文档库 最新最全的文档下载
当前位置:文档库 › 供应与选址 数学模型matlab

供应与选址 数学模型matlab

供应与选址 数学模型matlab
供应与选址 数学模型matlab

供应与选址 数学模型

摘要:本文给出了有关制定某公司每天的供应计划与临时料场选址问题的相应数学规划模型。问题一是一个线性规划问题,在考虑有直线道路连通的情况下,首先建立单目标的优化模型即用到临时料场的模型一,运用lingo 软件编程和处理相关数据,得到最优决策方案,即该公司每天向六个建筑工地运输水泥的供应计划如表1,从而可使得总的吨千米数最小.

问题二是在问题一的基础上建立未用两个临时料场的一个非线性规划模型,保持供应计划不变的情况下,改变临时料场的位置以使吨千米数进一步减少。同样用lingo 软件求解可得当新建的临时料场位于C(6,4),D(7,8)两位置时,节省的吨千米数可达到 30 .

关键字:供应计划 线性规划 非线性规划 吨千米数

一、 问题重述

某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a ,b 表示,距离单位:千米)及水泥日用量d (吨)由下表给出. 目前有两个临时料场位于A (5,1),B (2,7),日储量各有30吨.

(1)试制定每天的供应计划,即从A ,B 两料场分别向各工地运送多少吨水泥,使总的吨千米数最小?

(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,

2.1问题的假设

1、料场与工地之间有直线道路;

2、两料场供应量应与工厂日用量达到平衡;

3、改建后供应计划保持原计划不变;

4、每个工地的位置用平面坐标的形式表示; 2.2问题的的分析:

制定供应计划就是安排从两个料场向六个建筑工地运送水泥的方案,目标是使总的吨千米数最小。 每个工地的位置用平面坐标的形式表示即6个建筑工地位置坐标为(j a ,j b ) (j=1,2,…,6,)(单位:千米),水泥日用量j d (单位:吨),现有A(5,1),B(2,7) 两料场,记(i x ,i

y ),i =(1,2),日储量i e 各有

30吨. 从料场j 向工地i 的运送量为Cij 。

个新的临时料场,日储量各为20吨,求新建的料场的位置,在其它条件不变下使总吨公里数最小,此时节省的吨千米数最大.为此,需建立一个非线形规划模型.

2.3基本符号说明 i :第i 个临时料场;

j :第j 个建筑工地;

j d :工地j 的水泥日用量;

ij

c

:料场i 到工地j 的水泥运输量; ij

r

:料场i 到工地j 的距离;

i

e :料场i 的日储量;

四.模型的建立及求解

4.1.1模型一的建立

使用两个临时料场A(5,1),B(2,7).求从料场i 向工地j 的运送量为Cij ,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,是一个线性规划模型。此时的决策变量为Cij 。 线性规划模型为: 目标函数:

26

11

min ij ij i j c r ==∑∑

其中ij r =

约束条件: s.t

2

6

6

111

ij

j

i j j c d

====∑∑∑

2

611

ij

i

i j c e ==≤∑∑ 其中i

e 为30吨

4.1.2模型一的求解

将已知数据代入模型中,将模型一输入lingo 软件如下: MODEL :

Title Location Problem;

sets :

demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(supply,demand):c; endsets data :

a=1,8,0,5,3,8; b=1,0,4,6,6,7; d=4,6,6,7,8,11; e=30,30; enddata init :

x,y=5,1,2,7; endinit

[OBJ] min =

@sum (link(i,j):

c(i,j)*((x(i)-a(j))^2+(y(i)-b(j))^2)^(1/2) ); @for (demand(j):[DEMAND_CON] @sum (supply(i):c(i,j)) =d(j););

@for (supply(i):[SUPPLY_CON] @sum (demand(j):c(i,j)) <=e(i); );

@for (supply: @bnd (0,X,8); @bnd (0,Y,7); ); END

改建两个新料场,要同时确定料场的位置(xi,yi)和运送量Cij ,在同样条件下使总吨千米数最小。这是非线性规划问题。此时的决策变量是Cij ,Xi ,Yi 。 非线性规划模型为:

目标函数: 2

6

11

min i j c ==∑∑约束条件: s.t

266

11

1

ij

j

i j j c d

====∑∑∑

26

11

ij

i

i j c e ==≤∑∑其中i

e 为20吨

0i

x ≥,0i

y

4.2.2模型二的求解

将模型一求得的供用计划数据代入模型二中,将模型二输入lingo 软件如下:

MODEL :

Title Location Problem; sets :

demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(supply,demand):c; endsets data :

a=1,8,0,5,3,8; b=1,0,4,6,6,7;

d=4,6,6,7,8,11; c=4 6 0 0 0 2 0 0 6 7 8 9 ; e=20,20; enddata init :

x,y=5,1,2,7; endinit

[OBJ] min =

@sum (link(i,j):

c(i,j)*((x(i)-a(j))^2+(y(i)-b(j))^2)^(1/2) ); @for (demand(j):[DEMAND_CON] @sum (supply(i):c(i,j)) =d(j););

@for (supply(i):[SUPPLY_CON] @sum (demand(j):c(i,j)) <=e(i); );

@for (supply: @bnd (0,x,8); @bnd (0,y,7); ); @for (supply: @bnd (0,x,8);@gin (x); @bnd (0,y,7); @gin (y);); END

得出改建新的两料场的位置为(4,6)(7,8),此时节省的最大吨千米数最大89.88349.

五、模型的评价

本文优点是建立了线性和非线性的规划模型,通过lingo 软件进行线性求解,得出各种供应计划方案的最优解;同时也有不足之处,在道路连通方面选取的是直线的特殊情况下来考虑的,另外像在处理供应计划与选址的关系上比较含糊并没有再作出更深入的讨论.

六、参考文献

【1】姜启源、谢金星等,数学模型 ,北京:高等教育出版社, 2007.8. 【2】席少霖等,最优化计算方法,上海:上海科学技术出版社,2003.

【3】谢金星等,优化建模与LINDO/LINGO软件,北京:清华大学出版社,2005.7. 【4】朱道元等. 数学建模案例精选. 科学出版社.版社.

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.wendangku.net/doc/a411638642.html,/journal/mos https://www.wendangku.net/doc/a411638642.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.wendangku.net/doc/a411638642.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/a411638642.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.wendangku.net/doc/a411638642.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

10909-数学建模-应用MATLAB建模的一个例子

应用MATLAB 的一个例子 ——数学也是一门技术 王天顺 整理 本来想用 “数学也是一门技术”作题目,主要是基于两点,一是从数学的应用角度,它的确具备了作为一门技术的特征,这也就是今天我要通过一个例子要表达的;二是咱们在座的大多数都是从事职业教育的老师,不知道我理解得是不是正确,职业教育与普通教育的区别是较为侧重于教授技术,我主观上感觉这个题目和大家的关系更紧密一些。但是,这个题目有点太大了!和领导商量了一下还是换个题目吧。 首先可以证明:数学确是一门技术,比如说要从技术的定义入手,流行的做法是:查查《辞海》,查查相关的如《科学学辞典》和《科技辞典》等等,看看他们是怎样给技术定义的;其次,论述一下数学的确是符合这些定义的。 实际上,我也确实查阅过这些资料,可以说没有问题,一定可以找到证据证明这个论断! 注:“技术”一词的中文解释有两种,一种是以《辞海》为代表的解释,把技术定义为:(1 )泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能;(2)除操作技能外, 广义的还包括相应的生产工具和其他物质设备,以及生产的工艺过程或作业程序、方法。另一种是以《科学学辞典》和《科技辞典》为代表的解释,把技术定义为:是为社会生产和人类物质文化生活需要服务的,供人类利用和改造自然的物质手段、智能手段和信息手段的总和。 可见, “技术”一词所包含的内容除了有形的物化形态之外,还包括无形的智能形态方面。无形的智能形态的技术是客观存在的,在某种意义上说,这方面技术的作用并不亚于物化形态的技术,更不能为物化形态技术所取代(背景资料)。因此,有关“技术”的涵义,有人概括为:指的是有形的物化技术和无形的智能技术的总和。 当然,容易想到我们把数学看作一门技术,可能更多的是从技术的无形“智能形态”角度论述的。我想这只是他的一个方面,今天先给各位介绍的是一个例子,展现他的另一个方面,用数学(包括相关的软件)去解决一个实际问题,其过程就像“传统的”、物化形态的技术一样;其次,结合上述例子,探讨有关数学建模及相关培训指导工作的一般原则和步骤,谈一点个人对此项工作的认识;最后,介绍我校的这些年数学建模培训工作的一些具体做法。 一、足球比赛中的吊门问题 1. 问题:只考虑如下的因素:球与球门的距离为a ,守门员与球门的距离为b (假设在调 门过程中,守门员不能移动),球门高h ,守门员最大摸高H ,球出脚的初速度为0v ,与水平方向的夹角为α(称为初射角).针对下列数据求能吊门成功的α,h=2.44m ,H=3.20m ,s m v /300= ,重力加速度g=10m/s 2,针对下列几组数据分别给出具体能吊门成功的相应初射角范围,要求精度在小数点后第4位。 (1) a=6m ,b=1m ; (2) a=10m ,b=3m ; (3) a=20m ,b=5m ; 2. 问题分析 (1) 在不考虑空气阻力的情况下,抛射体的运动轨迹是抛物线:

matlab数学建模实例

第四周 3. function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度( 分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0)

x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1);

matlab数学建模实例

m a t l a b数学建模实例集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第四周3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0);

k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a));

基于matlab的数学建模

MATLAB在数学建模中的应用 (张威10322010910级专升本电气一班) 摘要 随着社会和计算机技术的发展,数学科学与计算机技术相结合,在社会各领域发挥着越来越重要的作用,能够方便、高效的解决各种实际问题。在目前用于数学建模的软件中,Matlab强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。Matlab是一款非常好的软件,功能强大,应用面广。从实例出发,论述Matlab在数学建模中的应用,以提高对Matlab软件的认识,提高解决实际问题的能力。本文结合数学建模的几个环节,用一些实例阐述了Matlab在数学建模中的应用。将Matlab用于数学建模可以提高数学建模的效率和质量。丰富数学建模的方法和手段,具有重要的意义。 关键词:Matlab软件,数学建模,最优化 Abstract With the development of society and computer technology,mathematics,science and computer technology in all areas of society is playing an increasingly important role,It can easily and efficiently to solve practical problems.In the currently used mathematical modeling software,Matlab powerful numerical calculations,drawings,and a variety of toolbox functions,can quickly and efficiently solve the mathematical modeling involved in many areas of concern,much of those mathematical modeling all ages.Matlab is a very good software,powerful,wide range of applications.Starting from the example,discussed in Matlab in the application of mathematical modeling to improve understanding of the Matlab software,to improve the ability to solve practical problems.In this paper,several aspects of mathematical modeling with Matlab examples described in the application of mathematical modeling.Mathematical modeling of Matlab for mathematical modeling can improve the efficiency and quality.Extensive mathematical modeling methods and means of great significance. Key Words:MATLAB software,Mathematical modeling,Optimization

数学建模matlab例题参考及练习讲课稿

数学建模m a t l a b例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人 通过学习自行进行编程独立完成,所有结果都通过上机验 证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺 不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y = ,2x y =,3x y =,3x y =,x y =的图象. 4. 画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的 奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象.

6. 画出321+=x y 及其反函数的图象. 练习2 函数极限 1. 计算下列函数的极限. (1)x x x 4cos 12sin 1lim 4-+π→. 程序: sym x ; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x ; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3)22)2(sin ln lim x x x -ππ→. 程序: sym x ; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = x x x sec 3 2 ) cos 1 ( lim + π →

(2)MATLAB应用实例分析

Matlab 应用例题选讲 仅举一些运用MATLAB 的例子,这些问题在数学建模中时常遇到,希望能帮助同学们在短时间内方便、快捷的使用MATLAB 解决数学建模中的问题,并善用这一工具。 常用控制命令: clc :%清屏; clear :%清变量; save :%保存变量; load :%导入变量 一、利用公式直接进行赋值计算 本金P 以每年n 次,每次i%的增值率(n 与i 的乘积为每年增值额的百分比)增加,当增加到r ×P 时所花费的时间T 为:(利用复利计息公式可得到下式) ) 01.01ln(ln )01.01(i n r T i P P r nT += ?+=?(12,5.0,2===n i r ) MATLAB 的表达形式及结果如下: >> r=2;i=0.5;n=12; %变量赋值 >> T=log(r)/(n*log(1+0.01*i)) 计算结果显示为: T = 11.5813 即所花费的时间为T=11.5813 年。 分析:上面的问题是一个利用公式直接进行赋值计算问题,实际中若变量在某个范围变化取很多值时,使用MATLAB ,将倍感方便,轻松得到结果,其绘图功能还能将结果轻松的显示出来,变量之间的变化规律将一目了然。 若r 在[1,9]变化,i 在[0.5,3.5]变化;我们将MATLAB 的表达式作如下改动,结果如图1。 r=1:0.5:9; i=0.5:0.5:3.5; n=12; p=1./(n*log(1+0.01*i)); T=log(r')*p; plot(r,T) xlabel('r') %给x 轴加标题 ylabel('T') %给y 轴加标题 q=ones(1,length(i)); text(7*q-0.2,[T(14,1:5)+0.5,T(14,6)-0.1,T(14,7)-0.9],num2str(i')) r T 图1

相关文档
相关文档 最新文档