文档库 最新最全的文档下载
当前位置:文档库 › 解不等式中的常见错误分析

解不等式中的常见错误分析

解不等式中的常见错误分析
解不等式中的常见错误分析

不等式概念及性质错解档案

同学们由于初学不等式,受以前等式的迁移影响以及对不等式新知识的理解不透,可能会出现这样那样的错误,从而导致学习效率的降低.本文就不等式基础知识中常出现的问题归纳存档,希望帮助大家绕出谜区,走向成功.

档案1:错误理解不等式概念

例1. 下列四个式子中:①0④b y ≤是不等式的有( )

A. ①③

B. ②③④

C. ①②③④

D. ②④ 错解: 选A.

剖析:概念不清致错.要判断一个式子是否为不等式,关键是看这个式子是不是用不等号

连结.常见的不等号有:≠≥≤><、、、、

,所以①②③④都是不等式. 正解:选C.

档案2:忽略“=”的意义 例2.用不等式表示下列语句. (1)m 的2倍不大于n 的

10

1;(2)x 的

3

1与y 的和是非负数.

错解:(1)n m 10

12<;(2)03

1>+y x .

剖析:忽略“=”致错.“不大于”用不等号表示为“≤”,“非负数”表示为“≥”. 正解:(1)n m 10

12≤

;(2)

03

1≥+y x .

档案3:混淆不等式的解与解集

例 3.判断正误:(1)8=x 是16>-x 的解集;(2)3

612

1<-x 的解,所以这个不等式的解集是x <10.

错解:(1)√ (2)√ (3)√.

剖析:同一个不等式的解和解集是不同的,解是指适合不等式的一个数,而解集则是指适合不等式的解的全体.(1)中8=x 是16>-x 的一个解;(2)中3

正解:(1)× (2)× (3)×. 档案4:不明数轴表示的方向与极点

例4.不等式3253-≥-x x 的解集在数轴上表示正确的是( )

A. B.

D.

错解:解不等式,得2

x,所以选B.

剖析:错解的原因是不明解集在数轴上表示的规则.在数轴上表示不等式的解集,应注意:①找准分界点;②方向:大于右拐,小于左拐;③极点:有等是实心点,无等是空心圈.

正解:解不等式,得2

x,所以选D.

档案5:忽视“性质3”的特殊性

例5.解不等式

25

4

5

2

-

>

-x.

错解:不等式两边同除以

5

2

-,得

5

2

>

x.

剖析:不等式两边同除以

5

2

-,根据不等式性质3,不等号方向必须改变,而错解中未改变方向故出错.望大家从等式顺势影响中迅速脱离,铭记不等式性质3的“另类”特色.

正解:不等式两边同除以

5

2

-,得

5

2

<

x.

档案6:粗心大意、马虎了事

例6.请你求出符合解集5

3<

-x的所有整数解的和.

错解:符合解集5

3<

-x的所有整数解是-2,-1,1,2,3,4,5.

剖析:错误原因在于不仔细审题、严密思考,导致错误叠出:①漏掉-3、0,却多了5;

②题目要求是求出符合解集5

3<

-x的所有整数解的和,而非求所有整数解.

正解:符合解集的整数解是-3,-2,-1,0,1,2,3,4. 所有整数解的和为4.

档案7:思维僵化、考虑不周

例7.解关于x的不等式1

)1

(-

>

-a

x

a.

错解:不等式两边同除以1

-

a,得1

>

x.

剖析:对于不等式中未知数的系数1

-

a可能取正数、负数,也可能取0,因此解不等式时,要分类讨论.这也告诫我们:遇有字母系数,务必引起高度重视.

正解:(1)当1

>

a,即0

1>

-

a时,1

>

x;(2)1

=

a,即0

1=

-

a时,不等式变为0

0>,显然不成立,故不等式无解(即空集);(3)当1

<

a,即0

1<

-

a时,1

<

x.

解不等式中的常见错误分析

在批改同学们作业时,发现同学们常出现这样一些错误,现作分析,供参考.

一、性质理解有误.

我们知道,在不等式两边同乘上(约去)一个数或同一个整式,要考察其正负性或是0!它是正的,则不变不等号的方向,而负的要改变不等号的方向.

例1:若a>b,c是不为0的数,则正确的是()

A、ac>bc

B、ac<bc

C、ac2≥bc2

D、(c+1)a>(c+1)b

误:选D.

析与答:c可能是正,亦可能是负,A、B均错.C不一定大于-1,则D亦错.由c2的非负性知C对.

例2:若(a+1)x>a+1的解集是x<1,则a的取值范围是_____________.

误:由题意得(a+1)>0,得a>-1.

析与答:这里要从解集反向推理.我们发现最终不等号改变方向,依据不等式的性质知,必有两边同约去一个负数!得a+1<0,得a<-1.

二:解法有误.

有的同学一元一次方程的解法不熟,从而在解不等式时,也出现错误.

例3:解不等式

44

+

x

<

61

-

x

+1

误:去分母,得3(x+4)<2(x-1)+1……

析与答:在去分母时,不等式中的每一项都要乘以公分母.得3(x+4)<2(x-1)+12得x <-2,

三:对解集的理解有误.

不等式的解集是一组解的集合,在多数情况下有无数个解.在特定的条件下可能是有限个.

例4:不等式2(x-2)≤x-2的非负整数解的个数是___.

误解:2x-4≤x-2 2x-x≤-2+4 x≤2则有无数个解.

析与解:解法正确,但题目中要找非负整数解,而满足x≤2的非负整数解仅有0、1、2三个.

四:数形结合不强.

不等式的解集用数轴来表示时,一要注意曲线的“覆盖”方向,二要注意空心圆圈和实心圆圈的不同.

例5:不等式

5

21x ≥1的解集在数轴上表示正确的是( )

误:解得x ≥2,选A

析与答:这里包含2在内,选C .

一元一次不等式错解“诊断”

解一元一次不等式需要一定的知识基础和方法技巧,初学的同学可能出现一些解题中的错误,为避免出现解不等式中的错误,提高解题能力正确率,现就常见的错误分析如下: 一、 去括号,漏用乘法分配律 例1 解不等式3x +2(2-4x )<19. 错解:去括号,得3x +4-4x <19, 解得x >-15.

诊断:错解在去括号时,括号前面的数2没有乘以括号内的每一项. 正解: 去括号,得3x +4-8x <19,

-5x <15,所以x >-3.

二、去括号时,忽视括号前的负号 例2 解不等式5x -3(2x -1)>-6. 错解:去括号,得5x -6x -3>-6, 解得x <3.

诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号. 正解:去括号,得5x -6x +3>-6, 所以-x >-9, 所以x <9.

三、移项时,不改变符号 例3 解不等式4x -5<2x -9. 错解:移项,得4x +2x <-9-5, 即6x <-14,

所以x <3

7-

诊断:解一元一次不等式中的移项和解一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.

正解:移项,得4x -2x <-9+5, 解得2x <-4, 所以x <-2.

四、去分母时,忽视分数线的括号作用 例4 解不等式72

523>--

x x .

错解:去分母,得6x -2x -5>14, 解得x >

4

19.

诊断:去分母时,如果分母是一个整式,去掉分母后要用括号将分母括起来.错解在去掉分母,忽视了分数线的括号作用. 正解: 去分母,得6x -(2x -5)>14, 去括号,得6x -2x +5>14, 解得x >

4

9.

五、去分母时,漏乘不含分母的项 例5 解不等式x -

3

1-x >

2

x +1

错解:去分母,得x -2(x -1)>3x +1, 去括号,解得x <

4

1.

诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解在只乘了含有分母的项,漏乘了不含有分母的项. 正解:去分母,得6x -2(x -1)>3x +6, 去括号,得6x -2x +2>3x +6, 解得x >4.

六、不等式两边同除以负数,不改变方向 例6 解不等式

35

253

2-<---x x x .

错解:去分母,得5(x -2)-3(5-2x )<15x -45, 去括号整理,得-4x <-20,

解得x <5.

诊断:根据不等式的性质3,不等式两边同除以一个负数时,不等号的方向改变,错解在两边同除以-4时,没有改变方向.

正解: 去分母,得5(x -2)-3(5-2x )<15x -45, 去括号整理,得-4x <-20, 解得x >5.

七、忽视了字母的范围

例7 解关于x 的不等式m (x -2)>x -2. 错解:化简,得(m -1)x >2(m -1),所以x >2.

诊断:错解在默认为m -1>0,实际上,m -1还可能小于或等于0. 正解: 化简,得(m -1)x >2(m -1),

当m -1>0时,x >2;当m -1<0时,m <2;当m -1=0时,无解.

不等式组错例分析

解一元一次不等式组是解一元一次不等式的继续,是后继学习一些相关内容的基础。但是同学们在学习这节时常会出现一些错误,现列出来,希望大家在学习这节时能引以为戒。

一、解不等式组半途而废 例1 解不等式组:??

?+<++>+)

2(6

354)1(3724x x x x

错解:解不等式①得:x<5

1

解不等式②得:x<1

诊断:在解不等式组时,先把每个不等式的解集求出来后,再把它们的解集的公共部分找出来,才得到不等式组的解集,至此这个不等式组才算解完了。这里没有找到不等式组的解集,也就是不等式组没有解完。

正解:解不等式①得:x<

5

1,解不等式②得:x<1,“根据同小取小”,的原不等式组的

解集为x<5

1。

二、不等式组解集表示出错 例2、解不等式组:??

?-<--<-)

2(3636)1(5352x

x x x

错解:解不等式①得:x>0

解不等式②得:x<1,根据“大小小大取中间”,得 原不等式组的解集是:x<0<1

诊断:根据每个不等式的解集,可得两个不等式中未知数取值的公共部分在0与1之间,因此不等式组的解集应写成:0

正解:解不等式①得:x>0

解不等式②得:x<1,根据“大小小大取中间”,得 原不等式组的解集是: 0< x <1。

三、解不等式组与解方程组混淆

例3、解不等式组:?

??≤-≤-0120x x

错解:将两个不等式相加,得x -1≤0,解得1≤x ,∴原不等式组的解集为1≤x 。 诊断:错解是把解不等式组与用加减消元法解方程组混淆了,不等式组的解法是分别求出不等式组中各个不等式的解集,然后求它们的公共部分就是不等式的解集。

正解:解不等式(1),得0≥x ,解不等式(2),得2

1≤

x ,∴原不等式组的解集为

2

10≤≤x 。

四、错误套用不等式的传递性。 例4、解不等式组:??

?-≥++≥-)

2(1274)1(7456 x x x x

错解:由(1)、(2),得1256-≥-x x ,解得1≥x ,∴原不等式组的解集为1≥x 。 诊断:我们可以在1≥x 的条件下,取x =2,将其代入7456+≥-x x ,得157≥,不

成立,所以1≥x 不是原不等式组的解集。造成错误的饿原因是错误套用了不等式的传递性,把原不等式组变形为一个新的不等式时,改变了不等式组的饿解集,应先求出不等式(1)、(2)的解集,然后取其公共部分。

正解:解不等式(1),得6≥x ,解不等式(2),得4-≥x ,根据“同大取大”,得原不等式组的解集为6≥x 。

五、不能准确求解字母的取值范围

例5、关于x 的不等式组???????+<+->+a x x x x 3

2232

15

只有4个整数解,则a 的取值范围是 。

错解:解原不等式组得2132<<-x a ,由题设条件可知2132<<-x a 包含四个整数解,这四个整数解为17,18,19,20,这时a 32-应满足173216<-a <,解得

3

145-

<<-a 。

诊断:错解中遗漏了1632=-a 的情形,我们可以借助数轴直观地确定a 32-的范围,防止遗漏。

正解:解原不等式组得2132<<-x a 由题设条件可知2132<<-x a 包含四个整数解,这四个整数解为17,18,19,20,这时a 32-应满足173216<-≤a 解得3

145-

<≤-a 。

六、不能正确列出不等式

例6、“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源,某荷藕加工企业己收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,每天可加工8吨,每吨可获利1000元,如果进行精加工,每天可加工0.5吨,每吨可获利5000元,由于受设备条件的限制,两种加工方式不能同时进行。为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕。精加工的吨数在什么范围内,该企业加工这批荷藕的获利不低于80000元?

错解:设精加工的吨数为x 吨,则粗加工的吨数为(x -60)吨,加工这批荷藕需要 (

8

605

.0x x -+)天,可获利[()x x -+6010005000]元,由题意得

,??

???<-+>-+)

2(30

8605.0)1(80000)60(10005000x

x x x ,解得5<x <12,

所以精加工的吨数在5<x <12,该企业加工这批荷藕的获利不低于80 000元。 诊断:搞请不等号与一些词语含义的对应关系:如“>”表示大于、高出、多于、超选,“<”表示小于、低于、不足、合算,“≥”表示大于或等于、不少于、不低于、至少“≤” 表示小于或等于、不大于、不超是、至多。

正解:设精加工的吨数为x 吨,则粗加工的吨数为(x -60)吨,加工这批荷藕需要 (

8

605

.0x x -+)天,可获利 [()x x -+6010005000]元,由题意得

()60300.5

8500010006080000x x x x -?+≤?

?? + -≥ ?

,解得125≤≤x 所以精加工的吨数在125≤≤x ,该企业加工这批荷藕的获利不低于80 000元。

一元一次不等式组的解法常考题型讲解

一元一次不等式组的解法 一、知识点复习 1.一元一次不等式组的概念: 几个 一元一次不等式 合在一起就组成一个一元一次不等式组. 2.一元一次不等式组的解集: 一般地,几个不等式的解集的 公共部分 ,叫做由它们组成的不等式组的解集. 2.一元一次不等式组解集四种类型如下表: 二、经典题型分类讲解 题型1:考察一元一次不等式组的概念 1. (2017春雁塔区校级月考)下列不等式组:①???<->32x x ,②???>+>420 x x ,③???>+<+4 2122x x x , ④???-<>+703x x ,⑤? ??<->+010 1y x 。其中一元一次不等式组的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个

题型2:考察一元一次不等式组的解法 2.(2018春天心区校级期末)不等式组?? ???>+≤-6 1213312 x x 的解集在数轴上表示正确的是( ) 3.解下列不等式组,并在数轴上表示解集: ! (1)?? ? ??<--+->++-021331215)1(2)5(7x x x x (2)?????≥-+->-154245 3312x x x x (3)?????≤--+<--+-1213128)3()1(3x x x x (4)?? ? ??< -+≤+321)2(352x x x x —

(5)?????-<+-<-2322125.05.7x x x x (6)?????->≥----62410 2.05.05.04 .073x x x x x ! 4. 解下列不等式21 153 x --< ≤ \

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,)01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

高中数学 考前归纳总结 常见基本不等式的解法

常见基本不等式的解法 一、简单的一元高次不等式的解法:标根法: 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意 奇穿过偶弹回; (3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2 (1)(2)0x x -+≥。(答:{}|12x x x ≥=-或); (2)不等式(0x -的解集是____(答:{}|31x x x ≥=-或); (3)设函数()()f x x ,g 的定义域都是R ,且()0f x ≥的解集为{}|12x x ≤<, ()0g x ≥的解集为?,则不等式()()0f x g x ?>的解集为______ (答:()[),12,-∞+∞U ; (4)要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 的值至少满足 不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是______. (答:81[7,)8 ) 二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子 分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式 不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式25123 x x x -<---(答:()()1,12,3-U ); (2)关于x 的不等式0ax b ->的解集为()1,+∞,则关于x 的不等式 02ax b x +>-的 解集为____________(答:()(),12,-∞-+∞U ). 三、绝对值不等式的解法: (1)零点分段讨论法(最后结果应取各段的并集): 如解不等式312242 x x -++≥(答:x R ∈); (2)利用绝对值的定义;(3)数形结合; 如解不等式13x x +->(答:()(),12,-∞-+∞U ) (4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

(完整版)导数与不等式证明(绝对精华)

二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可. 二级排查:知识积累 利用导数证明不等式,解题技巧总结如下: (1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)多用分析法思考. (3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式. (4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题. (5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来. 三极排查:易错易混 用导数证明数列时注意定义域.

【课堂探究】 一、作差(商)法 例1、证明下列不等式: ①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥ ④1x 1)-2(x ln +≥ x )1(≥x ⑤)2 ,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥证明不等式 例2、已知函数.2 2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值; (2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

比较法证明不等式.

比较法证明不等式 2013-12-07 比较法证明不等式 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a- b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的.正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。 a>b>0,求证:a^ab^b>(ab)^a+b/2 因a^a*b^b=(ab)^ab, 又ab>a+b/2 故a^a*b^b>(ab)^a+b/2 已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4. 用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于-4 下面这个方法算不算“比较法”啊?

不等式证明的常用基本方法(自己整理)

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等 号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2 +1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2 +b 2 -2(a-b-1)=(a-1)2 +(b+1)2 ≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

相关文档
相关文档 最新文档