文档库 最新最全的文档下载
当前位置:文档库 › 高中数学不等式部分错题精选

高中数学不等式部分错题精选

高中数学不等式部分错题精选
高中数学不等式部分错题精选

高中数学不等式部分错题精选

一、选择题:

1.设,,1x y R x y ∈+>则使成立的充分不必要条件是

A 1x y +≥

B 11

22

x y >

>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。

2.不等式(0x -≥的解集是

A {|1}x x >

B {|1}x x ≥

C {|21}x x x ≥-≠且

D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。正确答案为D 。 3.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是

A 1317(,)22-

B 711(,)22-

C 713(,)22-

D 913

(,)22

- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b

的范围,扩大了范围。正解:用待定系数法,解出2a+3b=52(a+b)1

2

-(a-b),求出结果为D 。

4.若不等式ax 2

+x+a <0的解集为 Φ,则实数a 的取值范围( )

A a ≤-21或a ≥21

B a <21

C -21≤a ≤21

D a ≥ 2

1

正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能

掌握。

5.已知函数y =㏒2

1(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )

A a ≤-6

B -60<a <-6

C -8<a ≤-6 D

-8≤a ≤-6

正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。 6.f(x)=︱2

x

—1|,当a <b <c 时有f(a)>f(c)>f(b)则( )

A a <0,b <0,c <0

B a <0,b >0,c >0

C 2

a

-<2c D 22+a c

<2

正确答案:D 错因:学生不能应用数形结合的思想方法解题。

7.已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy)( )

A.有最小值21,也有最大值1

B.有最小值43

,也有最大值1

C.有最小值4

3

,但无最大值 D.有最大值1,但无最小值

正确答案:B 。

错误原因:容易忽视x 、y 本身的范围。

8.若实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b (a ≠b ),则mx+ny 的最大值为( )

A 、2b a +

B 、ab

C 、222b a +

D 、b

a ab

+

答案:B

点评:易误选A ,忽略运用基本不等式“=”成立的条件。

9.已知21,x x 是方程)(0)53()2(22R k k k x k x ∈=+++--的两个实根,则2

22

1x x +的最大值为( )

A 、18

B 、19

C 、9

5

5 D 、不存在 答案:A 错选:B

错因:2

22

1x x +化简后是关于k 的二次函数,它的最值依赖于0>?所得的k 的范围。 10.如果方程(x-1)(x 2-2x +m)=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是 ( ) A 、0≤m ≤1 B 、

43<m ≤1 C 、43≤m ≤1 D 、m ≥4

3 正确答案:(B )

错误原因:不能充分挖掘题中隐含条件。

二填空题:

1.设2

20,0,12

b a b a ≥≥+=,则的最大值为 错解:有消元意识,但没注意到元的范围。正解:由2

20,0,12b a b a ≥≥+=得:

22

12b a =-,且2

01b ≤≤,原式=求出最大值为

1。

2.若,,x y R +∈a 的最小值是

,2m n +≥≤

≤a

3.已知两正数x,y 满足x+y=1,则z=11

()()x y x y

++

的最小值为 。 错解一、因为对a>0,恒有12a a +

≥,从而z=11

()()x y x y

++≥4,所以z 的最小值是4。

错解二、22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最

小值是1)。

错解分析:解一等号成立的条件是11

,11,1x y x y x y x y

=

===+=且即且与相矛盾。

解二等号成立的条件是

2

,xy xy xy

==即104xy <≤相矛盾。

正解:z=11()()x y x y ++=1y x xy xy x y +++=21()22

2x y xy xy xy xy xy xy

+-++=+-,

令t=xy, 则210(

)24x y t xy +<=≤=,由2()f t t t =+在10,4?? ???上单调递减,故当t=1

4

时 2()f t t t =+

有最小值334,所以当12x y ==时z 有最小值25

4

。 4.若对于任意x ∈R ,都有(m -2)x 2-2(m -2)x -4<0恒成立,则实数m 的取值范围是 。

正确答案:(-2,2) 。

错误原因:容易忽视m =2。

5.不等式ax 2

+ bx + c >0 ,解集区间(-

2

1

,2),对于系数a 、b 、c ,则有如下结论: ① a >0 ②b >0 ③ c >0 ④a + b + c >0 ⑤a – b + c >0,其中正确的结论的序号

是________________________________. 正确答案 2 、3、 4

错因:一元二次函数的理解

6.已知()x f 是定义在()+∞,0的等调递增函数,()()(),y f x f xy f +=且()12=f ,则不等式()()23≤-+x f x f 的解集为 。 正确答案:{}43|≤

错误原因:不能正确转化为不等式组。

三、解答题:

1.是否存在常数 c ,使得不等式2222x y x y

c x y x y x y x y

+≤≤+

++++对任意正数 x,y 恒成立?

错解:证明不等式

2222x y x y

x y x y x y x y

+≤+

++++恒成立,故说明c 存在。 正解:令x=y

2233

c ≤≤,故猜想c=

2

3

,下证不等式

222322x y x y

x y x y x y x y

+≤≤+++++恒成立。

要证不等式

2

223

x y x y x y +≤++,因为x,y 是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y )

(x+2y),也即证222231232(225)x xy y x y xy ++≤++,即2xy ≤22x y +,而此不等式恒成立,同理不等式

2322x y

x y x y

≤+++也成立,故存在c=23使原不等式恒成立。

2. 已知适合不等式2

435x x p x -++-≤的x 的最大值为3,求p 的值。

错解:对此不等式无法进行等价转化,不理解“x 的最大值为3”的含义。

正解:因为x 的最大值为3,故x-3<0,原不等式等价于2

4(3)5x x p x -+--≤,

即2

242x x x p x --≤-+≤+,则22520(1)

{320(2)

x x p x x p -+-≤-++≥,

设(1)(2)的根分别为12213443(),()x x x x x x x x >>、、,则2433x x ==或 若23x =,则9-15+p-2=0,p=8 若43x =,则9-9+p+2=0,p=-2 当a=-2时,原方程组无解,则p=8 3. 解不等式:2222||

x x

+≥。

解:当x ≥0时,原不等式为22x ≥

∴≥

x 12

当x <0时,原不等式为2222-+≥x

x

∴-?+≥∴≤-≥+()222210221221

2x x x

x

又x <0

∴<∴≤

-∴≤-21

221

212

x x x l o g()

∴原不等式的解为x x ≥

≤-1

2

212或log () 说明:此题易在x <0时221x

+处出错,忽略了x <0的前提。这提醒我们分段

求解的结果要考虑分段的前提。

4. 方程x k x k 2250+-+-=()的两根都大于2,求实数k 的取值范围。 解:设方程的两根为x x 12,,则必有

?≥-+->-->???

??∴---≥--->-+-+>???

?

?∴-<≤-0220220

24502405224054

121

22()()()()()()()()()x x x x k k k k k k

说明:此题易犯这样的错误:

x x x x 1212224

>>∴+>,

且x x 124>

和判别式?≥0联立即得k 的范围

原因是x x 1222>>和只是x x 124+>的充分条件 即x x 124+>不能保证x x 1222>>和同时成立

5. 设函数f(x)=log b ax

x x 212

22++-(b>0且b ≠1),

(1)求f(x)的定义域;

(2)当b>1时,求使f(x)>0的所有x 的值。

解 (1)∵x 2-2x+2恒正, ∴f(x)的定义域是1+2ax>0,

即当a=0时,f(x)定义域是全体实数。

当a>0时,f(x)的定义域是(-a

21

,+∞)

当a<0时,f(x)的定义域是(-∞,-a

21

(2)当b>1时,在f(x)的定义域内,f(x)>0?ax

x x 212

22++->1?x 2-

2x+2>1+2ax

?x 2-2(1+a)x+1>0

其判别式Δ=4(1+a)2-4=4a(a+2) (i)当Δ<0时,即-20

∴f(x)>0?x<-a

21

(ii)当Δ=0时,即a=-2或0时

若a=0,f(x)>0?(x -1)2

>0 ?x ∈R 且x ≠1

若a=-2,f(x)>0?(x+1)2

>0

?x <4

1

且x ≠-1

(iii )当△>0时,即a >0或a <-2时

方程x 2

-2(1+a)x+1=0的两根为 x 1=1+a -a a 22+,x 2=1+a+a a 22+ 若a >0,则x 2>x 1>0>-

a

21 ∴a a a x x f 210)(2+++>?>或a a a x a

2121

2--+<<- 若a<-2,则a

x x 2121-

<< ∴f(x)>0?x <1+a -a a 22+或1+a+a a 22+<x <-a

21 综上所述:当-2<a <0时,x 的取值集合为{x|x <-

a

21} 当a=0时,x ∈R 且x ≠1,x ∈R ,当a=-2时:{x|x <-1或-1<x <4

1} 当a >0时,x ∈{x|x >1+a+a a 22+或-

a

21

<x <1+a -a a 22+} 当a <-2时,x ∈{x|x <1+a -a a 22+或1+a+a a 22+<x <-a

21} 错误原因:解题时易忽视函数的定义域,不会合理分类。

6.设a 、b ∈R ,求证:

||1||b a b a +++≤|

|1|

|||1||b b a a +++

证明:当|a+b|=0时,不等式已成立

当|a+b|≠0时,∵ |a+b|≤|a|+|b|

∴ |

|1||b a b a +++=||111b a ++

|

|||111

b a ++=

1

|||||

|||+++b a b a

=||||1||b a a +++||||1||b a b ++≤|

|1|

|||1||b b a a +++

点评:错证:∵|a+b|≤|a|+|b|

∴ ||1||b a b a +++≤||||1||||||1||||||1||||b a b b a a b a b a +++++=+++≤|

|1|

|||1||b b a a +++ ①

错因:①的推理无根据。

高中数学易错题举例解析

高中数学易错题举例解析 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。加强思维的严密性训练。 ● 忽视等价性变形,导致错误。 ??? x >0 y >0 ? ??? x + y >0 xy >0 ,但 ??? x >1 y >2 与 ??? x + y >3 xy >2 不等价。 【例1】已知f(x) = a x + x b ,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。 错误解法 由条件得?? ? ??≤+≤≤+≤-62230 3b a b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32 338-≤≤- b ④ ③+④得 .3 43 )3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数b x ax x f + =)(,其值是同时受b a 和制约的。当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。 正确解法 由题意有?? ? ??+=+=22)2()1(b a f b a f , 解得: )],2()1(2[3 2 )],1()2(2[31f f b f f a -=-= ).1(9 5 )2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .3 37)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 ●忽视隐含条件,导致结果错误。 【例2】 (1) 设βα、是方程0622 =++-k kx x 的两个实根,则2 2 )1()1(-+-βα的最小值是

高中数学-不等式的基本性质(一)练习

高中数学-不等式的基本性质(一)练习 课后导练 基础达标 1若-1<α<β<1,则下列各式中成立的是( ) A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 解析:∵-1<α<β<1,∴-1<α<1,-1<β<1. ∴-1<-β<1.∴-2<α-β<2.又α-β<0, ∴-2<α-β<0. 答案:A 2“a+b>2c ”成立的一个充分条件是( ) A.a>c,或b>c B.a>c 且bc 且b>c D.a>c,或bc 且b>c ,∴a+b>c+c,即a+b>2c. 答案:C 3若x>1>y,下列不等式中不成立的是( ) A.x-1>1-y B.x-1>y-1 C.x-y>1-y D.1-x>y-x 解析:∵x>1>y, ∴x+(-1)>y+(-1),即B 正确; x+(-y)>1+(-y),即C 正确; 1+(-x)>y+(-x),即D 正确. 故选A. 答案:A 4若m<0,n>0,且m+n<0,则下列不等式中成立的是( ) A.-n0,m+n<0, ∴m<-n<0,-m>n,即n<-m. ∴m<-n0,m,n 互为倒数,易得m<10,∴4ac<0.∴b 2-4ac>0. 答案:b 2-4ac>0 7下列命题中真命题的个数为( )

80个高中数学易错题

2017年高考备考:高中数学易错点梳理 一、集合与简易逻辑 易错点1 对集合表示方法理解存在偏差 【问题】1: 已知{|0},{1}A x x B y y =>=>,求A B I 。 错解:A B =ΦI 剖析:概念模糊,未能真正理解集合的本质。 正确结果:A B B =I 【问题】2: 已知22 {|2},{(,)|4}A y y x B x y x y ==+=+=,求A B I 。 错解: {(0,2),(2,0)}A B =-I 正确答案:A B =ΦI 剖析:审题不慎,忽视代表元素,误认为A 为点集。 反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。 易错点2 在解含参数集合问题时忽视空集 【问题】: 已知2 {|2},{|21}A x a x a B x x =<<=-<<,且B A ?,求a 的取值范围。 错解:[-1,0) 剖析:忽视A =?的情况。 正确答案:[-1,2] 反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合B A ?就有可能忽视了A =?,导致解题结果错误。尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。 易错点3 在解含参数问题时忽视元素的互异性 【问题】: 已知1∈{2a +,2 (1)a +, 2 33a a ++ },求实数a 的值。 错解:2,1,0a =-- 剖析:忽视元素的互异性,其实当2a =-时,2 (1)a +=233a a ++=1;当1a =-时, 2a +=2 33a a ++=1;均不符合题意。 正确答案:0a = 反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。解题时可先求出字母参数的值,再代入验证。 易错点4 命题的否定与否命题关系不明 【问题】: 写出“若a M a P ??或,则a M P ?I ”的否命题。 错解一:否命题为“若a M a P ??或,则a M P ∈I ” 剖析:概念模糊,弄错两类命题的关系。 错解二:否命题为“若a M a P ∈∈或,则a M P ∈I ” 剖析:知识不完整,a M a P ??或的否定形式应为a M a P ∈∈且。 正确答案:若a M a P ∈∈且,则a M P ∈I

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

2019-2020年高二数学 第六章 不等式: 6.1不等式的性质(一)优秀教案

2019-2020年高二数学第六章不等式: 6.1不等式的性质(一) 优秀教案 教学目的: 1了解不等式的实际应用及不等式的重要地位和作用; 2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小. 教学重点:比较两实数大小. 教学难点:差值比较法:作差→变形→判断差值的符号 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、引入: 复习初中学过的不等式的性质 ①正数的相反数是负数 ②任意实数的平方不小于0。 ③不等式的两边都加上(或减去)同一个数或同一个整式, 不等号的方向不变。 ④不等式的两边都乘以(或除以)同一个正数,不等号的

方向不变。 ⑤不等式的两边都乘以(或除以)同一个负数,不等号的 方向改变。 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 生活中为什么糖水中加的糖越多越甜呢? 转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为,加入m克糖后的糖水浓度为,只要证>即可怎么证呢?引人课题 二、讲解新课: 1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.

说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集R. 2.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是: 由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了. 三、讲解范例: 例1比较(a+3)(a-5)与(a+2)(a-4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

高一数学必修一易错题集锦答案

高一数学必修一易错题集锦答案 1. 已知集合M={y |y =x 2 +1,x∈R },N={y|y =x +1,x∈R },则M∩N=( ) 解:M={y |y =x 2 +1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, 注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2 +1,x ∈R }、{(x ,y )|y =x 2 +1,x ∈R },这三个集合是不同的. 2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2} 3 。已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个) 解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z , ∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。 4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围. 解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3 ②当B=时,即p +1>2p -1p <2. 由①、②得:p≤3. 点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题. 5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2 }.若A=B ,求c 的值. 分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论. (1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2 -2ac=0, a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0. ∴c 2 -2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解. (2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2 -ac -a=0, ∵a≠0,∴2c 2 -c -1=0, 即(c -1)(2c +1)=0,又c≠1,故c=- 21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则 a -11∈A ,1≠a 且1?A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由. ⑶若a∈A,证明:1- a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

高中数学易错题集锦

高中数学易错题集锦 指导教师:任宝安 参加学生:路栋胡思敏 李梅张大山 ?【例1②×2①×2③+b a 和 993)3(f ∴3 3在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 ●忽视隐含条件,导致结果错误。 【例2】解下列各题 (1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是 思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。 利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα 有的学生一看到4 49 - ,常受选择答案(A )的诱惑,盲从附和,这正是思维缺乏反思性的体现。如

果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。 原方程有两个实根βα、 ∴0)6k (4k 42≥+-=??.3k 2k ≥-≤或 当3≥k 时,22)1()1(-+-βα的最小值是8; 当2-≤k 时,22)1()1(-+-βα的最小值是18 这时就可以作出正确选择,只有(B )正确。 (2)已知(x+2)2+=1,求x 2+y 2的取值范围。 错解∴当分析∴ x 2 【例3错解)2的最小 值是分析2 1 ,第二 原式 由ab ∴原式≥2×17+4=2(当且仅当a=b=2时,等号成立), ∴(a+a 1)2+(b+b 1 )2的最小值是。 ●不进行分类讨论,导致错误 【例4】已知数列{}n a 的前n 项和12+=n n S ,求.n a 错误解法.222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 错误分析显然,当1=n 时,1231111=≠==-S a 。 错误原因:没有注意公式1--=n n n S S a 成立的条件是。

中职数学2.2.1不等式的基本性质

2.2.1不等式的基本性质 【学习目标】: 1.复习归纳不等式的基本性质; 2.学会证明这些性质; 3.并会利用不等式的性质解决一些简单的比较大小的问题。 【学习重点】:不等式性质的证明 【课前自主学习】: 1、数轴上右边的点表示的数总左边的点所表示的数,可知: ? a- > b b a a- = b ? a b ? < a- a b b 结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质: (1)对称性:b a>?; (2)传递性:? b a,; b > >c (3)同加性:? a; >b 推论:同加性:? > a,; b c >d (4)同乘性:? b ,c a, >0 > ,c a; b ? < >0 推论1:同乘性:? ,0d c b a; >0 > > > 推论2:乘方性:? n N a,0; b ∈ > >+ 推论3:开方性:? b n a,0; > ∈ >+ N 【问题发现】:

【问题导学,练习跟踪】: 例1. 用符号“>”或“<”填空,并说出应用了不等式的哪条性质. (1) 设a b >,3a - 3b -; (2) 设a b >,6a 6b ; (3) 设a b <,4a - 4b -; (4) 设a b <,52a - 52b -. 变式练习(1)设36x >,则 x > ; (2)设151x -<-,则 x > . 例2. 已知0a b >>,0c d >>,求证ac bd >. 变式练习:已知a b >,c d >,求证a c b d +>+. 当堂检测: 1.如果b a >,则下列不等式成立的是( ) A.b a 55-<- B.b a > C.bc ac > D.22bc ac > 2.如果0< B.b a > C.b b a 1 1 >- D.22b a > 3.已知b a ,为任意实数,那么( ) A.b a >是的22b a >必要条件 B.b a >是b a -<-11的充要条件 C.b a >是b a >的充分条件 D.b a >是22b a >的必要条件 归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

(完整)高一数学必修一易错题(提高篇)

集合部分错题库 1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个 2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)} 3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a 2 },若A B ,则实数a 的范围为 A.[6,+∞) B.(6,+∞) C.(-∞,-1) D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0

高中数学 不等式的基本性质

高中数学不等式的基本性质不等式的基本性质 1.不等式的定义:a-b0ab,a-b=0a=b,a-b0a ①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 2.不等式的性质: ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1)abb (2)ab,bcac(传递性) (3)aba+cb+c(cR) (4)c0时,abacbc c0时,abac 运算性质有: (1)ab,cda+cb+d。 (2)ab0,cd0acbd。 (3)ab0anbn(nN,n1)。

(4)ab0(nN,n1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ②关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励

高中数学不等式的解法

高中数学不等式的解法 复习目标 1.掌握一元一次不等式(组) ,一元二次不等式,分式不等式,含绝对值的不等式,简单的 无理不等式的解法. 2.会在数轴上表示不等式或不等式组的解集. 3.培养运算能力. 知识回顾 一、一元一次不等式的解法 一元一次不等式 ax b(a 0) 的解集情况是 b b (1)当 a 0 时,解集为 { x | } (2)当 a 0时,解集为 { | } x x x a a 二、一元二次不等式的解法 2 bx c 2 的有 一般的一元二次不等式可利用一元二次方程 ax 0与二次函数 y ax bx c 关性质求解,具体见下表: 2 0 0 0 a 0 , b 4ac 二次函数 y 2 ax b x c 的图象 一元二次方程 有两个相等的实根 有两实根 2 bx c ax 的根 x x 或 1 x x 2 x x 1 x 2 b 2a 无实根 不等式 一 式 元 的 2 bx c ax {x| x x 1或x x 2} { x | x x 1 } R 二 解 次 集 不 的解集 不等式 等 2 bx c ax {x|x 1 x x 2} Φ Φ 的解集

注:1.解一元二次不等式的步骤: (1)把二次项的系数a变为正的.(如果a 0,那么在不等式两边都乘以1,把系 数变为正) 1

(2)解对应的一元二次方程.(先看能否因式分解,若不能,再看△,然后求根)(3)求解一元二次不等式.(根据一元二次方程的根及不等式的方向) 2.当a 0 且0 时,定一元二次不等式的解集的口诀:“小于号取中间,大于号取两边”. 三、含有绝对值的不等式的解法 1.绝对值的概念 a (a 0) a 0 a 0 a a 0 2.含绝对值不等式的解: (1)| x | a(a 0) a x a (2)| x | a(a 0) x a或x a (3)| f (x) | a(a 0) a f (x) a (4)| f (x) | a(a 0) f (x) a或f (x) a 注:当a 0时,| x | a 无解,| x | a的解集为全体实数. 四、一元高次不等式的解法 一元高次不等式 f ( x) 0(或 f (x) 0),一般用数轴标根法求解,其步骤是: (1)将 f ( x) 的最高次项的系数化为正数; (2)将 f ( x) 分解为若干个一次因式的积; (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; (4)根据曲线显现出 f (x) 值的符号变化规律,写出不等式的解集. 如:若a1 a2 3 ,则不等式(x a1)(x a2) (x a n) 0 a a n 或(x 1)(x a ) (x a n ) 0的解法如下图(即“数轴标根法”): a 2 五、分式不等式的解法 ' ' f (x) f ( x) 对于解 a a 或型不等式,应先移项、通分,将不等式整理成 ' g ( x) g'( x)

(完整版)高中数学易错题(含答案)

高中数学易错题 一.选择题(共6小题) 1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5 2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为() A.缺条件,不能求出B.C.D. 3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是() A.3<d<4 B.C.D. 4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于() A.B.C.D. 5.(2009?闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是() A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0 6.(2011?江西模拟)下面命题: ①当x>0时,的最小值为2; ②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条; ③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象; ④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12. 其中正确的命题是() A.①②④B.②④C.②③D.③④ 二.填空题(共10小题) 7.Rt△ABC中,AB为斜边,?=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________. 8.(2011?武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且

相关文档
相关文档 最新文档