(+,)71:6 <(-=!"/(=# > >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>9?*=#$$% 膨胀剂对混凝土变形性能的影响 高培伟@卢小琳@唐明述# A @=南京航空航天大学航空宇航学院 B 南京B #@$$@%C #=南京工业大学材料学院B 南京B #@$$$D E 摘要F 膨胀剂在我国被广泛地应用于补偿大体积混凝土收缩G 不同品种的膨胀剂对混凝土的补偿收缩效果有所不同G 氧化钙类和硫铝酸钙类A 9H 7E 可补偿混凝土的早期收缩B 但分别在#"和%$I 后仍会出现后期收缩现象G 水泥品种J 养护条件对膨胀剂的膨胀效果有不同的影响G 掺氧化镁类膨胀剂的混凝土没有出现后期收缩现象B 比较适合水工大体积混凝土G 在做好基础混凝土温度控制的同时B 选择适宜品种的膨胀剂B 可有效地控制混凝土的变形B 减少收缩开裂B 提高混凝土的结构耐久性能和建筑物的质量G 关键词F 大体积混凝土C 膨胀剂C 变形C 耐久性中图分类号F K 3! L L 文献标识码F 9 文章编号F @$$M N #%@M A #$$%E $#N $#M @N $M 基金项目F 国家自然科学基金A M $#L "$!@E 资助项目C O D L !P 国家重点基础研究基金A #$$@Q R %@$L $M $!E 资助项目G 收稿日期F #$$M N $L N $&C 修订日期F #$$M N $D N $M 作者简介F 高培伟B 男B 博士B 副教授B @D %!年L 月生B S N T ,1-F 2?U @D %!V@%!=:(T G W X X Y Z [\]X ^_X X Y ‘Y a [W b c d a \_e Y f g Y a [\ ]ahd \\i ]a Z ‘Y [Y ^Y X ]‘j d [_]ak ‘]c Y ‘[l m n o p q r s q r @ B t uv r n o w r x @ B y n x z{r x z |}u # A @=Q (--525(.95*(6?,:5S +21+55*1+2 B /,+01+23+145*6178(.95*(+,)71:6;967*(+,)71:6B /,+01+2B#@$$@%B Q ~1+, C #=Q (--525(.!,75*1,-":15+:5,+IS +21+55*1+2B /,+01+23+145*6178(.K 5:~+(-(28B /,+01+2B#@$$$ D B Q ~1+, E f #\[‘d Z [ F <,*1()65$?,+6145,25+76,*5I 545-(?5I*5:5+7-81+Q ~1+,7(:(T ?5+6,757~5:(+:*5756~*1+%,251+I 1..5*5+7T 5:~,+16T 6=K ~55,*-8:(+:*5756~*1+%,25U 17~Q ,&N 78?5,+I9H 7N 78?55$?,+6145,25+76 T ,8’5:(T ?5+6,75I B ’)77~5-,75*6~*1+%,25,.75*#",+I %$I:,++(7’5:(T ?5+6,75I =K ~55$?,+6145 5..5:76(.7~565,25+76,*5I 1..5*5+7)+I 5*I 1..5*5+7:5T 5+7:)*1+2:(+I 171(+6=K ~5-,75*6~*1+%,25I (56+(75$1671+7~5~8I *,)-1::(+:*575U 17~7~5!2&N 78?55$?,+6145,25+7=(17~,2((I:(+7*(-(.75T ?5*,N 7)*5I 1..5*5+:561+7~5:(+:*575+5,*7~5.()+I ,71(+B 5$?,+6145,25+76:,+*5I ):56~*1+%,25,+I:*,:%1+21+T ,66145:(+:*575:(+67*):71(+6B 7~)61T ?*(41+27~51*I )*,’1-178,+I )),-178=*Y l +]‘,\F T ,66:(+:*575C 5$?,+6145,25+7C 6~*1+%,25C I )*,’1-178 引言 现代建筑物多属于大体积混凝土结构B 浇筑 后B 水泥产生的水化热常使混凝土内部温度比周围环境高#$-!$.以上B 由于热量不能快速散发B 使混凝土在冷缩时产生温度收缩应力B 再伴随着干燥收缩J 化学减缩等收缩B 在混凝土内部产生较大的 收缩拉应力/@0 B 如果拉应力超过了混凝土的抗拉强度B 就会使混凝土产生裂纹B 严重的将出现基础贯穿裂缝B 混凝土结构的开裂问题再次成为人们关注 的热点/#0 G @D D M 年B 美国调查发现有@$万座混凝土桥面 板在浇筑后一个月内就出现了间隔@-!T 的贯穿 性裂缝B 修补这些裂缝的费用高达约@$亿美元/!0G 我国某市地铁建成不久混凝土结构就出现严重开裂B 许多车站的混凝土顶板因严重开裂而产生渗   万方数据

第三章 混凝土的基本特性

第三章混凝土的基本特性 混凝土是水泥、砂、石和水的混合材料,其组成材料的成分和性质,以及在制备、凝固、使用过程中的各种条件和环境因素都对其强度和变形有不同程度的影响,因而混凝土比其它结构材料具有更复杂、多变的力学性能。 §3.1非匀质、非等向的多相混合材料 由图3—1可看出混凝土内部的非匀质构造非匀质构造。其主要组成部分有: 固体颗粒—具有不同形状、颜色、尺寸和矿物成分的粗骨料、较大的砂粒、未水化的水泥颗粒团和混入的各种固体杂质。它们随机地分布在混凝土内部,占据了总体积的绝大部分。 硬化的水泥砂浆—水泥和水产生的水化作用,将搅拌均匀的砂子胶结在一起成为水泥砂浆,填充在固体颗粒之间,或称围裹在固体颗粒外层,形成不均匀、不规则的条带状或网状分布构造。刚开始时,水泥砂浆是流动性强的胶状体。随着混凝土龄期的增长,水泥颗粒的水化作用层往内部深入,外层逐渐固化,砂子的粘结力不断加强,形成硬化的水泥砂浆。 各种气孔和缝隙—在混凝土的搅拌和浇注过程中,少量空气混入其内部;在震捣时,大部分空气成气泡状上升,从构件的上表面逸出,其余的积聚在构件顶面和侧面的表层砂浆层内。较大的石子和钢筋下面有明显的气孔。混凝土中的水分蒸发以及水泥砂浆干缩变形等都会在粗骨料和砂浆的界面、砂浆的内部形成不同形状和尺寸的细微裂缝。此外,浇注、震捣操作不当等施工缺陷可能在混凝土内留下较大孔洞。

这三部分中,前两者为基本组成。它们的物理相力学性质相差悬殊,在外力作用和环境条件影响下的反应有显著差别,成为混凝土强度和变形性能复杂、多变的主要原因。 图3-1 混凝土组成材料的非匀质、非等向分布 除了混凝土组成部分的随机分布所引起的非匀质性外,还因为一些因素构成混凝土的必然非匀质性,例如: ·在浇注、震捣混凝土的过程中,比重和颗粒较大的粗骨料沉入底部,而比重较小的骨料、流动性大的水泥砂浆和气泡等向上升。 ·构件浇注方向的顶面和模板侧面附近,水泥砂浆和气泡的含量高于构件内部,构件表层的水分蒸发较快,收缩变形较大,遗留裂缝较多。 混凝土材料的非匀质和非等向性的程度,取决于原材料的均匀性、水泥骨料比和水灰比,以及搅拌、浇注、震捣和养护等施工操作工艺。 此外,在混凝土的浇注、震捣过程中,有一些现象将产生非等向性,例如:粗骨料若有一较大干面,震捣后的最稳定位置是大面朝下;气泡上升过程中略呈长圆形,混凝土凝固后气孔长径平行于浇注方向;构件分层浇注和振捣混凝土时,留有水平施工缝;在先期应力作用下,混凝土内部形成的微裂缝具有一定的方向性等等。

相关文档
相关文档 最新文档