文档库 最新最全的文档下载
当前位置:文档库 › 细胞外硫氧还蛋白的作用

细胞外硫氧还蛋白的作用

细胞外硫氧还蛋白的作用
细胞外硫氧还蛋白的作用

细胞外硫氧还蛋白的作用

(作者:___________单位: ___________邮编: ___________)

【关键词】硫氧还蛋白;趋化因子;炎症

硫氧还蛋白(thioredoxin,Trx)是具有多种生物学功能的一种小分子蛋白质。它和硫氧还蛋白还原酶及NADPH组成硫氧还蛋白系统,具有抗氧化、促细胞生长、抗细胞凋亡和调节转录因子活性作用。近年研究发现,Trx可以分泌到细胞外,而胞外Trx与许多疾病有关。胞外Trx抑制中性粒细胞到炎症反应部位,抑制促炎因子的表达释放。因此,胞外Trx即可作为一些疾病的标志,同时又具有重要的免疫调节作用。

1Trx的胞外功能

Trx分子量12 kDa,广泛存在于原核生物和真核生物中〔1〕,其活性位点为-Cys-Gly-Pro-Cys-。Trx又称白细胞介素-1样细胞因子、成人T细胞白血病衍化因子和早孕因子。根据Trx的定位,可以将其分为三种:Trx1、Trx2和Trx3。Trx1位于细胞质中,Trx2位于线粒体中,Trx3则主要存在精子细胞的内质网中。Trx还原作用的机制就在于其与底物X-S2结合后还原蛋白底物。因此,当活性中心的

两个半胱氨酸突变成Ser(C32S/C35S),则其还原活性丧失〔2〕。Trx 具有多种生物活性:抗氧化、促生长、抗凋亡和调节转录因子活性〔3〕。Trx还可以分泌到细胞外,并且其细胞外浓度变化与很多疾病有关。

1.1胞外Trx的促细胞生长作用及细胞保护功能

Trx 可以通过非分泌途径到细胞外。Wakasugi等〔4〕研究发现,Trx可以由EB病毒感染的T淋巴细胞分泌,分泌到胞外Trx,有促进细胞生长作用。这种促生长作用依赖于Trx的氧化还原活性。在细胞培养基和血浆中,Trx很容易被氧化。如果没有还原剂(如β-巯基乙醇和DTT)存在的情况下,胞外Trx并不表现出促细胞繁殖作用〔4〕。而且,突变型(C32/C35s)Trx即使在β-巯基乙醇存在下也不能促进细胞生长〔5〕。这些研究表明,细胞外的Trx活性位点和其还原状态对其促进细胞生长作用是必需的。Nakamura等〔6〕发现,胞外Trx能抑制肿瘤坏死因子(TNF)和过氧化氢诱导的细胞损伤及凋亡,同时还可抑制由于氧化应激引起的内源性Trx的分泌〔7〕。胞外Trx的细胞保护作用可能是通过与细胞膜上的靶分子相互作用而实现的,也可能由于胞外的Trx可以进入细胞从而发挥作用〔7〕。

1.2胞外Trx的免疫调节作用

氧化态的胞外Trx可抑制脂多糖(LPS)诱导白介素(IL)-1β的表达和分泌〔8〕;胞外Trx经DTT还原处理后,却可刺激IL-1、IL-6和IL-8的产生〔9〕。这就暗示着,无论胞外的Trx是还原状态还是氧化状态,均具有调节细胞因子的作用。腹腔注射重组人Trx可以减弱博莱霉素或炎症因子IL-2和IL-18引起的间质性肺炎和肺纤维化

〔10〕。在脂多糖兔急性肺损伤模型中,重组Trx的可以抑制中性粒细胞向肺间质中渗入〔11〕,当给予高浓度的重组人Trx时可以抑制中性粒细胞向炎症位点迁移〔12〕。单核细胞催化因子(MCP)-1诱导单核细胞的趋化作用可以被胞外Trx所抑制〔13〕。这些研究结果表明,胞外Trx具有抗炎症和抗趋化的作用。胞外Trx的抗趋化作用似乎并不依赖于其氧化还原形式,因为,无论是氧化态和还原态Trx都具有这种能力。然而,Trx活性中心的改变,则Trx抗趋化减弱。在小鼠air pouch模型中,突变型(C32/C35s)Trx并不能抑制脂多糖引起中性粒细胞的向外迁移〔14〕;MCP-1诱导单核细胞的迁移却能显著地被突变型(C32/C35s)Trx所抑制〔15〕。胞外Trx除了调节细胞因子的分泌和表达外,它还具有调节炎症信号转导过程。研究表明,Trx能抑制P38有丝分裂原蛋白激酶的活性〔14〕;抑制巨噬细胞迁移抑制因子(一种促炎因子)的活性与释放〔16〕;抑制蛋白酶(如ADAM17),从而抑制L-选择蛋白从中性粒细胞表面脱落〔17〕;与补体因子H相互作用,而补体因子H在补体系统的激活过程中起着关键作用〔18〕;此外,胞外Trx还可调节细胞黏附过程〔19〕。

2胞外Trx与几种常见疾病的关系

Trx可以分泌到胞外,因此,可以通过酶联免疫(ELISA)对血浆中Trx含量进行测定。血浆/血清中的Trx含量对各种疾病引起机体的氧化应激水平的变化是一种很好的评价指标。在健康的人体内血浆/血清中Trx含量为10~30 ng/ml,而在氧化应激的患者中Trx的含量达到40~140 ng/ml。Trx的组织水平为0.1~10 μg/ml〔20〕。

2.1胞外Trx与人类免疫缺陷综合征(AIDS)AIDS患者血浆中Trx含量明显增加,并且与细胞内谷胱甘肽(GSH)呈负性相关,从而揭示HIV的感染可引起机体氧化应激〔21〕。在感染HIV的患者血浆中Trx与病人的CD4细胞数(200·μl-1)无明显的相关性,但是随着患者血浆中Trx含量的逐渐升高,患者的病情加剧,并且患者血浆中Trx含量越高,患者预后越差。因此,Trx在AIDS的作用还有待进一步的研究。

2.2胞外Trx与丙型肝炎(HCV)对于HCV,血清中Trx和铁蛋白的水平是衡量干扰素治疗的指标〔22〕。患者血清中Trx和铁蛋白含量越高,就意味着机体的氧化应激状态越严重,对干扰素治疗的抵抗性越强。经放血治疗后,HCV患者血清中的Trx和铁蛋白的含量会下降,此时干扰素治疗的有效性会增强〔23〕。

2.3胞外Trx与癌症在肺癌和胰腺癌患者中,其血清中Trx含量明显增加;而当肿瘤切除后,血清中Trx含量开始下降,揭示癌症病变与血清中Trx有关〔1〕。癌症组织中胞内Trx高含量对抗癌试剂的治疗有明显的抵抗作用。目前,以Trx作为药物靶点开发新型癌症治疗药物正成为研究的热点〔24〕。然而,目前还没有证据表明rhTrx 对癌症细胞的生长有促进作用。在裸鼠肿瘤的移植后加入rhTrx并没有明显地促进肿瘤细胞生长,从这一方面看来,外源rhTrx的加入对机体相对安全。

2.4胞外Trx与急性肺部损伤(ALI)ALI患者中,其血浆和支气管肺泡灌洗液(BAL)中Trx的含量明显增加。通过ELISA检测发现其

BAL中Trx的含量(约为61.6 ng/ml)明显高于对照组(约为16.0 ng/ml),而且患者血浆及其肺巨噬细胞和肺泡Ⅱ型上皮细胞中Trx的含量显著地增加。ALI患者中胞外Trx的水平与IL-8显正相关性,检测胞外Trx的水平可作为ALI患者炎症反应强度的判断指标〔25〕。

2.5胞外Trx与糖尿病的关系葡萄糖耐受不良与Trx的水平相关,在葡萄糖耐受不良患者血浆中Trx的含量(与健康人群相比)出现显著偏高〔26〕。血浆内Trx的含量可以反映2型糖尿病患者体内胰岛素耐受的水平。2型糖尿病患者体内Trx的含量呈现明显增高趋势〔27〕。这些研究表明,Trx在糖尿病的发生发展进程中起着关键的作用,检测血浆内Trx的水平可为糖尿病的治疗提供指导。

2.6胞外Trx与眼病、神经退行性疾病等年龄相关性黄斑变性(AMD)是老龄人口主要致盲原因。脉络膜新生与AMD相关,可导致视力丧失。研究发现,外源Trx的注射可以抑制激光诱发的脉络膜新生〔18〕。在青光眼老鼠模型中,视网膜神经细胞(RGCs)的死亡导致青光眼产生,而Trx的存在对RGCs存活起到了一定的促进作用〔25〕。这些为Trx用于眼病治疗提供了理论依据。老年痴呆患者脑中Trx水平发生显著下降,特别是在杏仁核及海马区域〔28〕。Trx 水平降低可能是由于氧化应激过强造成的耗竭和随之发生的神经元凋亡而引起的。而外源Trx可以抑制β淀粉样蛋白对神经元的毒害〔29〕。

3总结

过去人们认为Trx的氧化还原活性起了主导作用,但是近来研

究发现胞外Trx更重要,胞外Trx具有抗炎症作用,在免疫调节中起重要的作用。在AIDS、丙型肝炎、癌症等中,胞外Trx水平是增加的;而在青光眼、AD等中,胞外Trx的水平却下降,因此,检测硫氧还蛋白的胞外含量可作为判断疾病发生发展进程的一个指标。然而,其变化分子机制还有待进一步阐明。

【参考文献】

1Nakamura H.Thioredoxin and its related molecules:update 2005〔J〕. Antioxidants Redox Signaling,2005;7(5-6):823-8.

2Holmgren A.Thioredoxin structure and mechanism-conformational-changes on oxidation of the active-site sulfhydryls to a disulfide〔J〕. Structure,1995;3(3):239-43.

3Yoshida T,Oka S,Masutani S,et al.The role of thioredoxin in the aging process:Involvement of oxidative stress 〔J〕.Antioxid Redox Signal,2003;5(5):563-70.

4Wakasugi N,Tagaya Y,Wakasugi H,et al.Adult T-cell leukemia-derived factor/thioredoxin,produced by both human T-lymphotropic virus type i- and epstein-barr virus-transformed lymphocytes,acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2〔J〕. Proc Natl Acad Sci U S A,

1990;87(21):8282-6.

5Powis G,Oblong JE,Gasdaska PY,et al.The thioredoxin/thioredoxin reductase redox system and control of cell growth〔J〕.Oncol Res,1994;6(10-11):539-44.

6Nakamura H,Matsuda M,Furuke K,et al.Adult t cell leukemia-derived factor/hu man thioredoxin protects endothelial f-2 cell injury caused by activated neutrophils or hydrogen peroxide 〔J〕.Immunol Lett,1994;42(1-2):75-80.

7Kondo,N,Ishii Y,Kwon YW,et al.Redox-sensing release of human thioredoxinfrom t lymphocytes with negative feedback loops〔J〕.J Immunol,2004;172(1):442-8.

8Billiet L,Furman C,Larigauderie G,et al.Extracellular human thioredoxin-1inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages〔J〕.J Biol Chem,2005;280(48):40310-8.

9Schenk H,Vogt M,Droge W,et al.Thioredoxin as a potent costimulus of cytokine expression〔J〕.J Immunol,1996;156(2):765-71.

10Hoshino T,Nakamura H,Okamoto M,et al.Redox-active protein thioredoxin preve nts proinflammatory cytokine- or bleomycin-induced lung injury〔J〕.Am J Respir Criti Care Med,2003;168(9):1075-83.

11Ueda S,Nakamura T,Yamada A,et al.Recombinant human thioredoxin suppresses lipopolysaccharide-induced bronchoalveolar neutrophil infiltration in rat〔J〕.Life Sci,2006;79(12):1170-7.

12Nakamura T,Hoshino Y,Yamada A,et al.Recombinant human thioredoxin-1 becomesoxidized in circulation and suppresses bleomycin-induced neutrophil recruitment in the rat airway〔J〕. Free Radical Research,2007;41(10):1089-98.

13Pagliei S,Ghezzi P,Bizzarri C,et al.Thioredoxin specifically cross-desensitizes monocytes to mcp-1〔J〕.Eur Cytokine Netw,2002;13(2):261-7.

14Nakamura H,Herzenberg LA,Bai J,et al.Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil

chemotaxis〔J〕.Proc Natl Acad Sci U S A,2001;98(26):15143-8.

15Bizzarri C,Holmgren A,Pekkari K,et al.Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxin〔J〕.Antioxid Redox Signal,2005;7(9-10):1189-94.

16Tamaki H,Nakamura H,Nishio A,et al.Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factorproduction 〔J〕.Gastroenterology,2006;131(4):1110-21.

17Smalley DM,Ley K.L-selectin:Mechanisms and physiological significance of ectodomain cleavage〔J〕.J Cell Mol Med,2005;9(2):255-66.

18Inomata Y,Tanihara H,Tanito M,et al.Suppression of choroidal neovascularization by thioredoxin-1 via interaction with complement factor h〔J〕.Invest Ophthalmol Vis Sci,2008;49(11):5118-25.

19Kondo N,Ishii Y,Kwon YW,et al.Lipid raft-mediated

uptake of cysteine-modified thioredoxin-1:apoptosis enhancement by inhibiting the endogenous thioredoxin-1〔J〕.Antioxid Redox Signal,2007;9(9):1439-48.

20Nakamura H.Extracellular functions of thioredoxin 〔J〕.Novartis Found Symp,2008;291(1):184-92,192-5,221-4.

21Nakamura H,De Ros SC,Yodoi JJ,et al.Chronic elevation of plasma thioredoxin:Inhibition of chemotaxis and curtailment of life expectancy in aids〔J〕.Proceed Nat Academ Sci USA,2001;98(5):2688-93.

22Sumida Y,Nakashima T,Yoh T,et al.Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis c virus infection〔J〕. Hepat oma,2000;33(4):616-22.

23Sumida Y,Nakashima T,Yoh T,et al.Serum thioredoxin elucidates the significance of serum ferritin as a marker of oxidative stress in chronic liver diseases〔J〕.Liver,2001;21(5):295-9.

24Powis G,Kirkpatrick DL.Thioredoxin signaling as a target for cancer therapy〔J〕.Curr Opin Pharmac,2007;7(4):392-7.

25Callister ME,Burke-Gaffney A,Quinlan GJ,et al.Extracellular thioredoxin levels are increased in patients with acute lung injury〔J〕.Thorax,2006;61(6):521-7.

26Miyamoto S,Kawano H,Hokamaki J,et al.Increased plasma levels of thioredoxinin patients with glucose intolerance〔J〕. Int Med,2005;44(11):1127-32.

27Kakisaka Y,Nakashima T,Sumida Y,et al.Elevation of serum thioredoxin levelsin patients with type 2 diabetes〔J〕.Horm Metab Res,2002;34(3):160-4.

28Lovell MA,Xie CS,Gabbita SP,et al.Decreased thioredoxin and increased thioredoxin reductase levels in alzheimer′s disease brain〔J〕. Free Radical Biology and Medicine,2000;28(3):418-27.

29李丽波,刘耕陶.硫氧还蛋白的生物学及其与阿尔茨海默病和帕金森病的关系〔J〕.药学学报,2008;43(1):1-8.

硫氧还蛋白_Trx_的研究进展

分子植物育种,2006年,第4卷,第6(S)期,第78-82页 MolecularPlantBreeding,2006,Vol.4,No.6(S),78-82 专题介绍 Review 硫氧还蛋白(Trx)的研究进展 郑琼马旭俊杨传平* 教育部林木遗传育种与生物技术重点实验室,东北林业大学林木遗传育种省级重点实验室,东北林业大学林学院,哈尔滨,150040 *通讯作者,yangcp@nefu.edu.cn 摘要硫氧还蛋白Thioredoxin(Trx)是一类高度保守的低分子量蛋白质。Trx广泛分布于植物、细菌、酵母和动物中。根据氨基酸序列的不同,Trx分为家族Ⅰ和家族Ⅱ2个家族。根据最初结构的不同,Trx家族Ⅰ又被分为6大类型:h,f,m,o,x和y。不同类型的Trx在不同生物以及细胞内的不同区域分布不同。硫氧还蛋白具有多种生物学功能,对维持体内稳定的氧化还原状态具有重要的作用。Trx具有调节细胞生长、抑制凋亡、调节基因转录等功能。Trx还与植物抗逆性相关,如参与植物抗旱、耐热和抗氧化胁迫过程,调节抗逆基因的表达。因此,我们可以将硫氧还蛋白基因通过转基因技术导入植物体中,在植物遗传性状改良等方面具有广泛的应用前景。本文综述了硫氧还蛋白的类型、组织分布、生物学功能以及与植物抗逆性的关系。 关键词硫氧还蛋白(Trx),氧化还原,抗逆性 FunctionalRolesofThioredoxin(Trx) ZhengQiongMaXujunYangChuanping* LaboratoryofForestryGeneticsandBreedingandBio-technology,KeyLaboratoryofMinistryofEducation,TheProvincialKeyLabofForestryGe-neticsandBreeding,CollegeofForestry,NortheastForestryUniversity,Harbin,150040 *Correspondingauthor,yangcp@nefu.edu.cn AbstractThioredoxin(Trx)isasmallandconservativeprotein.Trxisubiquitouslyfoundinplants,bacteria,yeastsandanimals.Accordingtotheaminoacidsequences,TrxisdividedintofamilyⅠandfamilyⅡ.Accordingtothedifferenceoftheinitialstructure,TrxfamilyⅠisclassifiedinto6groups:h,f,m,o,xandy.DifferentgroupsofTrxexistindifferentorganismsanddifferentapartmentsofacell.Trxhasvariousbiologicalfunctionsinkeepingstableredoxstatusofcells.Trxplayscrucialrolesinregulatingcellgrowth,apoptosisandgenetranscrip-tion.Itisalsoinvolvedinplantstresstoleranceandregulatetheexpressionofstressrelatedgenes.Thestressesin-cludedrought,heatandotherreactiveoxygenstresses.SoweexpectTrxgenecanbefurtherusedinplanttraitmodificationbytransferringthisgeneintoplants.Thispaperreviewedthetype,distributionandbiologicalfunc-tionsofTrxanditsrelationshipwithplantstresstolerance. KeywordsThioredoxin(Trx),Redox,Stresstolerance 硫氧还蛋白(thioredoxin,Trx)是一类分布广泛的低分子量的蛋白质,它们在进化上相当保守,有一个二硫化物活性中心Trp-Cys-Gly-Pro-Cys(CGPC),CGPC中的2个Cys分别为Cys32和Cys35,人和其它哺乳动物Trx还含有另外3个Cys残基,即Cys62、Cys69和Cys73,这些Cys残基能可逆地催化许多氧化还原反应,赋予Trx独特的生物学特性。Trx在其保守的活化区域内含有二硫巯基和二硫键,其氧化还原活性使硫氧还蛋白在细胞内具有各种不同的功能(庄静等,2003,生命的化学,23(3):210-212)。最早被报道的硫氧还蛋白是作为核苷酸还原酶的供体。 硫氧还蛋白系统是由Trx(Trx1、Trx2)、NADPH、TrxR(二硫醇二硫化物氧化还原酶—硫氧还蛋白还原酶)3部分组成的,还原态的Trx通过巯基供氢使其它含二硫键的蛋白被还原;氧化态的Trx被NADPH还原,继续发挥作用。该系统能够稳定细胞内环境,调节细胞生长及信号传导过程来保护细胞不受病毒感染、电离辐射等外界刺激引起的活性氧损害;还能还原DNA合成必需的核糖核苷酸还原酶等多种具有重要功能的蛋白质,对蛋白—蛋白,蛋

吃蛋白粉对身体究竟有什么作用

分离大豆蛋白(Soy Protein Isolate):高品质的蛋白质,不含胆固醇 乳清蛋白(Lactalbumin):含充足的氨基酸,有修补、活化的作用 乳清:提供高品质蛋胺酸,并改变味道,有利于人体吸收 卵磷脂:具抗氧化及乳化作用,使蛋白质粉更易被人体消化和吸收,且有助于蛋白质混合,不易形成胶块,溶解得更快更好 主要功能:蛋白质是人体中最重要的物质,也是最多的物质之一,成人身体中有20%都是由蛋白质所组成的。主要功能有: 修补细胞与建造组织 构成体内所有的细胞和组织 维持细胞的正常功能与新陈代谢 形成酵素系统,维持正常的消化机能 制造血液的运送物质,维持身体的渗透压 胶原蛋白的主要成份 参与人体的七大作用 酶的催化作用 荷尔蒙的调节作用 氧气的运载作用 肌肉的收缩作用 身体的免疫作用 身体的支架作用 体液的中和作用 供给热量:一克蛋白质可生产四千卡热量,一平匙完全蛋白质粉等于一杯牛奶或一个鸡蛋或一两肉所含的蛋白质,蛋胆固醇只是鸡蛋的1/25而已。 适应人群: 想在高脂肪蛋白质以外,以更健康的方法摄取高质量的植物性蛋白质者 日常饮食中,牛奶、肉类、乳酪等蛋白质食物摄取不足者

需要额外补充更多蛋白质者,如儿童、青少年、老年人、孕妇、哺乳期妇女、手术后后患病者等 素食者 用量计算:不同的人因健康状况、年龄、体重等因素而不同。以下是不同年龄的用量指数: 1-3岁:1.80 4-6岁:1.49 7-10岁:1.21 11-14岁:0.99 15-18岁:0.88 19岁以上:0.79 根据年龄找到对应的指数,乘与体重就是每日所需的蛋白质克数。值得注意的是:早餐摄取蛋白质量应占全天的70%,中餐和晚餐只占30%。 完全蛋白质与不完全蛋白质的差别:人体需要九种必须氨基酸: 色胺酸(Tryptophon) 离胺酸(Lysine) 甲硫胺酸(Methionine) 苯丙胺酸(Phenylalanine) 精胺酸(Arginine) 吉胺酸(Valine) 白胺酸(Leucine) 异白胺酸(Isoleucine) 组胺酸(Histidine) 含有九种必须氨基酸的蛋白质称为完全蛋白质。常见的这类食物有:蛋黄、鲜奶、肝脏、瘦肉类以及酵母、核果、黄豆、胚芽等;缺乏某种必须氨基酸的称为不完全蛋白质,如大麦、小麦、谷类、豌豆、玉米等。

蛋白质结构与功能的关系94592

蛋白质结构与功能的关系 (The relationship between protein structure and function) 摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣 Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。 蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。 牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自

硫氧还蛋白氧化还原酶(thioredoxin reductase, TrxR)试剂盒说明书

货号:MS1110 规格:100管/96样 硫氧还蛋白氧化还原酶 (thioredoxin reductase,TrxR)试剂盒说明书 微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: TrxR是一种NADPH依赖的包含FAD结构域的二聚体硒酶,属于吡啶核苷酸-二硫化物氧化还原酶家族成员,与硫氧还蛋白以及 NADPH 共同构成了硫氧还蛋白系统。TrxR与GR活性类似,催化GSSG还原生成GSH,是谷胱甘肽氧化还原循环关键酶之一。 测定原理: TrxR催化NADPH还原DTNB生成TNB和NADP+,TNB在412nm有特征吸收峰,通过测定412nm波长处TNB的增加速率,即可计算TrxR活性。 自备仪器和用品: 低温离心机、可调节移液器、可见分光光度计/酶标仪、微量玻璃比色皿/96孔板、和蒸馏水。 试剂组成和配制: 试剂一:液体×1 瓶,4℃保存。 试剂二:粉剂×1 瓶,4℃避光保存。临用前加入 2mL 蒸馏水溶解。 试剂三:粉剂×1 管,4℃保存。临用前加入 2mL 蒸馏水溶解。 粗酶液提取: 1. 组织:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g 组织,加 入1mL试剂一)进行冰浴匀浆。8000g,4℃离心10min,取上清置冰上待测。 2. 细菌、真菌:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500 万细胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min); 然后8000g,4℃,离心10min,取上清置于冰上待测。 3. 血清等液体:直接测定。 TrxR 测定操作: 1. 分光光度计/酶标仪预热30min,调节波长到412nm,用蒸馏水调零。 2. 试剂一在25℃(一般物种)或者37℃(哺乳动物)预热30min。 3. 空白管:取微量玻璃比色皿或96孔板,加入20μL试剂二,20μL试剂三,160μL试剂一, 迅速混匀后于412nm 测定10s和310s吸光度,记为A1和A2。△A空白管=A2-A1。 4. 测定管:取微量玻璃比色皿或96孔板,加入20μL试剂二,20μL试剂三,140μL试剂一, 20μL上清液,迅速混匀后于412nm测定10s和310s吸光度,记为A3和A4。△A 测定管=A4-A3。注意:空白管只需测定一次。 TrxR 活性计算公式: (1). 按蛋白浓度计算 活性单位定义:在25℃或者37℃中,每毫克蛋白每分钟催化1nmol DTNB还原为1个酶活单位。 TrxR(nmol/min/mg prot)=(△A测定管-△A空白管)÷ε÷d×V反总÷(Cpr×V样)÷T = 147×(△A 测定管-△A 空白管)÷Cpr 第1页,共2页

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

乳清蛋白的作用

乳清蛋白的作用 大家都知道经常的使用蛋白质含量高的食物有益于身体的健康,可以提高自身的免疫能力,预防和减少疾病的发生,不过蛋白质中最为有营养的就是乳清蛋白,乳清蛋白具有容易吸收和脂肪含量低等等特点,适合人群有婴幼儿以及老年人还有经常运动的人群等等,那么乳清蛋白的作用有哪些? 第一,乳清蛋白的作用有哪些?运动营养价值:理想的运动蛋白质应满足这些标准:必需氨基酸和非必需氨基酸之间平衡良好;支链氨基酸含量丰富;脂肪胆固醇含量低。乳清蛋白完全具备了上述优点。 第二,蛋白质消化校对氨基酸评分(pDCAAS)法测定蛋白质质量的原理是基于人体对氨基酸的需求的,其原则是近似的氮组成,必需氨基酸组成与含量及实际消化吸收率。根据这一方法,乳清蛋白的生物利用价值比许多其他高质量的膳食蛋白如蛋、牛肉和大豆都要高。 第三,乳清蛋白与自由基。乳清蛋白中的α-乳白蛋白、牛血清蛋白、乳铁蛋白富含胱氯酸残基,能安全通过消化道和血流,进入细胞膜,还原成两个半胱氨酸,合成GSH,维持细胞和组织GSH水平,从而增强机体抗氧化能力,提高肌肉耐力和作功能力及延缓疲劳的发生。 乳清蛋白的作用有哪些?乳清蛋白与免疫。谷氨酰胺是淋巴细胞和巨噬细胞在免疫反应过程的重要底物,高速利用用谷氨酰胺

生成嘌呤和嘧啶核苷酸有利合成更多的DNA,使免疫细胞增殖加速。长时间大强度运动后期血糖降低,此时谷氨酰胺主要参与糖异生以维持血糖浓度,谷氨酰胺不能满足免疫细胞的需要,这是运动造成机体免疫力下降的士要原因。乳清蛋白富含谷氨酸等谷氨酰胺前体物质,为糖原异生提供原料,维持谷氨酰胺水平,保护免疫细胞功能。此外,乳清蛋白中的乳铁蛋白和球蛋白都具有抗菌和抗病毒作用。

硫氧还蛋白与癌症

硫氧还蛋白与癌症:硫氧还蛋白在肿瘤氧化中的作用 摘要 硫氧还蛋白是一种小型氧化还原调节蛋白,在维持细胞氧化还原体内平衡和细胞存活扮演重要的角色,并且在许多癌症细胞中高度表达。肿瘤环境通常处在有氧应激或缺氧性应激中,两种应激条件下硫氧还蛋白表达都会上调。这些环境存在于肿瘤组织中是因为它们的异常血管网络导致不稳定的氧交换。因此,人类肿瘤的氧化作用模式很复杂,导致缺氧/ 再氧化循环。在致癌机制中,肿瘤细胞在应激细胞死亡中通常变得更加耐缺氧或氧化,大多数关于肿瘤氧化的研究都集中在这两种肿瘤细胞环境。然而,最近的研究表明,低氧循环的发生对肿瘤细胞生理活动的作用比单独的氧化应激或缺氧应激的作用大的多。已经知道硫氧还蛋白在这些细胞反应中扮有重要角色,一些研究也表明硫氧还蛋白是癌症研究进展中的突出贡献者。然而,仅有很少有研究调查在癌细胞中硫氧还蛋白在缺氧和缺氧循环响应条件下的调节。本文着重论述了硫氧还蛋白在各种类型的肿瘤氧化中的作用。 关键词:硫氧还蛋白;肿瘤;缺氧;氧化应激;预处理;缺氧循环 一、引文 氧化应激和缺氧应激的微环境都普遍存在于肿瘤。这些区域往往会产生高水平的抗氧化剂, 特别是硫氧还蛋白 (Trx)系统的成员,越来越多的证据表明,Trx系统在肿瘤的扩增和转移中发挥着重要的作用。本文将重点关注Trx系统在不同氧化水平的肿瘤组织中的参与和调节。 二、氧内稳态 氧体内平衡对好氧生物机体是非常重要的。然而, 在一个细胞中这种平衡会被氧气含量的升高或降低打破。因此,在控制细胞体内平衡中氧气对环境适应性是至关重要的。细胞利用不同的机制来适应升高或降低的细胞含氧量。 有氧生物不断通过几个氧化系统代谢氧气,例如NADPH氧化酶类,黄嘌呤/黄嘌呤氧化酶系统,线粒体呼吸链等。然而,在许多情况下, 氧失去一个电子形成大量的高度活性分子通常称为活性氧(ROS)。ROS包括自由基与未配对电子,比如超氧阴离子自由基、羟基自由基和氧化剂如过氧化氢(H2O2),所有的这些本质上是不稳定的,通常是高活性的。甚至在正常生理条件下细胞内也会产生活性氧分子。 ROS通过参与细胞信号转导和细胞的氧化还原调节扮演一些有益的角色。例如,过氧化氢和过氧化阴离子是活性转录因子的氧化还原调节者,在细胞内信号转导中一些细胞因子和生长因子、荷尔蒙和神经递质采用ROS作为二级信使。另一方面,ROS也可以在细胞造成重大的伤害,比如破坏DNA,脂类物质的氧化,氧化蛋白质中氨基酸分子。为保卫自身,细胞利用几个不同的抗氧化系统。抗氧化剂分子通过阻止或减少ROS氧化目标的氧化抵消ROS过度产生。因此,在正常生理条件下,有氧呼吸细胞的氧化还原(氧化还原)平衡是由ROS和抗氧化剂控调控的。

蛋白质对人体的六大作用

蛋白质对人体的六大作用 2008-3-4 13:34:3 在人体中,蛋白质的主要生理作用表现在六个方面: 1)构成和修复身体各种组织细胞的材料 人的神经、肌肉、内脏、血液、骨骼等,甚至包括体外的头皮、指甲都含有蛋白质,这些组织细胞每天都在不断地更新。因此,人体必须每天摄入一定量的蛋白质,作为构成和修复组织的材料。 2)构成酶、激素和抗体 人体的新陈代谢实际上是通过化学反应来实现的,在人体化学反应的过程中,离不开酶的催化作用,如果没有酶,生命活动就无法进行,这些各具特殊功能的酶,均是由蛋白质构成。此外,一些调节生理功能的激素和胰岛素,以及提高肌体抵抗能力儿保护肌体免受致病微生物侵害的抗体,也是以蛋白质为主要原料构成的。 3)维持正常的血浆渗透压,是血浆和组织之间的物质交换保持平衡 如果膳食中长期缺乏蛋白质,血浆蛋白特别是xx的含量就会降低,血液内的水分便会过多地渗入周围组织,造成临床上的营养不良性水肿。 4)供给肌体能量 在正常膳食情况下,肌体可将完成主要功能而剩余的蛋白质,氧化分解转化为能量。不过,从整个肌体而言,蛋白质的这方面功能是微不足道的。 5)维持肌体的酸碱平衡 肌体内组织细胞必须处于合适的酸碱度范围内,才能完成其正常的生理活动。肌体的这种维持酸碱平衡的能力是通过肺、肾脏以及血液缓冲系统来实现的。蛋白质缓冲体系是血液缓冲系统的重要组成部分,因此说蛋白质在维持肌体酸碱平衡方面起着十分重要的作用。 6)运输氧气及营养物质

血红蛋白可以携带氧气到身体的各个部分,供组织细胞代谢使用。体内有许多营养素必须与某种特异的蛋白质结合,将其作为载体才能运转,例如运铁蛋白、钙结合蛋白、视黄醇蛋白等都属于此类。 蛋白质原料前十位(每100xx) > (99.90xx) (84.10xx) (65.30xx) (64.70xx) (60.00xx) (55.60xx) (54.10xx) (50.20xx) (47.80xx) (47.60xx) 蛋白质菜谱前十位(每100xx) > (84.10xx) (74.22xx) (71.21xx) (66.94xx) (66.03xx)

以多种蛋白为例阐述蛋白质结构与功能的关系

举例说明蛋白质结构和功能的关系 答: 1.蛋白质的一级结构与功能的关系 蛋白质的一级机构指:肽链中氨基酸残基(包括二硫键的位置)的排列顺序。一级结构是蛋白质空间机构的基础,包含分子所有的信息,且决定蛋白质高级结构与功能。 ①一级结构的变异与分子病 蛋白质一级结构是空间结构的基础,与蛋白质的功能密切相关,一级机构的改变,往往引起蛋白质功能的改变。 例如:镰刀形细胞贫血病 镰刀形细胞贫血病的血红蛋白(HbS)与正常人的血红蛋白(HbA)相比,发现,两种血红蛋白的差异仅仅来源于一个肽段的位置发生了变化,这个差异肽段是位于β链N端的一个八肽。在这个八肽中,β链N端第6位氨基酸发生了置换,HbA中的带电荷的谷氨酸残基在HbS中被置换成了非极性缬氨酸残基,即蛋白质的一级机构发生了变化。 ②序列的同源性 不同生物中执行相同或相似功能的蛋白质称为同源蛋白质,同源蛋白质的一级机构具有相似性,称为序列的同源性。最为典型的例子, 例如:细胞色素C(Cyt c) Cyt c是古老的蛋白质,是线粒体电子传递链中的组分,存在于从细菌到人的所有需氧生物中。通过比较Cyt c的序列可以反映不同种属生物的进化关系。亲缘越近的物种,Cyt c中氨基酸残基的差异越小。如人与黑猩猩的Cyt c完全一致,人与绵羊的Cyt c有10个残基不同,与植物之间相差更多。蛋白质的进化反映了生物的进化。 2.蛋白质空间结构与功能的关系 天然状态下,蛋白质的多肽链紧密折叠形成蛋白质特定的空间结构,称为蛋白质的天然构象或三维构象。三维构象与蛋白质的功能密切相关。 ①一级结构与高级结构的关系: 一级结构决定高级机构,当特定构象存在时,蛋白质表现出生物功能;当特定构象被破坏时,即使一级构象没有发生改变,蛋白质的生物学活性丧失。例如:牛胰核糖核苷酸酶A(RNase A)的变性与复性 当RNase A处于天然构象是,具有催化活性; 当RNase A处于去折叠状态时,二硫键被还原不具有催化活性;当RNase A恢复天然构象时,二硫键重新形成,活性恢复。 ②变构效应 变构效应:是寡聚蛋白质分子中亚基之间存在相互作用,这种相互作用通过亚基构象的改变来实现。蛋白质在执行功能是时,构象发生一定变化。 例如:肌红蛋白、血红蛋白与氧的结合 两种蛋白质有很多相同之处,结构相似表现出相似功能。这两钟蛋白质都含有血红素 辅基,都能与氧进行可逆结合,因此存在着氧合与脱氧的两种结构形式。但是肌红蛋白几乎在任何氧分压情况下都保持对氧分子的高亲和性。血红蛋白则不同,在氧分压较高时,血红蛋白几乎被氧完全饱和;而在氧分压较低时,血红蛋白与氧的亲和力降低,释放出携带的氧并转移给肌红蛋白。

硫氧还蛋白还原酶小分子抑制剂的发现及抗肿瘤机制探讨

硫氧还蛋白还原酶小分子抑制剂的发现及抗肿瘤机制探讨 由硫氧还蛋白还原酶(TrxR)、硫氧还蛋白(Trx)和NADPH组成的硫氧还蛋白系统是维持生物体氧化还原平衡和基于氧化还原信号通路调节的关键抗氧化系统。越来越多的证据表明硫氧还蛋白系统与人类许多疾病密切相关。 哺乳动物TrxR蛋白主要以细胞质TrxR1和线粒体TrxR2两种形式存在,它是含有硒代半胱氨酸(Sec)残基的硒黄素酶。TrxRs催化电子从NADPH转移到Trxs 的活性位点进而还原Trxs,而还原态Trxs与下游靶点的相互作用对多种基于氧化还原的细胞内反应进行调控,包括细胞增殖、分化和死亡。 恶性肿瘤细胞的硫氧还蛋白水平通常高于正常细胞,靶向Trx/TrxR系统被认为是阻止肿瘤发展和转移的有效方法。因此,近年来人们一直致力于开发针对TrxR的小分子作为癌症的潜在治疗剂。 虚拟筛选是应用计算机方法从化学数据库中选择目标化合物的策略,其被广泛应用于从百万数量级的类药分子数据库中挑选出潜在的活性候选化合物,相比较于传统的筛选流程可以显著降低研发成本和时间。而基于结构的虚拟筛选(Structure-Based Virtual Screening,SBVS)适用于受体结构已知的情况,首先化合物与前期选择的目标结合位点进行对接,通过对结合模式进行预测,SBVS将对接分子进行排序,排序将作为选择潜在分子的标准,或者与其他评价方法综合使用,然后对所选择的化合物进行实验评价,进而确定它们对分子靶标的生物活性。 本论文运用SBVS策略成功地从天然产物数据库的数十万个分子中发现了新的TrxR抑制剂,该研究充分证明了虚拟筛选策略的高效性和选择性。我们对打分靠前的15个化合物进行了毒活和酶抑制活性测试,测试结果显示化合物6、7、

蛋白质对各类人群的作用

蛋白质对各类人群的作用 一、孕妇应补充蛋白质 妇女在妊娠期身体发生一系列生理变化,蛋白质需要量增加,不仅要维持自身,更要满足胎儿发育的需要,还要在妊娠全过程储存蛋白约910克,以补偿分娩时蛋白质的消耗、产后失血与乳腺分泌。此外哺乳期也应该应补充蛋白质,哺乳母亲在承担分泌乳汁哺育婴儿重担的同时,还要补偿由于妊娠、分娩所损耗的蛋白储备。如蛋白质供给不足,不仅影响母体健康,还会降低乳汁质量,影响婴儿生长发育。蛋白质不足虽然短时间仍有乳汁,但消耗了母体储备甚至母体组织,严重影响母体健康。蛋白质不足,会影响乳汁中蛋白质含量及氨基酸组成,明显减少蛋氨酸,赖氨酸的含量,而胎儿在生长的第三个月,出现脑细胞生长的第二高峰,脑发育的关键取决于母乳的营养,哺乳期间多补充蛋白质对宝宝的智力发育至关重要。 二、儿童应补充蛋白质 儿童处于迅速生长阶段,特别是 4 岁之前大脑的发育正处于关键时期,代谢旺盛,所需热量和营养素相对比成人高。因为生长发育期的儿童不仅需要活动的能量,细胞组织更新的营养素物质,还需要供给身体生长发育的营养素。但幼儿园、学校或家里不能供应营养丰富的食物,儿童又未养成良好的进食习惯,导致蛋白质摄入量较低,应当补充蛋白质。 青少年应补充蛋白质 12—18岁人体进入青春期,此时身高体重增加速度加快,生殖器官逐渐发育成熟,思维能力活跃,记忆力最强,是一生中长身体与长知识的最主要时期。如果摄入蛋白质不足,下丘脑与垂体激素的合成与分泌受限,影响机体的发育成熟。同时中学阶段的学习任务繁重,面对升学,就业的各种压力,蛋白质的需要量也更多。青春期补充蛋白质不仅为激素合成提供优质原料,保证下丘脑与垂体激素的分泌量,促进机体成熟;还为大脑补充氨基酸,提高学习效率,增强记忆,缓解精神紧张等压力,保证顺利而健康地渡过这一时期。 三、中青年人应补充蛋白质 中青年人虽然体质相对强壮,但也要补充蛋白质。这是因为:人体必需的8种氨基酸在体内无法自身合成,需要食物补充,而蛋白质富含8种必需氨基酸食用后可以迅速补充被吸收。中青年人普遍工作压力大,往往无暇顾及自己的营养状况。缺乏营养、亚健康现象比较普遍地存在,他们更需要补充营养,尤其是补充蛋白质。 四、老年人应补充蛋白质 老年人日常胃酸、消化酶减少,食欲与消化吸收能力差,又因为咀嚼困难,限制了食物的食用,导致营养不良或不平衡。老年人体内蛋白质以分解代谢为主,代谢缓慢,由于酶的作用及小肠功能衰退,蛋白质在吸收过程中分解不充分,使体内肽增多,游离氨基酸减少;老年人肾功能低下,影响氨基酸的再吸收,肝功能下降,对肽类的利用也减少,因此氨基酸的消耗增加,要供给老人生物价值高的蛋白质食物,防止由于免疫机能低下导致慢性气管、支气管及其粘膜炎症,肺心

细胞外硫氧还蛋白的作用

细胞外硫氧还蛋白的作用 (作者:___________单位: ___________邮编: ___________) 【关键词】硫氧还蛋白;趋化因子;炎症 硫氧还蛋白(thioredoxin,Trx)是具有多种生物学功能的一种小分子蛋白质。它和硫氧还蛋白还原酶及NADPH组成硫氧还蛋白系统,具有抗氧化、促细胞生长、抗细胞凋亡和调节转录因子活性作用。近年研究发现,Trx可以分泌到细胞外,而胞外Trx与许多疾病有关。胞外Trx抑制中性粒细胞到炎症反应部位,抑制促炎因子的表达释放。因此,胞外Trx即可作为一些疾病的标志,同时又具有重要的免疫调节作用。 1Trx的胞外功能 Trx分子量12 kDa,广泛存在于原核生物和真核生物中〔1〕,其活性位点为-Cys-Gly-Pro-Cys-。Trx又称白细胞介素-1样细胞因子、成人T细胞白血病衍化因子和早孕因子。根据Trx的定位,可以将其分为三种:Trx1、Trx2和Trx3。Trx1位于细胞质中,Trx2位于线粒体中,Trx3则主要存在精子细胞的内质网中。Trx还原作用的机制就在于其与底物X-S2结合后还原蛋白底物。因此,当活性中心的

两个半胱氨酸突变成Ser(C32S/C35S),则其还原活性丧失〔2〕。Trx 具有多种生物活性:抗氧化、促生长、抗凋亡和调节转录因子活性〔3〕。Trx还可以分泌到细胞外,并且其细胞外浓度变化与很多疾病有关。 1.1胞外Trx的促细胞生长作用及细胞保护功能 Trx 可以通过非分泌途径到细胞外。Wakasugi等〔4〕研究发现,Trx可以由EB病毒感染的T淋巴细胞分泌,分泌到胞外Trx,有促进细胞生长作用。这种促生长作用依赖于Trx的氧化还原活性。在细胞培养基和血浆中,Trx很容易被氧化。如果没有还原剂(如β-巯基乙醇和DTT)存在的情况下,胞外Trx并不表现出促细胞繁殖作用〔4〕。而且,突变型(C32/C35s)Trx即使在β-巯基乙醇存在下也不能促进细胞生长〔5〕。这些研究表明,细胞外的Trx活性位点和其还原状态对其促进细胞生长作用是必需的。Nakamura等〔6〕发现,胞外Trx能抑制肿瘤坏死因子(TNF)和过氧化氢诱导的细胞损伤及凋亡,同时还可抑制由于氧化应激引起的内源性Trx的分泌〔7〕。胞外Trx的细胞保护作用可能是通过与细胞膜上的靶分子相互作用而实现的,也可能由于胞外的Trx可以进入细胞从而发挥作用〔7〕。 1.2胞外Trx的免疫调节作用 氧化态的胞外Trx可抑制脂多糖(LPS)诱导白介素(IL)-1β的表达和分泌〔8〕;胞外Trx经DTT还原处理后,却可刺激IL-1、IL-6和IL-8的产生〔9〕。这就暗示着,无论胞外的Trx是还原状态还是氧化状态,均具有调节细胞因子的作用。腹腔注射重组人Trx可以减弱博莱霉素或炎症因子IL-2和IL-18引起的间质性肺炎和肺纤维化

蛋白质的作用(九种作用)

蛋白质 蛋白质的缺乏症 1、体质较弱易生病。 2、儿童和青少年身体发育受阻。 3、抵抗力下降,容易疲劳。 4、消瘦、腹胀水肿、精神呆滞、活动能力不足。 5、孕妇缺乏蛋白质,可影响胎儿的正常发育。 蛋白质的主要食物来源 鱼禽肉蛋提供动物蛋白。 蔬菜、谷物、豆类提供植物蛋白。 蛋白质 蛋白质约占人体重量的20%。 纽崔莱蛋白质粉的特点:一优、二宝、三低、四健康 一优:优质高蛋白蛋白质含量高达百分之九十。 二宝:含卵磷脂(调节大脑功能,调节血脂促进胆固醇的代谢)、异黄酮(植物的雌激素可以调节内分泌、它是双向调节,激素水平应该高的时候它不高,它就能给你调高了。对更年期女性特别有好处。对骨质蔬松、心脑血管疾病有好处,可以调节血脂,有抗氧化作用。 三低:(低脂肪、低胆固醇。低热量)、和它相反就是三高。 四健:对妇女健康、心脏健康、运动健康、抗癌症。 16、什么是优质蛋白质?(1)大豆和动物蛋白。(2)纽崔莱蛋白质粉提供优质高蛋白,一勺可以提供8克人体必须的蛋白质它可以完全被人体吸收。经国家相关部门检验是安全的产品。(3)三低的特点可以让人们以更健康的方式补充蛋白质。动物蛋白质摄入过多会会引起三高,给你带来健康上的隐患。(4)二氧化硅取代磷酸酸钙。它起到抗结块。不含香精、色素、防腐剂。不含乳糖。食物中蛋白质的含量:咱们中国人讲究好吃,什么好吃养 牛肉:100克含20克蛋白质,但长时间的煮蛋白质会大打折扣。 羊肉:100克含13克蛋白质,但胆固醇含量高173毫克,热量也高。 猪肉:100克含蛋白质9.5克,油脂60克。我们吃猪肉多,从来没有关注油的含量,所以心脑血管病的发病率大大提高。 鸡蛋里胆固醇含量特别高。每个鸡蛋含330毫克胆固醇,猪肉里的油专门让鸡蛋里的胆固醇沉积在血管壁上。所以得富裕病的人特别多。主要是营养不均衡造成的。 黄豆里每100克含蛋白质36克,但黄豆里缺蛋氨酸。牛奶里含有蛋氨酸,安利公司把牛奶里的蛋氨酸拿过来,把牛奶里的其它成分去掉。这是最完美的。纽崔莱的蛋白质粉里含有9种必须氨基酸。米面里缺赖氨酸。男人40多岁秃顶,有的人过敏。赖氨酸参与人体胶原蛋白的合成。人体里有100多种蛋白质中有50多种叫胶原蛋白,也就是说人体里能合成的氨基酸加上必须氨基酸组成20几

硫氧还蛋白氧化还原酶(thioredoxin reductase, TrxR)活性测定试剂盒说明书

货号:QS1110 规格:50管/48样硫氧还蛋白氧化还原酶(thioredoxin reductase, TrxR) 活性测定试剂盒说明书 可见分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: TrxR是一种NADPH依赖的包含FAD结构域的二聚体硒酶,属于吡啶核苷酸-二硫化物氧化还原酶家族成员,与硫氧还蛋白以及NADPH共同构成了硫氧还蛋白系统。TrxR与GR活性类似,催化GSSG还原生成GSH,是谷胱甘肽氧化还原循环关键酶之一。 测定原理: TrxR催化NADPH还原DTNB生成TNB和NADP+,TNB在412 nm有特征吸收峰,通过测定412nm 波长处TNB的增加速率,即可计算TrxR活性。 自备实验用品及仪器: 可见分光光度计、低温离心机、可调节移液器、1mL玻璃比色皿和蒸馏水。 试剂组成和配制: 试剂一:液体90mL×1瓶,4℃保存。 试剂二:液体5mL×1瓶,4℃避光保存。 试剂三:粉剂×1瓶,4℃保存。临用前加入5 mL蒸馏水溶解。 粗酶液提取: 1.组织:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g组织,加 入1mL试剂一)进行冰浴匀浆。8000g,4℃离心10min,取上清置冰上待测。 2.细菌、真菌:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500 万细胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心10min,取上清置于冰上待测。 3. 血清等液体:直接测定。 TrxR测定操作: 1. 分光光度计预热30 min,调节波长到412nm,用蒸馏水调零。 2. 试剂一在25℃(一般物种)或者37℃(哺乳动物)预热30min。 3. 测定管:取1mL玻璃比色皿,加入100μL试剂二,100μL试剂三,700μL试剂一,100μL 上清液,迅速混匀后于412 nm测定10 s和310 s吸光度,记为A3和A4。△A测定管=A2-A1。 TrxR活性计算公式: (1). 按蛋白浓度计算 活性单位定义:在25℃或者37℃中,每毫克蛋白每分钟催化1nmol DTNB还原为1个酶活单位。TrxR(nmol/min /mg prot)=△A测定管÷ε÷d×V反总÷(Cpr×V样)÷T = 147×△A测定管÷Cpr (2). 按样本质量计算 活性单位定义:在25℃或者37℃中,每克样本每分钟催化1nmol DTNB还原为1个酶活单位。TrxR(nmol/min /g鲜重)=△A测定管÷ε÷d×V反总÷(W×V样÷V样总)÷T 第1页,共2页

硫氧还蛋白过氧化物酶(thioredoxin peroxidase, TPX)活性测定试

货号:QS1203 规格:50管/24样硫氧还蛋白过氧化物酶(thioredoxin peroxidase,TPX) 试剂盒说明书 紫外分光光度法 注意:正式测定之前选择 2-3个预期差异大的样本做预测定。 测定意义: TPX属于过氧化物酶家族,在体内主要通过还原过氧化氢和一些氢过氧化物来实现抗氧化作用,功能与GPX类似,也是谷胱甘肽氧化还原循环关键酶之一。TPX普遍存在于各种生物体内,如酵母、植物、动物、原生动物、寄生虫、细菌和古细菌,在进化上高度保守。TPX与细胞增殖、分化、细胞凋亡及肿瘤发生调控密切相关。TPX的主要功能包括细胞脱毒、抗氧化和调节由过氧化氢介导的信号转导和免疫反应。 测定原理: TPX催化H 2O 2 氧化二硫苏糖醇(DTT),H 2 O 2 的吸收波长为240nm,通过测定240nm吸光度的 下降速率,通过对照减去过氧化氢酶(CAT)催化分解的H 2O 2 ,即可计算出TPX活性。因此, 本试剂盒可以同时测定样品TPX和CAT活性。 自备实验用品及仪器: 紫外分光光度计、低温离心机、水浴锅、可调节移液器、1mL石英比色皿和蒸馏水 试剂组成和配制: 试剂一:液体×1瓶,室温保存。 试剂二:液体×1瓶,- 20℃保存。 试剂三:液体×1瓶,4℃。 粗酶液提取: 1.组织:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g组织,加 入1mL试剂一)进行冰浴匀浆。8000g,4℃离心10min,取上清置冰上待测。 2.细菌、真菌:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500 万细胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心10min,取上清置于冰上待测。 3.血清等液体:直接测定。 TPX测定操作: 1. 分光光度计预热30min,调节波长到240 nm,蒸馏水调零。 2. 试剂一和试剂二置于25℃(一般物种)或者37℃(哺乳动物)水浴预热30 min。 3. CAT活性测定管:取1mL石英比色皿,加入20 μ L上清液,900 μ L试剂一,80 μ L 试剂三,迅速混匀后于240 nm测定10 s和130 s吸光度,记为A1和A2。 4.总活性测定管:取1mL石英比色皿,加入20 μ L上清液,900 μ L试剂二,80 μ L试剂三,迅速混匀后于240 nm测定10 s和130 s吸光度,记为A3和A4。 注意:每个样品都需要做对照管,以减去过氧化氢酶(CAT)催化降解的H 2O 2。 TPX活性计算公式: 第1页,共2页

关于硫氧还蛋白系统在细胞死亡进程中的作用

关于硫氧还蛋白系统在细胞死亡进程中的作用 概论 意义:硫氧还蛋白(Trx)系统,包括烟酰胺腺嘌呤二核苷酸磷酸,Trx还原酶(TrxR),Trx是维持细胞氧化还原平衡和抗氧化功能的关键,包括控制氧化应激和细胞死亡。最新进展:我们专注于研究Trx系统调控参与细胞凋亡。在哺乳动物细胞中,细胞内的Trx1和线粒体Trx2是主要的二硫化物还原酶为细胞增殖和发育提供电子和酶。减少/硫醇硫氧还结合凋亡信号调节激酶1 (ASK1 )并抑制其活性以防止应力和细胞因子诱导的细胞凋亡。当TRX被氧化,它将解离ASK1并且刺激凋亡。结合抑制Trx的相互作用蛋白(TXNIP )也有助于细胞凋亡的过程通过将ASK1上的TRX移除。TrxRs是一个大的同型二聚体硒蛋白,其整体结构类似于谷胱甘肽还原酶,TrxRs在C-末端还包含活性部位GCUG。关键问题和未来发展方向:在调节细胞死亡过程中TRX氧化还原状态和TrxR的活化是决定细胞命运的关键因素。在TrxRs的SEC的高反应性在反应位置使TrxR 的酶出现作用药物的靶点。通过共价修饰使TrxR失活不仅仅改变TRX的氧化还原状态和活化,而且也使TrxR转换成活性氧发生器。许多电子化合物,包括一些环境毒素和药品可抑制TrxR。这些化合物的分类,分为四种类型,并提出了一些有用的原则,以了解这些化合物对TrxR抑制的反应机理。 序言 蛋白巯基参与许多蛋白质的催化活性并在氧化反应下可能改变二硫化物。该硫醇- 二硫化物的变化可能会影响酶的活性,因此调节细胞功能。硫氧还蛋白(Trx),是一个12 kDa的硫醇蛋白,它从古菌和细菌到人进化上保守,它本身就是维持蛋白质硫醇/二硫化物动态平衡的一个关键因素。Trx与Trx还原酶(TrxR)结合,Trx可以提供电子从烟酰胺腺嘌呤二核苷酸磷酸(NADPH )到关键的细胞蛋白的,因此它参与广泛的细胞功能(图1)。例如,最初发现的Trx由大肠杆菌核糖核苷酸还原酶(RNR )作为电子给体。普遍存在的RNR 催化的从头合成2 '- 脱氧核糖核苷酸其相应的核糖核苷酸和DNA复制和修复是必不可少的。RNR从脊椎动物到大肠杆菌都是有二聚体R1和R2亚基组成的复合物。R2亚基有一个稳定的酪氨酰自由基氧联的铁中心,这是催化反应所必须的。R1亚单位含有一个底物结合部位、一个变构部位、一个二硫醇的活性位点和两条穿梭在C-末端的巯基。在活性位点的二硫醇被转换为二硫化物后引起一个周期的催化反应,但是二硫醇经C-末端巯基通过硫醇-二硫化物交换后减少。相反,在C-末端的二硫化物减少是由Trx或谷氧还蛋白(GRX)。其他已知的TRX底物有广泛分布于各种亚细胞器的过氧还蛋白(Prxs)、Trx依赖的过氧化物酶。这使他们能够清除H2 O2和更具体的控制信号转导。甲硫氨酸- S -亚砜还原酶可以自身催化还原或蛋白结合蛋氨酸亚砜还原为蛋氨酸,它也是Trx的底物。Trx除了是一个二硫键还原酶,它还通过介导蛋白质S- 去亚硝基化参与调控细胞过程中。 Trxs基因在哺乳动物细胞死亡进展中的作用 哺乳动物Trx系统 胞质内Trx1和线粒体内Trx2存在于哺乳动物细胞中,包含有一个活性位点Trp-Cys-Gly-Pro-Cys,在一个表型Trx折叠结构(图2)。人类TRX1与105个氨基酸残基一起,三种结构的Cys残基的位置为62、69和73 ,除了Cys32和Cys35在活化位点。Cys62和Cys69位于Trx- S2 在氧化应激条件下可以形成第二个二 , 硫键(图2)。虽然这两个二硫键形成低表征Trx- S2,但不能直接通过TrxR被减

相关文档
相关文档 最新文档