文档库 最新最全的文档下载
当前位置:文档库 › 并联混合型有源滤波器在含分布式电源配网中的控制策略研究

并联混合型有源滤波器在含分布式电源配网中的控制策略研究

并联混合型有源滤波器在含分布式电源配网中的控制策略研究
并联混合型有源滤波器在含分布式电源配网中的控制策略研究

分布式电源并网管理措施分析

分布式电源并网管理措施分析 摘要:应用分布式电源作为节能减排的一项重要内容。为新能源和低碳技术等领域发展提供了契机,分布式电源并网的需求日益增多。本文结合分布式电源并网工作中的一些问题,提出并网管理的具体措施。 关键词:分布式电源;并网;管理措施;分析 分布式电源应用前景广阔,国家陆续出台扶持分布式电源发展的政策,如何将这些扶持政策深入贯彻,更加高效推进分布式电源接入工作,提出符合实际的并网管理措施,将成为供电企业应该重点考虑的课题。 一、分布式电源界定范围 分布式电源是指在用户所在场地或附近建设安装、运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯 级利用多联供设施、包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(舍煤矿瓦斯发电)等。 适用范围。目前有两种类型的分布式电源符合国家政策支持、程序简化的范畴。①l0kV及以下电压等级接入,且单个并网点总装机容量不超过6MW的分布式电源;②以35kV 电压等级接入,年自发自用电量大于50%的分布式电源,或

以l0kV电压等级接入且单个并网点总装机容量超过6MW,年自发自用电量大于50%的分布式电源。 范围适当扩展。由原来的只能以l0kV及以下电压等级接入,且单个并网点不超过6MW的范围,扩展至35kV及以下电压等级接入、以35kV接入,或以l0kV接入且总装机容量超过6MW的分布式电源,其中年自发自用电量大于50%的,才能享受并网更优惠的政策。 自发自用电量大于50%的界定方法。供电企业受理第二类分布式电源时,需要校对自发自用电量比例。具体方法:对于既有用户,根据分布式电源技术特性,估算的年自发自用电量应大于上一年该用户年发电量的50%;对于新报装用户,根据分布式电源技术特性和用户负荷特性,估算的年自发自用电量应大于上一年该用户年发电量的50%。 接入点为公共连接点、发电量全部上网的发电项目,小水电,除上述二类以外的分布式电源项目等其他类型的电源,接入时仍执行常规电源并网有关管理规定。 二、并网管理流程和内容 1.申请和受理。供电企业为分布式电源项目业主提供接入申请受理服务,协助项目业主填写接入申请表,接收相关支撑性材料。 2.接入方案的制定和确认。供电企业受理分布式电源接入申请后,依据分布式电源适用类别按期制定接入方案,并

并联型混合有源滤波器的研究

并联混合型有源电力滤波器的研究随着电力电子装置的大量使用,电力系统的谐波和不对称问题日益严重,由谐波引起的各种故障和事故也不断发生。因此,需要对电网谐波采取有效的抑制措施。通常使用传统LC无源滤波器来控制电力系统中的谐波,但无源滤波器 有以下几个缺点:(1)电源及线路的阻抗影响补偿特性;(2)电源端的阻抗和无源滤波器会产生谐振,导致某些谐波放大;(3)只能补偿一定频率的谐波。电力有源滤波器可以减少上述缺点,但其初期投资运行费用较高,这主要由于它采用响应较快的PWM变流器。目前,谐波抑制的一个重要趋势是采用有源电力滤波器( Active PowerFilter,APF)。APF 是一种可以动态地抑制谐波和补偿无功的电力电子装置,对大小和频率都变化的谐波和无功进行补偿,其应用可克服LC 滤波器等传统的谐波抑制和无功补偿方法的缺点。 并联混合型有源电力滤波器(APF)由两大部分组成:指令电流运算电路和补偿电流发生电路。指令电流运算电路的核心是检测出补偿对象电流中的谐波电流分量,因此也可称为谐波电流检测电路。而补偿电流发生电路又包括电流跟踪电路、驱动电路和主电路三部分。并联混合型有源电力滤波器(APF)的基本原理是:由无源滤波器滤除负载中大部分的谐波,同时将负载和无源滤波器看成一个补偿对象,使用有源滤波器进行动态补偿,有源滤波器检测补偿对象的电压和电流。经指令电流运算电路计算得出指令电流的补偿信号,该信号经补偿电流发生电路放大,得出补偿电流。补偿电流与负载电流要补偿的谐波电流抵消,最终得到期望的电源电流。APF 系统的原理如图1 所示。ua是电压us中的a 相电压,负载为谐波源,产生谐波并消耗无功,Udc为APF 直流侧电容的电压,iL、is分别为负载侧、网侧的a 相待检测电流,ic为有源滤波器a相的补偿电流。 APF 检测补偿对象的电压和电流,计算出补放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波电流抵消,最终得到期望的电源电流。

基于混合储能的可调度型分布式电源控制策略分析

基于混合储能的可调度型分布式电源控制策略分析 发表时间:2016-09-28T10:54:27.820Z 来源:《基层建设》2015年31期作者:杨跃华黄丽杨红[导读] 摘要:随着分布式能源的日益增长,分布式能源对电网的影响日益增加。为了减少分布式能源的不利影响,能源储存系统被广泛使用。本文针对混合储能系统和可再生能源发电机组,设计出了由蓄电池和超级电容器和发电机组的存储系统组成的分布式电源控制策略。 国网绵阳供电公司四川绵阳 621000 摘要:随着分布式能源的日益增长,分布式能源对电网的影响日益增加。为了减少分布式能源的不利影响,能源储存系统被广泛使用。本文针对混合储能系统和可再生能源发电机组,设计出了由蓄电池和超级电容器和发电机组的存储系统组成的分布式电源控制策略。当荷电状态的储能元件不受限制,可再生能源发电系统采用最大功率点跟踪控制的方法,采用低通滤波方法得到的参考功率电池和超级电容器的电压控制的方法,来保证直流母线电压的稳定。 关键词:蓄电池;超级电容器;混合储能系统;可再生能源发电 本文设计了一种用于蓄电池和超级电容器的混合储能系统。系统的状态和存储的能量存储元件是根据分布式发电机组和可再生能源发电机组电源的方案制定的,采用的是电池寿命分布功率控制策略。根据储能元素的状态切换控制的线路电压运行范围,以防止系统传统控制模式切换和蓄电池的暂态冲击。本文还介绍了超级电容器端电压的影响和控制方法。最后,通过EMTDC / PSCAD仿真计算实例,证明了该控制策略的合理性和有效性。 1电源结构设计 基于混合储能的分布式电源拓扑结构。可再生能源发电系统(以下光伏发电系统作为一个例子),蓄电池和超级电容器储能通过换流器将直流/直流转换器并联在直流母线上,这就构成了电源控制直流电源系统,直流电源系统直流/直流交流变流器与电网(或微电网)连接。在直流通过时,光伏发电系统、蓄电池系统及超级电容器协调控制,使得之间的直流母线电压最大化。利用可再生能源发电,优化电池充电和放电过程,达到延长电池使用寿命的目标。根据分布式电源在电网中所承担的不同任务,直流/ 交流变频器的控制可以通过PQ、VF控制,根据系统运行或调度要求参与系统的电压和频率调节。 2本地协调控制器的能量管理策略 2.1 储能装置SOC容量未越限情况下系统的优化控制 根据直流/交流转换器的控制模式,整个分布式供电系统的输出功率是由调度功率指令或电网负荷组成的情况确定的。为了实现充分利用可再生能源的目标,该储能装置当系统不受限制时,光伏系统 MPPT控制混合储能系统承担剩余的因为系统功率不足而产生的问题,例如功率波动和光伏负载。根据混合储能系统蓄电池和超级电容器的特性,从功率的角度来说,按以下原则:超级电容器被假定为采取系统中的波动幅度大的功率尖峰。其长周期寿命、高输出功率的优势,能快速响应电池系统的潜在动力不足等问题,减少小回路充放电,避免过充、放电时产生的问题,延长使用寿命。为了区分混合储能系统输出功率的高低频率组成的不同,提出 1个建议,使用低通滤波器提取的混合输出功率的低频分量,如电池的功率指令。但低通滤波器具有信号衰减和相位延迟的特性,可能会导致超级电容继续充电或放电操作的发生,同时,超级电容器的能量密度很小,这是由滤波算法引起的。超级电容器的功率偏差很容易引起系统的系统性越限,所以本文基于传统的低通滤波算法进行了修改。 2.2储能装置SOC容量越限情况下系统的协调控制 当超级电容器或蓄电池SOC越限时,采用此方法。由于前一个所述控制模式并不能稳定直流母线电压,不能保证系统的正常运行。因此,储能装置的系统芯片系统的控制方式需要改变系统模式。由于电池储能系统难以准确测量,本文该系统的控制方式是:基于直流母线电压的变化情况,控制恒压储能装置。系统状态如果达到上限,仍然继续使用它的稳定系统直流母线电压,只有当直流母线电压上升或下降,超出了正常工作范围,系统监测直流母线电压超出正常控制模式时,就要改变它的的正常运行范围。 2.3 超级电容器端电压预控制 该方法可用于保持直流母线电压的一部分,从而使得整个系统稳定运行。但由于电容器的功率密度很小,其容量很容易达到极限,为了避免系统控制模式之间的频繁切换电池的问题和频繁的工作在恒压控制模式,对电池寿命的不利影响,当直流电源系统正在运行时,采用超级电容端电压控制方法。 3仿真分析 图1光伏系统输出功率 为了验证本文控制算法的有效性,EMTDC仿真软件已建立起来可调度型分布式电源模型,如图2。其中,直流/交流转换器是用于间接控制,其调度功率为40千瓦。可控光伏系统电流源模型,这是采用某检测基地实际光伏系统从9点到15点的光伏发电系统的实际输出测量数据。在仿真模型中,仿真时间是采取理想电压源和电阻串联模型,试验考虑其容量,以满足一天的能源储存在光伏系统释放,其容量设计为750A.h,额定电压为400伏,额定功率为30千瓦。电容器和电容器模型电阻额定功率为40千瓦,能满足最大功率输出的原理,其电容值0.1,根据光伏系统的输出特性,滤波器的时间常数为1,滤波补偿系数调整系数为K = 0.5。

APF有源电力滤波器解读

有源电力滤波器 有源电力滤波器(APF:Active power filter)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源LC滤波器,只能被动吸收固定频率与大小的谐波而言,APF可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵销负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。 中文名有源电力滤波器 所属学科物理 外文名 Active power 所属领域电学 filter 英文简称 APF 种类 并联型和串联型

目录 1、概述 2、理论基础 3、工作原理 4、标准 5、三电平 ?技术优势 ?滤波器 ?基本应用 ?主要应用场合 ?其他 ?优势 6、性能说明 7、配件选型 1、概述 三相电路瞬时无功功率理论是APF发展的主要APF;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。 2、理论基础 有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!实际应用安全系数很低,国际普遍做法是以变压器升压,来保证可靠性,国家相关部

门也要求以变压器升压的形式和有源滤波器结合,治理高压谐波! 3、工作原理 Satons有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的 谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。 这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流

国家电网公司发布《关于做好分布式电源并网服务工作的意见》(修订版)

《关于做好分布式电源并网服务工作的意见》 发布时间:2013-02-28 一、总则 1. 分布式电源对优化能源结构、推动节能减排、实现经济可持续发展具有重要意义。国家电网公司(以下简称公司)认真贯彻落实国家能源发展战略,积极支持分布式电源加快发展,依据《中华人民共和国电力法》、《中华人民共和国可再生能源法》等法律法规以及有关规程规定,按照优化并网流程、简化并网手续、提高服务效率原则,制订本意见。 二、适用范围 2. 本意见所称分布式电源,是指位于用户附近,所发电能就地利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电等类型。 3. 以10千伏以上电压等级接入,或以10千伏电压等级接入但需升压送出的发电项目,执行国家电网公司常规电源相关管理规定。小水电项目按国家有关规定执行。 三、一般原则 4. 公司积极为分布式电源项目接入电网提供便利条件,为接入系统工程建设开辟绿色通道。接入公共电网的分布式电源项目,其接入系统工程(含通信专网)以及接入引起的公共电网改造部分由公司投资建设。接入用户侧的分布式电源项目,其接入系统工程由项目业主投资建设,接入引起的公共电网改造部分由公司投资建设(西部地区接入系统工程仍执行国家现行规定)。 5. 分布式电源项目工程设计和施工建设应符合国家相关规定,并网点的电能质量应满足国家和行业相关标准。 6. 建于用户内部场所的分布式电源项目,发电量可以全部上网、全部自用或自发自用余电上网,由用户自行选择,用户不足电量由电网提供。上、下网电量分开结算,电价执行国家相关政策。公司免费提供关口计量装置和发电量计量用电能表。 7. 分布式光伏发电、风电项目不收取系统备用容量费,其他分布式电源项目执行国家有关政策。 8. 公司为享受国家电价补助的分布式电源项目提供补助计量和结算服务,公司收到财政部门拨付补助资金后,及时支付项目业主。 四、并网服务程序

三相四线并联型有源电力滤波器的结构与工作原理

三相四线并联型有源电力滤波器的结构与工作原理 0 引言 并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨,但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。 1 三相四线并联型有源电力滤波器的结构与工作原理 图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。 图1 三相四线制并联型有源滤波器的结构 以图2的单相控制为例,分析滞环控制PWM调制方式实现电流跟踪的原理。在该控制方式中,指令电流计算电路产生的指令信号ic*与实际的补偿电流信号ic进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路的PWM的信号,此信号再通过死区和驱动控制电路,用于驱动相应桥臂的上、下两只功率器件,从而实现电流ic的控制。 图2 滞环控制PWM调制方式实现电流跟踪的原理图 以图3中A相半桥为例分析电路的工作过程。开关器件S1和S4组成A相的半桥变换器,电容C1和C2为储能元件。uc1和uc2为相应电容上的电压。为了能使半桥变换器正常跟踪指令电流,应使其电压uc1和uc2大于输入电压的峰值。 (a)ica>0,dica/dt>0(b)ica>0,dica/dt<0

(c)ica<0,dica/dt<0(d)ica<0,dica/dt>0 图3 电压型逆变器A相工作过程图 当电流ica>0时,若S1关断,S4导通,则电流流经S4使电容C2放电,如图3(a)所示,同时,由于uc2大于输入电压的峰值,故电流ica增大(dica/dt>0)。对应于图4中的t0~t1时间段。 当电流增大到ica*+δ时(其中ica*为指令电流,δ为滞环宽度),在如前所述的滞环控制方式下,使得电路状态转换到图3(b),即S4关断,电流流经S1的反并二极管给电容C1充电,同时电流ica下降(dica/dt<0)。相对应于图4中的t1~t2时间段。 图4 滞环控制PWM调制器的工作状态 同样的道理可以分析ica<0的情况。通过整个电路工作情况分析,得出在滞环PWM 调制电路的控制下,通过半桥变换器上下桥臂开关管的开通和关断,可使得其产生的电流在一个差带宽度为2δ的范围内跟踪指令电流的变化。 当有源滤波器的主电路采用电容中点式拓扑时,A,B,C三相的滞环控制脉冲是相对独立的。其他两相的工作情况与此相同。 2 滤波电感对补偿精度的影响 非线性负载为三相不控整流桥带电阻负载,非线性负载交流侧电流iLa及其基波分量如图5所示(以下单相分析均以A相为例)。指令电流和实际补偿电流如图6所示。当指令电流变化相对平缓时(如从π/2到5π/6段),电流跟踪效果好,此时,网侧电流波形较好。而当指令电流变化很快时(从π/6开始的一小段),电流跟踪误差很大;这样会造成补偿后网侧电流的尖刺。使网侧电流补偿精度较低。

串联和并联电力滤波器的基本原理

串联和并联电力滤波器的基本原理 谐波是交流系统中的概念,而纹波是针对直流系统来讲的,二者有区别,更有联系。交流滤波,是希望滤除工频(基波)分量以外的所有谐波分量,保证电源的正弦性。交流系统的电流畸变主要是由非线性负载引起的。而直流滤波,是希望滤除负载中直流分量以外的所有纹(谐)波分量,这些纹(谐)波分量主要是由直流电(压)源中的纹波电压分量在负载中引起的。直流系统中的纹波分量也是由各次谐波分量构成的。交流系统和直流系统中抑制谐波的目的是相同的:抑制不希望在电源或负载中出现的谐波分量。直流有源电力滤波器(DCAPF)与交流有源电力滤波器,都是采用主动的而不是被动的方法或手段去吸收或消除谐(纹)波。因而直流有源电力滤波器和交流有源电力滤波器的工作原理是相同或相近的。但是,由于作用的对象不同,直流有源电力滤波器也有自己的特点。与交流有源电力滤波器相似,按照其与直流负载的联结方式,直流有源电力滤波器也可分为串联直流有源电力滤波器和并联直流有源电力滤波器。串联直流有源电力滤波器的工作原理是:检测整流器经平波电抗器(无源滤波器)后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电压,并使与的大小相等,相位相反,从而达到显著减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电压控制电压源(VCVS)的逆变器。采用串联直流有源电力滤波器时,可以不必串联平波电抗器。并联直流有源电力滤波器的工作原理是:检测平波电抗器(无源滤波器)的输出电流Id+ih,通过低通

滤波器将纹波电流ih分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使ih与iah的大小相等,相位相同,从而使直流负载上的纹波电流分流,达到减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电流控制电流源(CCCS)的逆变器。也可以检测整流器经平波电抗器后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使直流负载上的纹波电流分流,同样可以达到降低直流负载中纹波电流的目的。虽然直流有源电力滤波器在理论上不能彻底消除负载端的纹波电流,但可以使其大幅度地衰减。这时,直流有源电力滤波器相当于电压控制电流源(VCCS)的逆变器。串联直流有源电力滤波器所抑制的是纹波电压,它通过全额负载电流。当负载电流较大时,直流有源电力滤波器必须采用多个器件并联运行,损耗也比较大,这是它的缺点。串联直流有源电力滤波器比较适合于对纹波电流要求低的电感量较小或纯阻性的直流负载。并联直流有源电力滤波器通过使谐波源产生的谐波电流分流达到抑制直流负载纹波的目的,它承受全额负载电压。而在稳定/脉冲直流电源中,这个电压不会太高,器件完全能够承受。当纹波电流比较低时,用较小的纹波电流来控制直流有源电力滤波器比较困难,可采用检测纹波电压来控制直流有源电力滤波器,使纹波电流分流。并联直流有源电力滤波器比较适合于电感量较大直流负载。

《分布式电源接入电网技术规定》

《分布式电源接入电网 技术规定》 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

分布式电源接入电网技术规定 (报批稿) 国家电网公司Q/GDW480—2010 1 范围 本规定适用于国家电网公司经营区域内以同步电机、感应电机、变流器等形式接入35kV及以下电压等级电网的分布式电源。 风力发电和太阳能光伏发电并网接入35kV及以下电网还应参照《国家电网公司风电场接入电网技术规定》和《国家电网公司光伏电站接入电网技术规定》执行。 本规定规定了新建和扩建分布式电源接入电网运行应遵循的一般原则和技术要求,改建分布式电源、分布式自备电源可参照本规定执行。 2规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定,但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规定。 GB/T 12325—2008 电能质量供电电压偏差 GB/T 12326—2008 电能质量电压波动和闪变

GB/T 14549—1993 电能质量公用电网谐波 GB/T 15543—2008 电能质量三相电压不平衡 GB/T 15945—2008 电能质量电力系统频率偏差 GB 2894 安全标志及其使用导则 GB/T 14285—2006 继电保护和安全自动装置技术规程DL/T 584—2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 IEC61000-4-30 电磁兼容第4-30部分试验和测量技术-电能质量测量方法 DL/T 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问 Q/GDW 370-2009 城市配电网技术导则 Q/GDW 3382-2009 配电自动化技术导则 IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems 3术语和定义 本规定采用了下列名词和术语。 分布式电源 distributed resources

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

分布式电源并网调度实施细则(讨论稿)

分布式电源并网调度实施细则 (讨论稿) 第一章总则 第一条为支持和适应分布式电源接入电网,规范分布式电源并网调度管理工作,确保电网安全、稳定、可靠运行,依据国家电网公司《关于做好分布式电源并网服务工作的意见》、《关于促进分布式电源并网管理工作的意见》、《分布式电源接入配电网相关技术规范》(国家电网办〔2013〕333号)等相关技术标准和规定,制定本细则。 第二条本细则所称分布式电源是指位于用户附近,所发电能就近利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目;包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电等类型。 对于以10千伏以上电压等级接入、或以10千伏电压等级接入但需升压送出的发电项目,执行公司常规电源相关规定。小水电项目按国家有关规定执行。 第三条本细则适用于公司经营区域内的所有分布式电源并网发电项目。 第二章一般原则 第四条在保障电网安全稳定运行的前提下,调控中心应根据所接入分布式电源的技术特性,及时制、修订相关规程规定。

第五条按照接入电网电压等级,调控中心对分布式电源项目进行并网调度管理。 1.第一类项目:220/380伏接入项目,按相应的电力用户并网管理要求处理。此类项目需定期向调控中心上传发电量信息。 2.第二类项目:10千伏接入项目,按相应的电力用户并网管理要求处理,纳入调度实时监视范围,必要时实施调度控制。此类项目应实时采集并网设备状态、并网点电压、电流、有功功率、无功功率、发电量和开关状态,分布式电源输出电压、电流、有功功率、无功功率、发电量和开关状态,并上传至调控中心。配置遥控装置的项目,应能接收、执行调度端远方解并列、启停机指令。 第六条分布式电源项目的继电保护和安全自动装置应符合相关继电保护技术规程、运行规程和反事故措施的规定,装置定值应与电网继电保护和安全自动装置配合整定。防止发生继电保护和安全自动装置误动、拒动,确保人身、电网和设备安全。 第七条分布式电源项目应具备防孤岛保护功能,能够监测孤岛情况发生并在发生后立即与公用电网断开电气联系。并网不上网的项目应装设防逆流保护装置。 第八条分布式电源项目并网运行信息采集及传输应满足《电力二次系统安全防护规定》等相关制度标准要求。 第三章并网调度管理 第九条调控中心应配合发展、营销部门审查项目10千伏、

并联型有源电力滤波器的Matlab仿真

并联型有源电力滤波器的Matlab仿真 摘要:并联混合型有源电力滤波器能够很好地实现谐波抑制和无功补偿。给出了有源电力滤波器系统结构,建立了数学模型, 还给出了主电路直流侧电容电压值和交流侧电感值的选取方法,利用Matlab\simulink\PsB构建了仿真模型,得到了仿真结果。 关键词:有源电力滤波器;直流侧电容电压;交流测电感:Matlab/simulink Abstract :Shunt hybrid active power filter can commendably achieve hannonic suppression and reactive power compensation.In this paper,it shows the APF’s architecture and sets up amathematical model.And the way ofchoosing the value ofthe main circuit’s voltage ripple of DC side capacitor and the AC side inductance is proposed.MA TLAB\Simulink\PSB is used to build simulation model and then get the simulation results. Key words:APF;V oltage of DC side capacitor;AC side inductance;Matlab/Simulink 引言: 在谐波含量较高的配电网中,对无功功率补偿有着严格的要求。目前电力系统中无功补偿大都是采用机械开关控制的电容器投切,谐波补偿大多采用无源滤波装置,负序治理的工作尚未大范围开展。另外,无功补偿、负序电流补偿、谐波抑制是分别单独地进行的。由于不是按统一的数学模型综合地进行治理,常出现顾此失彼的情况,且响应速度慢、经济性差、安装维护工作量大,妨碍了电网污染治理工作的顺利进行。 1.有源滤波器的发展历史 有源滤波器的思想最早出现于1969年B.M.Bird和J.F.Marsh的论文中。文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。文中所述的方法认为是有源滤波器思想的诞生。1971年日本的H.Sasaki和T.Machida完整描述了有源电力滤波器的基本原理。1976年美国西屋电气公司的L.Gyugyi和E.C.Strycula提出了采用脉冲宽度调制控制的有源电力滤波器,确定了主电路的基本拓扑结构和控制方法,从原理上阐明了有源电力滤波器是一理想的谐波电流发生器,并讨论了实现方法和相应的控制原理,奠定了有源电力滤波器的基础。然而,在20世纪70年代由于缺少大功率可关断器件,有源电力滤波器除了少数的实验室研究外,几乎没有任何进展。进入20世纪80年代以来,新型半导体器件的出现,PWM技术的发展,尤其是1983年日本的H.Akagi等人提出了“三相电路瞬时无功功率理论”,以该理论为基础的谐波和无功电流检测方法在三相有源电力滤波器中得到了成功的应用,极大促进了有源电力滤波器的发展。 与无源滤波器相比,有源滤波器是一种主动型的补偿装置,具有较好的动态性能。有源电力滤波器是近年来电力电子领域的热门话题。目前,有源滤波技术已在日本、美国等少数工业发达国家得到应用,有工业装置投入运行,其装置容量最高可达60MV.A;国内对有源电力滤波器的研究尚处于起步阶段。 2、APF的基本工作原理 有源电力滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置。它能对大小

并联型有源电力滤波器(APF)原理简介及仿真验证

并联型有源电力滤波器(APF)原理简介及仿真验证 概述: 有源电力滤波器(APF)是一种用于动态谐波抑制的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源滤波器(L、LC等)只能被动吸收固定频率与大小的谐波而言。APF 可以通过采样负载电流进行各次谐波的分离,控制输出电流的幅值、频率和相位,并且快速响应,抵消系统中的相应谐波电流,从而实现动态谐波治理。 APF的控制原理为采样负载电流(此电流包含基波与谐波),将此电流与锁相环输出的相位信号一起经过坐标变换后生成负载电流的直流分量,直流分量经过低通滤波器将谐波分量滤除成为基波信号,基波信号再与负载电流相减得到真正的谐波信号,再通过电流内环使APF的输出电流跟踪谐波信号,同时通过电压外环使直流侧电压稳定在给定值,进而生成APF所需要注入的谐波电流,该谐波电流与谐波源的电流相互抵消,从而保证电网侧的电流为纯净的基波电流信号,进而完成滤波任务。 正文: 1.电力系统中的谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶

级数分解,其余大于基波频率的电流产生的电量。电力系统中不存在绝对纯净的电流,一般都是基波+谐波,只是谐波的含量不同而已。 2.谐波治理装置一般包含无源滤波器与有源滤波器。无源滤波器指由R,L,C等无源元器件组成的滤波装置,这些滤波装置的优点在于简单易用,缺点在于效果一般,只能用于特定场合,有些无源装置甚至只能针对某一特定电站。有源滤波器一般指并联型有源电力滤波器(APF),这是一种近年来兴起的滤波装置,具备很多优点,例如快速,稳定,可适时补偿。其缺点也是显著的,例如电力电子器件的有限耐压等级与可承受电流等级低导致其容量无法满足大电站需求,另外成本也是制约其发展的一个瓶颈。 3.有源电力滤波器的原理:有源电力滤波器(APF)是一种用于动态抑制谐波的新型电力电子装置,它能对大小和频率都变化的谐波进行抑制,可以克服LC滤波器等传统的谐波抑制设备不能灵活调节的缺点。 基本原理:

含多种分布式电源的微电网控制策略研究

含多种分布式电源的微电网控制策略研究 发表时间:2017-10-23T16:42:24.367Z 来源:《电力设备》2017年第17期作者:王海龙丁红文 [导读] 摘要:本文对于微电网的并网和孤岛运行还有其运行过程的切换,提供包含多种类型的分布式电源微电网控制方法。采用PSCAD/EMTDC软件对含多种分布式电源的微电网进行仿真分析。仿真结果表明,提出的控制策略能够维持微电网的稳定运行,并能实现微电网并网与孤岛运行方式的平稳过渡。 (国网新疆电力公司电力科学研究院客户服务中心) 摘要:本文对于微电网的并网和孤岛运行还有其运行过程的切换,提供包含多种类型的分布式电源微电网控制方法。采用PSCAD/EMTDC软件对含多种分布式电源的微电网进行仿真分析。仿真结果表明,提出的控制策略能够维持微电网的稳定运行,并能实现微电网并网与孤岛运行方式的平稳过渡。 关键词:分布式电源;微电网控制;策略研究 本文选择微型燃气轮机、燃料电池和光伏发电PV(PhotoVoltaic)作为微电网中的分布式电源,并根据分布式电源的发电特性分别选择了合适的电力电子接口设备,利用PSCAD/EMTDC软件搭建微电网仿真实验平台。在此基础上,对微电网并网及孤岛运行方式的转换进行深入的研究,提出了一种有效的微电网并网与孤岛运行控制策略。仿真实验结果表明:所选电力电子接口设备和采用的控制方法能够很好地配合微型燃气轮机、燃料电池和光伏电池的发电特性;提出的控制策略能够维持微电网的稳定运行,且能实现微电网运行方式的平稳过渡。 一、微电网的结构和组成 微电网的主要结构如下图所示: 在整体控制策略上,采用实验室微电网的分层控制结构。微电网中心控制器MGCC(MicroGridCentralController)和负荷控制器LC (LoadController)、微电源控制器MC(MicrosourceController)间需建立可靠的通信连接。MGCC安装在中压-低压变电站,用来对微电网进行统一的协调控制,并负责微电网与大电网之间的通信与协调;LC和MC从属于MGCC,分别对负荷和微电源进行控制。 二、微电网的综合控制策略 (一)微电网并网运行 当并网运行时,微电网内部的各个分布式电源只需控制功率输出以保证微电网内部的功率平衡,而电压和频率由大电网来支持和调节,此时的逆变器可以采用PQ控制方法,按照设定值提供固定的有功功率和无功功率。在整体控制策略上,微电网并网运行时,MGCC根据大电网的需要、本地负荷情况和分布式电源的发电能力来决定各分布式电源的PQ控制有功功率和无功功率运行点及各负荷的运行状态。然后MGCC将设定的运行点和负荷运行状态传递给相应的MC和LC,MC控制分布式电源逆变器按照设定值输出所需的有功功率和无功功率,LC按照要求调整负荷。 (二)微电网孤岛运行 当微电网孤岛运行时,与大电网的连接断开。此时,需由1个或几个分布式电源来维持微电网的电压和频率,这些分布式电源逆变器可以采用下垂控制方法,其余分布式电源逆变器仍然采用PQ控制方法。下垂控制方法就是使逆变器的输出模拟高压电力系统中同步发电机的频率和端电压与所输出的有功功率和无功功率之间的下垂特性。在低压配电系统中线路的电阻值大于电抗值,但可以通过整体设计使逆变器的输出阻抗呈感性,保证下垂特性成立。 下垂特性可以用式(1)(2)描述: 其中,ki是第i个分布式电源的有功功率下垂控制系数,Δfi和ΔPi分别是第i个分布式电源频率偏移和输出的有功功率偏移,Δf是微电网的频率偏移。

浅谈有源电力滤波器设计

综述 随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。针对10~35kV高压交流电力系统,国内外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。无源电力滤波器具有诸多的缺陷,难以达到理想的性能。受功率半导体开关器件的约束,有源电力滤波器常规技术方案的应用限制在低压交流电力系统。提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。

1 工作原理 1.1 变压器的结构 变压器的结构如图1所示。其一次侧AX与二次侧ax的匝数分别为W1、W2,变比k=W1/W2,一次侧与二次侧的互感为M。一次侧绕组的电阻为r1,自感为L11。变压器采用非晶态合金铁心,为了确保变压器工作在B-H曲线的线性区,铁心开有气隙。利用电压型逆变器向变压器二次侧绕组中注入补偿电流i2且满足i2=-α*∑i1(n)-β*i1(1) 式中:α为谐波补偿系数;∑i1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i1(1)为实时检测的变压器一次侧基波电流。 1.2 谐波抑制原理 从AX端看,变压器n次谐波电压方程为ù1(n)=(r1+jW n L11)/ì1(n)+jW n Mì2(n) 若α满足谐波补偿条件α=L11/M 则从AX端看,变压器对谐波电流的等效阻抗为Z AX(n)=ù1(n)/ì1(n)=r1通常r1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。谐波等效电路如图2所示。

分布式电源的配电网规划与优化运行

分布式电源的配电网规划与优化运行 分布式电源指的是,没有与集中的电力系统进行连接的低等级电源,这种电源在产生电力能源的过程中,主要利用风能和太阳能。在进行分布式电源使用的过程中,会对配电网的建设,产生一定的影响。因此相关的人员必须采用双层规划的方法,对含有分布式电源的配电网进行优化配置,才能保证配电网在运行过程中,更加的安全稳定。在进行电源使用的过程中,会受到环境因素的影响,因为这种电源的特性比较复杂。在进行电源和网架规划协调的过程中,可以提高電力系统的运行稳定性。本文就分布式电源的配电网规划与优化运行进行相关的分析和探讨。 标签:分布式电源;配电网规划;优化运行;分析探讨 在接入分布式电源之后,配电网的控制方式和结构,都会发生相应的变化。随着当前新能源的开发和利用,在进行分布式类型电源应用的过程中,建设的配电网规模变得越来越大。这种电源的应用,会对网络的运行,产生更大的影响。因此在进行电源使用的过程中,必须对电源的应用形式,进行准确的把握,才能对配电网进行优化配置,确保配电网的运行,更加的高效经济。电力企业在进行这种电源应用的过程中,也要采用综合管理方式,对电源的安装进行严格的控制,确保电源的安装,更加的科学合理[1]。 1分布式电源 分布式电源指功率为数千瓦到50MW小型模块式的独立电源,这些电源一般是电力部门、电力用户以及第三方,为了满足高峰期城市居民、商业区居民用电需求,在用户现场或者靠近用户现场安装比较小的发电机组,满足用户用电需求,同时支持现有配电网的运行要求。这种较小的发电机组有燃料电池、小型光伏发电、小型燃气轮机、燃气轮机和燃料电池混合装置。与传统的电源相比,分布式电源可以根据用户实际需求进行建设,降低电网建设的成本。分布式电源各个机组相互独立,可以根据电力用户的实际情况进行调节,一旦发生电力故障,只针对故障发电机组,不会影响到其他发电机组,因此电网运行安全性、可靠性高。其次,分布式电源可以弥补集中式发电的缺陷,为电力用户提供不间断供电。分布式电源的损耗比较低,它不需要建设配电站,避免配电网线路较长,增加线损率。 2分布式电源对配电网规划的影响 2.1配电网规划更加复杂 分布式电源对配电网规划的负荷预测、目标等方面造成一定的影响。对电力负荷预测负荷的影响:分布式电源可以满足部分偏远地区或者商业区用户需求,减少用户从配电网主网中的获电量,从而抵消电网负荷的增长。配电网的电力负荷预测是根据配电网的增长量,如果分布式电源抵消了配电网负荷的增长,

有源滤波器的基本原理

有源滤波器的基本原理 有源滤波器是一种用于动态抑制谐波、补偿无功的电力电子装置,它能对大小和频率都变化的谐波,以及变化无功进行补偿。其应用可克服LC滤波器等传统的谐波抑制和无功补偿的缺点。 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有

源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国内外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感内阻上将产生较大损耗,所以目前较少采用。

2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,

相关文档