文档库 最新最全的文档下载
当前位置:文档库 › 一种实用的精密复合式开关稳压电源的研制

一种实用的精密复合式开关稳压电源的研制

一种实用的精密复合式开关稳压电源的研制
一种实用的精密复合式开关稳压电源的研制

一种实用的精密复合式开关稳压电源的研制

[作者:佚名转贴自:未知点击数:17 更新时间:2005-7-28 文章录入:chinlea ]

摘要:介绍一种双路输出的高效、精密、复合式开关稳压电源的设计方法。该电源既具有开关电源的高效,同时又具有线性稳压电源的稳压特性好的特点,因而是一种集开关电源与线性电源优点于一身的较为理想的实用化电源。

关键词:开关电源;复合;低压差线性稳压器;线性电源

当前众多开关稳压电源,虽然体积小,效率高,但输出电压的纹波较大,尤其对于多路输出开关电源,通常不能同时保证多路输出的高稳定性。传统的线性稳压电源输出电压稳定性虽高,但缺点是电源效率低,还必须配备笨重的工频变压器。为此,本文介绍了一种双路输出的复合式开关稳压电源,该电源采用TOPSwitch器件作为前级稳压器,给低压差线性稳压器LT1528提供直流输入电压,然后利用低压差线性稳压器LT1528获得高质量的稳压输出。实验证明该电路具有良好的性能,有很高的实用性。

1 复合式开关电源的设计

复合式开关电源的电路构成框图如图1所示,该电源主要由TOPSwitch器件与低压差线性集成稳压器(LowDropoutRegulator)LT1528CT构成。

1.1 TOPSwitch器件

TOPSwitch系列芯片是PowerIntergretion公司生产的开关电源专用集成电路。TOPSwitch-Ⅱ只有3个引出端,漏极D为主电源输入端、控制端C为控制信号输入端、源极S是电源公共端,也是控制电路的基准点。该芯片将脉宽调制PWM控制系统的全部功能集成到三端芯片中,内部结构功能框图如图2所示,包括脉宽调制器、功率开关场效应管MOSFET、自动偏置电路、护电路、高压启动电路和环路补偿电路等。使用该芯片设计的单端反激式开关电源,电路结构简洁、成本低、且性能非常可靠。

1.2 低压差线性集成稳压器LT1528

低压差集成稳压器是近年来问世的高效率线性稳压集成电路。传统的三端集成稳压器普遍采用电压控制型,为保证稳压效果,输入输出压差一般取2~4 V以上,否则不能正常工作。低压差稳压器采用电流控制型,并且选用低压降的晶体管作为内部调整管,能够把输入输出压差降低到0.6 V以下,大大提高了电源的转换效率。

LT1528是Linear Technology公司生产的一种最大输出电流为3A、具有反向输入保护、过流保护等多种保护功能的可调式低压差线性集成稳压器。图3给出了该器件的电压降与输出电流的关系曲线,由该曲线可以看出对应输出电流为1 A时,LT1528的输入输出压差仅为0.3 V,当电流增大到3 A时,压差也仅为0.6 V。因此LT1528自身具有很小的功耗,为此,选由该器件作为复合式开关稳压电源的线性稳压器。图4给出该芯片5-lead TO-220管脚封装结构示意图。其中VIN和OUTPUT分别为电压输入端和输出端,GND为公共端,SENSE和SHDN分别为调整端和控制端。LT1528的输出电压可调节范围为3.3-14V。该器件的典型应用电路如图5所示,其输出的电压值由式(1)决定,其中V SENSE=3.3V;在25℃时I SENSE=13.μA。

1.3 复合式开关电源电路的设计

图6所示的电路是该复合式开关电源的原理图。固定220 V交流(±15%)输入,双路输出电压+5 V/1.5 A,-5 V/1.5 A,输出功率约为15 W。电路包括输入整流滤波、TOP222脉宽调制、高频变压器、电流反馈、低压差线性稳压、整流滤波输出等几部分。用到了IC1(TOP222),IC2光耦合器(PC81 7A),IC3,IC4(LT1528)四个集成芯片。交流电源经整流滤波后,产生一个大约310 V的直流电压加在变压器初级绕组的一端和TOP222的源极,变压器初级的另一端由TOP222中的高压MOSFET来驱动。VDZ1和VD1用来箝位因变压器漏感引起的前沿电压尖峰。变压器两组副边经整流滤波后分别产生±5.5 V的

输R

5,R

6

取值由式(1)确定。变压器反馈绕组两端电压经整流滤波得到TOP222需要的偏置电压。变压器

第一路输出电压由齐纳二极管VDZ2和光耦中发光二极管取样,光耦的输出晶体管驱动TOP222的控制脚,

通过控制TOP222控制端电流的大小,来调整占空比,从而达到稳压的目的。

在设计印制板时要注意,连接TOP222Y,C

2

高频变压器初级绕组的引线上有高频开关电流通过,因此

上述引线应尽量短,以减小电磁干扰。TOPSwitch的源极必须采用单点接地法,即控制端旁路电容C

12

的负

极、反馈电路的返回端、高压返回端应分开布线,最后在源极管脚处汇合。安全电容C

13

应通过宽而短的印制导线分别接至反馈绕组和次级绕组的返回端。

1.4 高频开关变压器的设计

在单端反激式开关电源中,高频开关变压器既是储能元件又是传递能量的主体,设计难度较大,是一

个十分关键的环节。设计的主要参数包括初级电感量L

P ,变压器变比n,初、次级绕组匝数N

P

,N

S

以及反

馈绕组匝数N

F

等。

1.4.1 选择恰当的磁芯

选用R2KDP锰锌铁氧体材料制成的EE22型铁氧体磁芯。R2KDP属于高频低功耗电源铁氧体材料,该

材料在25℃时饱和磁感应强度B

s =510 mT,在100℃时B

s

=400 mT。EE型磁芯具有价格低廉,磁损耗低,

适应性强等优点。磁芯的截面积A

e 与输出功率P

存在对应关系,当P

=15 W左右时,通常选择A

e

=0.4

1 cm2的EE22型磁芯。

1.4.2 初级电感量L

P

的计算

当电路工作在电流临界连续状态时,初级电感量计算公式如式(2):

其中:输入直流最小电压最大导通时间T

ON =D

max

/f;D

max

是设定的最大占空比,在2

20 V固定输入时,通常取D

max =0.4;开关频率f=100 kHz;η为预测效率值;I

IP

是初级峰值电流,其

表达式为:

考虑到选择电流连续模式能提高多路输出开关电源中TOPSwitch的利用率,因此在上述L

P

计算值的基

础上,适当增大L

P

值,有利于该电源工作在连续模式。

1.4.3 确定变压器各绕组匝数

(1)变压器变比的计算

当TOP222中的MOSFET关断时,储存在变压器初级中的能量开始向次级传递,次级两路绕组的电压V

S1,V

S2

可表示为:

变压器次级电压与输出电压V

的关系为:

其中LT1528输入、输出压差V

Drop 为0.5 V;变压器次级绕组压降V

L

为0.3 V;输出整流肖特基管压降V

F

为0.4 V。

变压器的变比n可表示为:

其中:V

OR =V

IN

×t

on

/t

off

是在TOP222关断期间,初级感应到的电压值。

(2)变压器初级及反馈绕组匝数的计算

其中:单端反激式变压器工作磁通密度ΔB一般取饱和磁通密度值B

S 的一半,即ΔB=B

S

/2。

反馈绕组匝数的计算公式为:

1.4.4 变压器绕制时的注意事项

变压器结构对初级绕组的漏电感有很大影响,漏电感会导致MOSFET关断时产生感应电压。为减小变压器的漏感,可采用三明治绕法把副边夹在原边的中间,或在原边层与层之间加上胶布。另外变压器绕组的顶部互相之间应同轴,以便使耦合最强,减小漏电感。单端反激式变压器的磁芯,通常要加气隙来解决磁通复位的问题,不但可使变压器稳定正常工作,还能增大电源的输橱功率,减小变压器的高频磁芯损耗。

2 实验结果

在额定输入电压AC220 V下,当负载从0变化到额定值,实测电路的负载调整率为S

I =ΔV/V

O

=0.9

6%。在额定负载下,该电源两路输出电压的纹波均在40 mV左右。输出纹波主要由变压器漏感导致的尖峰电压及输出整流管电压所产生,这可以通过优化PCB版的布局,选用反向恢复时间短的整流管等方法来抑制。

3 结语

本文利用TOP222和低压差线性稳压器LT1528器件研制了一种双路输出的复合式开关稳压电源,该电源具有体积小,效率高,输出电压非常稳定,以及负载调整率好的特点。实验表明该电源是一种性能良好的高精度稳压源。

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

开关可调稳压电源的设计与制作

开关可调稳压电源的设计与制作 设计思想: 交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定 设计方案: 方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。 设计原理图如下: 电路原理图如下:

电路仿真结果如下: 各元器件与模块: N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示: DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

一种基于SG3525的半桥高频开关电源

一种基于SG3525的半桥高频开关电源 1. 引言 随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多, 常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中, 变压器初级在整个周期中都流过 电流, 磁芯利用充分,且没有偏磁的问题,所使用的功 率开关管耐压要求较低,开关管的饱和压降减少到了最 小,对输入滤波电容使用电压要求也较低。由于以上诸 多原因, 半桥式变换器在高频开关电源设计中得到广 泛的应用。 2. SG3525芯片的工作原理 PWM控制芯片SG3525 具体的内部引脚结构如图1及 图2所示。其中,脚16 为SG3525 的基准电压源输出, 精度可以达到(5.1±1%)V,采用了温度补偿,而且 设有过流保护电路。脚5、脚6、脚7 内有一个双门限 比较器,内设电容充放电电路,加上外接的电阻电容电 路共同构成SG3525 的振荡器。振荡器还设有外同步输 入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的 反相输入端、同相输入端。该放大器是一个两级差分放 大器,直流开环增益为70dB 左右。根据系统的动态、 静态特性要求,在误差放大器的输出脚9 和脚1 之间 一般要添加适当的反馈补偿网络。图1 SG3525的引脚 图2 SG3525的内部框图

3. 电源系统介绍 本文设计的是250v/3A 的半桥高频开关电源,电路由主电路和控制电路组成。 3.1 主电路结构及其工作原理 半桥式开关电源主电路如图3 所示。图中开关管Q1、Q2 选用MOSFET, 因为它是电压驱动全控型器件,具有驱动电路简单、驱动功率小、开关速度快及安全工作区大等优点。半桥式逆变电路一个桥臂由开关管Q1、Q2 组成, 另一个桥臂由电容C6、C7 组成。高频变压器初级一端接在C6、C7 的中点, 另一端接在Q1、Q2 的公共连接端, Q1、Q2 中点的电压等于整流后直流电压的一半,开关Q1、Q2 交替导通就在变压器的次级形成幅值为V i/2的交流方波电压。通过调节开关管的占空比, 就能改变变压器二次侧整流输出平均电压V o。Q1、Q2断态时承受的峰值电压均为V i,由于电容的隔直作用,半桥型电路对由于两个开关管导通时间不对称而造成的变压器一次电压的直流分量具有自动平衡作用,因此该电路不容易发生变压器偏磁和直流磁饱和的问题,无须另加隔直电容。变压器原边并联的R2、C5组成RC吸收电路,用来吸收高频尖峰。值得注意的是,在半桥电路中,占空比定义为[2]: D=2ton/Ts 3.2 控制电路 控制电路是开关电源的核心部分,控制环节的好坏直接影响电路的整体性能,在这个电路中采用的是以SG3525芯片为核心的控制电路。如图4 所示,采用恒频脉宽调制控制方式。误差放大器的输入信号是电压反馈信号,是由输出电压经分压电路获取,与普通误差放大器的接法不同的是该电压反馈接成射极跟随器形式,反馈信号比较精确,因而可以精确地控制占空比调节输出电压,提高了稳压精度。SG3525芯片振荡频率的设定范围为100~500 kHz, 芯片的脚5 和脚7 间串联一个电阻Rd 就可以在较大范围内调节死区时间。SG3525的振荡频率可表示为[2]: f s =1/(C T (0.7R T + 3R d)) 式中: C T , R T 分别是与脚5、脚6 相连的振荡器的电容和电阻; R d 是与脚7 相连的放电端 电阻值。此处C T 、R T 、R d分别为图中的C53、R47、R48,取值分别为2200p、10k、100,即频率为62khz。管脚8 接一个电容的作用是用来软启动,减少功率开关管的开机冲击。11 和14 脚输出采用图腾柱输出,本电路采用外加驱动隔离电路,增强了驱动能力和电源的可靠性。驱动隔离电路如图5 所示。 保护电路是开关电源中必不可少的补充,在这个电路中采用了输入过流保护、输出过流保护、过热保护等。输入过流保护是通过在原边主电路中串入小磁环,小磁环感应电压输出经

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

稳压电源设计报告1

全国大学生电子设计大赛 稳 压 电 源 设 计 报 告

稳压电源 摘要: 本稳压电源,由变压器次级绕组接入,通过桥式整流和电容滤波,经过 LM7812、LM7912稳压,形成典型的双电源稳压电路,输出±12V 100mA电流。桥式整流后的电压,经过LM2576降压后,输出+5V电压,给后一级的LDO稳压电路供电,AS1117在满载(800mA)时,压差仅1.2V。用+5V供电,可以保证其工作在线性状态,3.3V输出稳定。 关键字: LM7812、LM7912、LM2576、AS1117 Abstract: The regulated power supply, the transformer secondary windings access, through the bridge rectifier and capacitor filter, through the LM7812, LM7912 voltage regulator, the formation of double power supply circuit, the output current of the 100mA + 12V. After the bridge rectifier voltage, through the LM2576 step-down, output +5V voltage, LDO voltage regulator circuit power level to, AS1117 at full load (800mA), pressure difference is only 1.2V. With +5V power supply, can ensure that the work in the linear state, the 3.3V output stability. Keywords: LM7812、LM7912、LM2576、AS1117

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

半桥式开关电源原理

一种基于SG3525的半桥高频开关电源 唐军,尹斌,马利军 河海大学电气工程学院,江苏南京(210098 ) E-mail:jeefrain@https://www.wendangku.net/doc/af11679943.html, 摘 要:文中简要介绍了SG3525芯片的功能及内部结构,介绍了一款基于SG3525芯片的半桥高频开关电源。给出了高频变压器、PWM 控制电路的设计方法,并给出了实验结果。 关键词: SG3525、开关电源、半桥、高频变压器 1. 引言 随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多, 常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中, 变压器初级在整个周期中都流过电流, 磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因, 半桥式变换器在高频开关电源设计中得到广泛的应用。2. SG3525芯片的工作原理 PWM控制芯片SG3525 具体的内部引脚结构如图1及图2所示。其中,脚16 为SG3525 的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。脚5、脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。振荡器还设有外同步输入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器,直流开环增益为70dB 左右。根据系统的动态、静态特性要求,在误差放大器的输出脚9 和脚1 之间一般要添加适当的反馈补偿网络。 图1 SG3525的引脚 1

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

开关电源的基本原理与分类方法

开关电源的基本原理与分类方法 开关电源是指调整功率管以开关方式进行工作的稳压电源。缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模 块化方向发展。开关电源现在在社会上应用越来越广泛,需求也越来越大。 电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的 能量,使得系统或者机器能够正常地工作。电源的好坏直接影响了系统能否正常工作。随着电源的应用和 需求越来越广泛,人们对于电源的要求也越来越高。人们对电源的效率、体积、重量、稳定性和可靠性等 方面都有了更高的要求。 开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效 率低、又笨又重的线性电源。现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。而现代电力电子技术的发展, 特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。人们对于转换效率的不断要求也促使开关电源的开发技术将越来 越高。 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输 出短路保护电路等部分构成。 开关带能源的工作原理: 首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出 部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 常见的开关电源的分类方法有下列几种: 1.按激励方式的不同可以划分为他激式和自激式。他激式开关电源电路中专设激励信号振荡器;自激式开关功率管兼作振荡管。该形式的开关电源电路结构简单, 元器件少, 可以做成低成本的开关电源。 2.按调制方式的不同可以划分为脉宽调制型、频率调整型和混合调整型。脉宽调制型保持振荡频率保 持不变, 通过调节脉冲宽度来改变输出电压的大小;频率调整型保持占空比保持不变(脉冲宽度保持不变) , 通过改变振荡频率来改变输出电压大小;混合调整型是脉冲宽度和振荡频率均可进行调节的开关电源。 3.按开关管电流的工作方式的不同可以划分为开关型和谐振型。开关型用开关晶体管把直流变成高频 标准方波, 其电路形式类似于他激式;谐振型用开关晶体管与LC谐振回路将直流变成标准正弦波, 其电路 形式类似于自激式开关电源。 4.按开关晶体管的类型的不同可以划分为晶体管型和可控硅型。晶体管型采用晶体管(包括场效应管) 作为开关功率管;可控硅型采用可控硅作为开关功率管。这种电路的特点是直接输入交流电压, 不需要一次整流部分。

直流开关电源的分类介绍

直流开关电源的分类介绍 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。 直流DC/DC转换器按输人与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubelTransistor Forward Converter),双管反激式(Double Transistr F1yback Converter)、推挽式 (Push-Pu11 Converter)和半桥式(Ha1f-Bridge Converter)四种。 四管DC/DC转换器就是全桥DC/DC转换器(Fu11-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck) DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC转换器中,Buck和Boost式

高频开关稳压电源的设计

电子设备离不开电源,电源供给电子设备所需要的能量,这就决定了电源在 电子设备中的重要性。电源的质量直接影响着电子设备的工作可靠性,所以电子设备对电源的要求日趋增高。 现有的电源主要由线性稳压电源和开关稳压电源两大类组成。这两类电源由于各自的特点而被广泛应用。线性稳压电源的优点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,是电源的效率大大降低,一般情况均不会超过50%。但它的优良的输出特性,使其在对电源性能要求较高的场合仍得到广泛的应用。相对线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关电源问世以来,由于它的突出优点,使其在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。 本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电 路。 关键词:高频开关稳压电源、SG3525、PWM

1高频开关稳压电源概述 (1) 1.1高频开关稳压电源简介 (1) 1.2高频开关稳压电源的发展状况 (2) 1.3高频开关稳压电源的基本原理 (3) 2设计任务与分析 (4) 2.1任务要求 (4) 2.2任务分析 (4) 3 系统设计方案 (5) 3.1系统总体方案设计 (5) 3.2功率变换器电路设计 (6) 3.2.1全桥功率变换器工作原理 (6) 3.2.2全桥功率变换器控制方式 (7) 3.3控制电路设计 (8) 3.3.1 SG3525结构和功能介绍 (8) 3.3.2控制电路的设计 (9) 3.4驱动电路设计 (10) 3.5辅助电源电路设计 (11) 3.6过流检测及保护电路设计 (13) 3.6.1电力电子器件的缓冲电路 (13) 3.6.2电力电子器件的保护电路 (13) 3.7整流器输出电路设计 (15) 小结与体会 (16) 附录 (18)

开关稳压电源-电力电子毕业设计论文资料

开关稳压电源 摘要:本设计应用隔离型回扫式DC-DC电源变换技术完成开关稳压电源的设计及制作。系统主要由整流滤波电路,DC-DC变换电路,单片机显示与控制电路三部分组成。开关电源的集成控制由脉宽调制控制芯片UC3843及相关电路完成,利用单片机进行D/A转换,完成对输出电压的键盘设定和步进调整,同时由单片机A/D采集数据利用数码管显示出输出电压和电流。系统具有输出电压可调范围宽、噪声纹波电压低和DC-DC变换效率高等特点。此外,该系统还具有过流保护功能,排除过流故障后,电源能自动恢复为正常状态。 关键字:DC- DC,整流滤波,脉宽调制,A/D采集,D/A转换Abstract:The stabilized voltage switching supply is designed and manufactured by DC-DC power transfer with isolation and feedback. The supply includes rectification and filtering circuit, DC-DC transfer unit, controller controlling circuit and liquid crystal display module. The swiching supply is controlled by pulse width modulation IC UC3843. The output voltage can be regulated step by step by a microcontroller, a key and a D/A converter. The output voltage and current of the switching supply are collected by a A/D converter and displayed in Nixie tubes. The switching supply have some advantage such as wide output voltage, low noise ripple, high transfer efficiency. In addition, the swiching supply can realize current foldback. Keyword:DC-DC transfer, rectification and filtering, , microcontroller, A/D collecting dat a,D/A converting 一、方案论证 图1为开关电源系统的结构图,从图中可以看出,系统分为三个部分:电路电源、控制回路和显示设定部分。

开关稳压电源设计word文档

编号:E甲0904 2007全国大学生电子设计竞赛题目E: 《开关稳压电源》 参赛学生:李泉泉、满中甜、董学峰 指导教师:刘晓军、郑亚民、周强 学校:山东大学威海分校 院系:信息工程学院 2007年9月6日

开关稳压电源(E题) 摘要 该电源以单端反激式DC-DC变换器为核心。市电通过自耦式调压器,隔离变压器,整流滤波后产生直流电压,经DC-DC变换得到题目所需输出电压,实现了开关稳压电源的设计。DC-DC变换器采用脉宽调制器(PWM)UC3842,通过调节 在30V~36V范围内可调;微控制器与键盘显示构成了占空因数使得输出电压U O 控制显示模块,能对输出电压进行键盘设定和步进调整,并显示输出电压、电流的测量和数字显示功能,形成了良好的人机界面。 关键词:DC-DC变换器,脉宽调制器(PWM) 1方案论证 1.1DC-DC主回路拓扑 适合本系统的DC-DC拓扑结构为单端反激式DC-DC变换器,利用UC3824芯片作为控制核心,该芯片抗电压波动能力强,并可使负载调整率得到明显改善,而且其频响特性好,稳定裕度大,过流限制特性好,具有过流保护和欠压锁定功能。 1.2控制方法及实现方案 手动输出电压调节采用电位器改变取样回路的上下比电阻比值来改变输出电压,使其满足题目要求,该方案电路结构简单,实现方便。 键盘设定通过单片机改变模拟开关接通通道,选取取样回路的电阻节点位置,改变取样回路的上下比电阻比值来改变输出电压,实现发挥部分的键盘设定功能。 1.3提高效率的方法及实现方案 在DC-DC变换器中,主要消耗功率的元件有主回路的开关管、续流二极管、储能电感等部件。本设计中提高效率的措施主要有: 通过增加电感线径减小电感阻值; 采用低内阻的高效率MOSFET作为主回路的开关元件; 采用高速低正相压降的肖特基二极管降低其功耗。 2电路设计与参数计算 2.1电路整体设计 本设计以DC-DC变换器为核心,辅以隔离变压、整流滤波、控制显示等功能模块,完成开关稳压电源各项功能(见图1 系统框图)。

#24V5A半桥式直流开关电源设计报告

电力电子课程设计报告直流开关电源的设计 学院:信息科学与工程学院专业:电气工程及其自动化班级: 姓名: 学号: 指导教师: 日期:2013年8月21日

目录 1.课题任务介绍 0 1.1 技术参数: 0 1.2 设计要求: 0 2.直流开关电源总体认知 0 2.1开关电源的概念 0 2.2直流开关电源基本结构 0 2.3直流开关电源的工作原理 (1) 3.直流开关电源设计流程 (1) 3.1输入整流电路设计 (1) 3.1.1单相桥式输入整流电路设计 (1) 3.1.2变压器参数计算: (2) 3.1.3整流管参数计算 (2) 3.1.4滤波电容计算 (2) 3.2 DC/DC变换器设计 (2) 3.2.1 DC/DC变换器总体概述 (2) 3.2.2 半桥式DC/DC典型电路如下 (3) 3.2.3 PWM DC/DC变换器的工作原理 (3) 3.2.4 DC/DC变换器参数计算 (4) 3.3输出滤波整流电路设计 (7) 3.3.1输出整流电路图 (7) 3.3.2 输出电感的设计 (8) 3.3.3 输出电容的计算 (9) 3.3.4 整流输出二极管计算 (10) 3.4 驱动电路设计 (10) 3.4.1 MOSFET管的基本工作原理 (10) 3.4.2 IR2110芯片介绍 (12) 3.4.3 半桥驱动电路分析图如下 (13) 3.4.4 半桥驱动器器件参数选择 (15) 3.5 PWM控制电路设计 (15) 3.5.1 PWM控制变换原理 (15) 3.5.2 SG3525的封装图 (16) 3.5.3 SG3525芯片介绍 (17) 3.5.4 SG3525参数计算 (17) 3.6 反馈电路设计 (17) 4. 电路原理图与波形图汇总 (18) 4.1 电路原理图 (18) 4.1.1 主电路原理图 (18) 4.1.2 PWM控制电路原理图 (18) 4.1.3 驱动电路原理图 (19) 4.2 各部分电路波形图 (19) 4.2.1 单相桥式整流电路电压波形图 (19) 4.2.2 MOSFET驱动电路波形 (20) 5. 主电路元器件清单 (20)

UC3842脉宽调制高频开关稳压电源设计正文

目录 第1章概述 (1) 第2章系统总体方案确定 (3) 2.1 工作原理 (3) 2.2 系统组成 (4) 第3章主电路设计 (5) 3.1 主电路的设计 (5) 3.2 主电路元器件的计算及选型 (6) 3.2.1 设计依据主要参数 (6) 3.2.2 高频变压器的选择 (6) 3.2.3 芯片选择 (7) 3.3 主电路保护环节的设计 (8) 第4章控制电路设计与分析 (10) 4.1 降压整流滤波电路 (10) 4.2 PWM脉冲控制驱动电路 (11) 4.3电路输出部分的设计 (13) 第5章实验与仿真 (15) 5.1 仿真电路图 (15) 5.2 实验结果及结论 (16) 第6章总结 (18) 附录 (19)

第1章概述 在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电源产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。 随着半导体技术和微电子的高速发展、集成度高、功能强的大规模集成电路的不断出现,使得电子设备的体积在不断的缩小,重量在不断的减轻。所有从事这方面研究和生产的人们对开关稳压电源中的开关变压器还感到不是十分理想,他们正致力于研制出效率更高、体积更小、重量更轻的开关变压器或者通过别的途径来取代开关变压器,使之能够满足电子仪器和设备为小型化的需要。 开关稳压电源的效率是与开关管的变换速度成正比的,并且开关稳压电源中由于采用了开关变压器以后,才能使之有一组输入得到极性、大小各不相同得多组输出。要进一步提高开关稳压电源的效率,就必须提高电源的工作频率。但是,当频率提高以后,对整个电路中的元件又有了新的要求。例如,高频电容、开关管、开关变压器、储能电感等都会出现新的问题。进一步研制适应高频率工作的有关电路元器件,是从事开关稳压电源研制的科技人员要解决的问题。 工作在线性状态的稳压电源,具有稳压和滤波的双重作用因而串联闲心稳压电源不产生开关干扰,且波纹电压输出较小。但是,在开关稳压电源中的开关管工作在开关状态,其交变电压和

相关文档
相关文档 最新文档