文档库 最新最全的文档下载
当前位置:文档库 › 自耦变压器

自耦变压器

自耦变压器
自耦变压器

1.1.1自耦变压器概述

1.1.1.1一、二次绕组有共同耦合部分的变压器称为自耦变压器。和普通变压器不同,自耦变压器的绕组之间不仅有磁的联系,还有电的联系。通常,把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组。公共绕组和串联绕组共同组成自耦变压器的高压绕组。自耦变压器常用于高、低电压比较接近的场合,例如连接高电压、大容量且电压等级相差不大的电力系统等。电力系统中,常见的有单相自耦变压器和三相自耦变压器,对于超高压容量很大的自耦变压器,因受运输条件的限制,一般做成单相的。

1.1.1.2设自耦变压器二次侧的功率、电流、电压分别为P2、I2、U2,则功率与电流、电压的关系为:P2=U2I2=U2(I+I1)=U2I+U2I1=Pdc+Pcd (2-4)式中I2=I+I1;P2为二次功率,也是自耦变压器的“额定容量”或叫“通过容量”;Pdc 为电磁功率,也叫自耦变压器的“标准容量”,这部分功率表示通过公共线圈;Pcd为传导功率,通过自耦变压器的串联线圈利用电路直接由一次传到二次侧去的功率。传导功率不需要增加二次线圈的容量。

1.1.1.3自耦变压器铭牌上所标的额定容量,指的是额定“通过容量”,同时也是高压侧串联线圈的额定容量。自耦变压器的“标准容量”总是小于其通过容量,换句话说,用自耦变压器来传输功率时,它本身某部分线圈的容量可以不比其通过容量小。因为变压器的尺寸、重量及铁芯截面是由通过其磁路传输的功率决定的,因此,对于自耦

变压器来说,其尺寸和重量则是由公共线圈的容量,也即由其额定标准容量决定的。

1.1.1.4自耦变压器在运行上的一个主要特点就是:当高压侧发生单相接地时,所产生的过电压会通过电气联系传递到中压侧,因而变压器的中性点必须直接接地,以限制过电压的幅值。同时在变压器的出口安装避雷器作为保护措施。

1.1.1.5自耦变压器通常采用星形连接,而且中性点直接接地,其接线组别用YN,a0标示。为了消除三次谐波磁通的影响,使相电压不发生畸变,对于YN,a0接线的自耦变压器往往增设一个第三绕组,并把它接成三角形,此绕组和公共绕组、串联绕组之间只有磁的联系,没有电的联系。为了充分利用这个第三绕组,通常把它当作低压绕组,作为附近地区的电源,或接电容器等设备以改善功率因数,于是就形成了三绕组自耦变压器。这种三绕组自耦变压器实际上只是高、中压侧是自耦的,低压绕组在电气上是独立的,其容量通常比高、中压绕组小。

1.1.1.6500kV变压器一般采用自耦变压器,高压侧和中压侧为自耦联接,中性点直接接地或经阻抗接地,中压侧带有载或无载调压装置。有分相式和三相一体式两种,结线方式一般为YN,a0,d11,采用强迫油循环(导向)风冷(ONAF/ODAF)或油浸自冷/风冷(ONAN/ONAF)的冷却方式。

1.1.1.7变压器的运行电压一般不得超过相应分接头额定电压的105%,或按厂家规定执行。

1.1.1.8500kV变压器运行中的温度监视以上层油与线圈的温升为主。强迫油循环风冷变压器的最高上层油温一般不得超过85℃;油浸自冷、风冷变压器上层油温不宜经常超过85℃,最高一般不得超过95℃。制造厂有规定的执行制造厂规定。

1.1.1.9变压器可以在正常过负荷和事故过负荷情况下运行,允许运行时间不得超过部颁变压器运行规程及有关专业文件的规定,或变压器制造厂家的有关规定。

1.1.1.10当变压器有较严重的缺陷(如冷却系统不正常、严重漏油、有局部过热现象、油中溶解气体分析结果异常等)或绝缘有弱点时,不得过负荷运行。

自耦变压器工作原理

自耦变压器的工作原理 1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的 目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这 种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副 绕组,只有一个线圈也https://www.wendangku.net/doc/aa1913562.html,能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘 以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器).

低压电器课设三相异步电动机自耦变压器减压启动能耗制动设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:低压电器课程设计 设计题目:三相异步电动机自耦变压器减 压启动能耗制动控制的设计院系:电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.01.11-2016.01.15 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

*注:此任务书由课程设计指导教师填写

三相异步电动机自耦变压器减压启动能耗制动设计 摘要: 三相异步电动机在启动时常采用降压启动方式,在制动时经常采用能耗制动,本设计就三相异步电动机自耦变压器减压启动能耗制动进行设计,并通过模拟实验校核控制线路的正确性。 关键词:三相异步电动机,降压启动,能耗制动,电气控制线路图1.任务分析 根据具有自耦变压器减压启动和能耗制动功能的三相异步电动机的工作过程,采用电器工作流程图法,设计三相异步电动机自耦变压器减压启动能耗制动电器控制线路,要求主电路有短路保护和热保护。电器的线圈额定电压均为交流380V。 电器工作流程图法的设计步骤为: 1.绘制电器工作流程图: 电器工作流程图的绘制是按照电器工作次序从左到右进行的。首先在左侧列出控制中需要的全部电器,如按钮、接触器、继电器等,每个电器占一行。然后按照电器工作的时间顺序从左到右依次画出各电器的状态框,每个电器的状态框与左侧相同电器画在同一行上,并且框内写入相应电器的文字符号。 2.写线圈电器的导通逻辑表达式: 导通逻辑表达式是由电器工作流程图得到的公式,是从电器工作流程图过渡到控制电路图的桥梁。导通逻辑表达式的一般形式为: 导通条件起动条件释放条件 ? 将每个电器的实际起动条件和释放条件代入导通逻辑表达式的一般形式,就得到该电器的基本逻辑表达式。 3.绘制电器控制线路图: 绘制电器控制线路图,即是将逻辑表达式等号左边的一个文字符号画成线圈,右边的一行文字符号画成按要求连接的触点。 设计完后还需进行简化,使连线和触点数尽量少。 4.通过模拟实验校核电器控制线路的正确性: 设计内容中应包括详细的设计过程、文字说明和总结。 2.三相异步电动机自耦变压器减压启动

自耦变压器容量算

自耦变压器容量算

————————————————————————————————作者:————————————————————————————————日期:

自耦变压器容量计算 一、二次绕组有共同耦合部分的变压器称为自耦变压器。和普通变压器不同,自耦变压器的绕组之间不仅有磁的联系,还有电的联系。通常,把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组。公共绕组和串联绕组共同组成自耦变压器的高压绕组。 公共绕组和串联绕组是通过电磁感应和电的直接连接两种关系耦合起来的,以改变一、二次电压和在一、二次之间传输电能。自耦变压器的串联绕组和公共绕组一般按同心式放置,因串联绕组与高压系统连接,它常布置在铁芯最外层。自耦变压器常用于高、低电压比较接近的场合,例如连接高电压、大容量且电压等级相差不大的电力系统,在工厂和实验室用作调压器和起动补偿器等。电力系统中,常见的有单相自耦变压器和三相自耦变压器,对超高压特大容量的自耦变压器,因受运输条件的限制一般都做成单相的。 由于普通双绕组变压器的一、二次绕组之间只有磁的联系而没有电的联系,功率的传递全靠电磁感应,因此其铭牌上所标称的额定容量就是绕组的额定容量,它取决于绕组的额定电压和额定电流。绕组容量是通过电磁感应从一次传递给二次的,它的大小决定了变压器的主要尺寸和材料消耗,是变压器设计的依据。

自耦变压器的容量是指它的输入容量或输出容量,与一般双绕组变压器的容量表达式相同,额定运行时为 SN=U1NI1N =U2NI2N (1) 根据串联绕组或公共绕组的电压、电流值,计算可得自耦变压器绕组的容量。 串联绕组的额定容量 (2) 公共绕组的额定容量 (3) 可见,虽然自耦变压器容量的表达式与普通双绕组变压器相同,但自耦变压器的容量却不等于它的绕组容量。公共绕组和串联绕组额定容量相等,但都比自耦变压器的额定容量小,这多出的部分1/kSN称为自耦变压器的传导容量,它是由一次侧通过电路直接传递给负载的,不需增加绕组容量。 综上所述,用自耦变压器联系两种电压网络时,因为一、二次绕组间除了磁的联系外,还存在着电的直接联系,从一次侧到二次侧的功率传递,一部分通过绕组间的电磁感应,一部分直接传导,其容量包括传导容量和电磁容量两部分。 传导容量:通过电路关系直接传递的视在功率,它占总容量的1/k,普通变压器没有这一部分。

自耦变压器原理

自耦变压器原理 随着工业的不断发展,除了普通双绕组电力变压器外,相应地出现了适用于各种用途的特殊变压器,虽然种类和规格很多,但是其基本原理与普通双绕组变压器相同或相似,不再作一一讨论。本文主要介绍较常用的自耦变压器的工作原理。 自耦变压器概述 自耦的耦是电磁耦合的意思,普通的变压器是通过原副边线圈电磁耦合来传递能量,原副边没有直接电的联系,自耦变压器原副边有直接电的联系,它的低压线圈就是高压线圈的一部分。 通信线路的防护设备中也会使用自耦变压器等保护设备。 自耦变压器是指它的绕组是,初级和次级在同一条绕组上的变压器。根据结构还可细分为可调压式和固定式。 自耦变压器是根据电磁感应现象中的自感现象制成的,它主要作用调节电压高低。 自感电动势是由于通过线圈本身的电流产生变化,使得穿过线圈的磁通发生变化而引起线圈两端产生的电动势。因为感应电动势的高低与线圈的匝数成正比例,所以整个线圈中的局部绕组产生的电动势一定低于全部绕组产生的电动势。如果把局部绕组和全部绕组分别作为初级和次级,就构成了自耦变压器。同样,改变两部分绕组的匝数比也就改变了变压比。 自耦变压器结构简单,成本低。制成的自耦调压器、自耦降压补偿器等被广泛使用。但是由于自耦变压器的初、次级在电路上没有实现隔离,安全性能不高。所以在要求使用安全电压的场所,被禁止使用自耦变压器。 一、自耦变压器工作原理 1.结构特点及用途 前面叙述的变压器,其一、二次绕组是分开绕制的,它们虽装在同一铁心上,但相互之间是绝缘的,即一、二次绕组之间只有磁的耦合,而没有电的直接联系。这种变压器称为双绕组变压器。如果把一、二次绕组合二为一,使二次绕组成为一次绕组的一部分,这种只有一个绕组的变压器称为自耦变压器,如图所示。可见自耦变压器的一、二次绕组之间除了有磁的耦合外,还有电的直接联系。由下面的分析可知,自耦变压器可节省铜和铁的消耗量,从而减小变压器的体积、重量,降低制造成本,且有利于大型变压器的运输和安装。在高压输电系统中,自耦变压器主要用来连接两个电压等级相近的电力网,作联络变压器之用。在实验室常用具有滑动触点的自耦调压器获得可任意调节的交流电压。此外,

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛. 1。1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等. 1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

自耦变压器

自耦变压器 科技名词定义 中文名称:自耦变压器 英文名称:autotransformer 定义:至少有两个绕组具有公共部分的变压器。 所属学科:电力(一级学科);变电(二级学科) 本内容由全国科学技术名词审定委员会审定公布

编辑本段概述 石家庄金山变压器有限公司 自耦变压器是指它的绕组是初级和次级是在同一调绕组上的变压器。根据结构还可细分为可调压式和固定式。 编辑本段什么是变压器? 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 编辑本段自耦变压器和与干式变压器的区别 在目前的电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变。 自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但现在国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 编辑本段自耦变压器的工作原理 自耦变压器零序差动保护原理图

什么是自耦变压自耦变压器工作原理

什么是自耦变压自耦变压器工作原理

————————————————————————————————作者:————————————————————————————————日期:

什么是自耦变压器?自耦变压器工作原理 自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用。 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。

1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高。 ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈。一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力

自耦变压器容量计算

自耦变压器容量计算 【摘要】为保证金属资源的可持续发展,大力研究自耦变压器有十分重要的现实意义。本文主要介绍自耦变压器的容量计算,对自耦变压器的原理以及自耦变压的优点进行论述,最后再根据举例,对自耦变压器的容量进行系统的分析。 【关键词】自耦变压器;容量计算;原理 0.引言 自耦变压器是一、二次边共用一部分绕组,可以实现升压或者降压变化的电力变压器。与普通变压器相比,普通变压器的原、副绕组之间只有磁的联系而没有电路上的联系,而自耦变压器的原、副绕组之间不仅有磁的联系而且还有电路上的直接联系。总的来看,自耦变压器不仅减少了原材料的使用,更有利于磁电之间的联系。 1.自耦变压器的结构原理分析 自耦变压器可以由一台双绕组变压器演变过来。设有一台双绕组变压器,原、副绕组匝数分别为N1和N2,额定电压为U1N和U2N,额定电流为I1N和I2N,其变比为K=N1 /N2≈U1N/U2N.如果保持两个绕组的额定电压和额定电流不变,把原绕组和副绕组顺极性串联起来作为新的原边。而副绕组还同时作为副边,它的两个端点接到负载阻抗ZL,便演变成了一台降压自耦变压器。 从绕组的作用看,绕组ax供高、低压两侧共用,叫做公共绕组;而绕组Aa 则与公共绕组串联后供高压侧使用,叫做串联绕组。 自耦变压器的变比为:Ka===K+1 式中:K=为双绕组变压器的变比。 与双绕组变压器相比,在变压器额定容量(通过容量)相同时,自耦变压器的绕组容量(电磁容量)比双绕组变压器的小;变压器硅钢片和铜线的用量与绕组的额定感应电动势和通过的额定电流有关,也就是和绕组的容量有关,现在自耦变压器的绕组容量减小了,当然所用的材料也少了,从而可以降低成本;由于铜线和硅钢片用量减少,在同样的电流密度和磁通密度下,自耦变压器的铜耗和铁耗以及激磁电流都比较小,从而提高了效率;由于铜线和硅钢片用量减少,自耦变压器的重量及外形尺寸都较双绕组变压器小,即减小了变电所的厂房面积和运输安装的困难;反过来说,在运输条件有一定限制的条件下,即变压器的外形尺寸有一定限制的条件下,自耦变压器的容量可以比双绕组变压器的大,即提高了变压器的极限容量;效益系数越小。 通过以上分析,自耦变压器的变比越接近1就越好,一般以不超过2为宜。此外,如果变比太大,高、低压相差悬殊,由于自耦变压器原、副边有电路上的连接,会给低压边的绝缘及安全用电带来一定的困难,所以,自耦变压器适用于原、副边电压变比不大的场合。 2.自耦变压器的基本方程 2.1电流关系 按照全电流定律,自耦变压器的激磁磁动势m应等于串联绕组的磁动势W 与公共绕组的磁动势W之和。考虑到激磁电流是由电源供给的,它流经的匝数为N+N 3.自耦变压器的容量分析 自耦变压器的额定容量(又叫通过容量) 和绕组容量(又叫电磁容量)二者是

自耦变压器降压启动电路图

自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示 自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停 下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了 竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。

如何分析简易电路图

如何分析电路图 电路图有两种,一种是模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种则是数字电子电路。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能图叫做逻辑电路图,简称逻辑图。 要分析电路图,还得从认识元器件开始。熟悉有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法 电阻器与电位器 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。 在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、( g )、( h )所示符号来表示。 几种特殊电阻器的符号: 第 1 种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用NTC来表示;有的是正温度系数的,用PTC来表示。它的符号见图( i ),用θ或t° 来表示温度。它的文字符号是“ RT ”。 第 2 种是光敏电阻器符号,见图 1 ( j ),有两个斜向的箭头表示光线。它的文字符号是“ RL ”。

第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1 ( k ),用字符 U 表示电压。它的文字符号是“ RV ”。这三种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。 第 4 种特殊电阻器符号是表示新近出现的保险电阻,它兼有电阻器和熔丝的作用。当温度超过500℃ 时,电阻层迅速剥落熔断,把电路切断,能起到保护电路的作用。它的电阻值很小,目前在彩电中用得很多。它的图形符号见图 1 ( 1 ),文字符号是“ R F ”。 电容器的符号 详见图 2 所示,其中( a )表示容量固定的电容器,( b )表示有极性电容器,例如各种电解电容器,( c )表示容量可调的可变电容器。( d )表示微调电容器,( e )表示一个双连可变电容器。电容器的文字符号是 C 。 电感器与变压器的符号 电感线圈在电路图中的图形符号见图 3 。其中( a )是电感线圈的一般符号,( b )是带磁芯或铁芯的线圈,( c )是铁芯有间隙的线圈,( d )是带可调磁芯的可调电感,( e )是有多个抽头的电感线圈。电感线圈的文字符号是“ L ”。 变压器的图形符号见图 4 。其中( a )是空芯变压器,( b )是滋芯或铁芯变压器,( c )是绕组间有屏蔽层的铁芯变压器,( d )是次级有中心抽头的变压器,( e )是耦合可变的变压器,( f )是自耦变压器,( g )是带可调磁芯的变压器,( h )中的小圆点是变压器极性的标记。

自耦变压器损耗对比

自耦变压器损耗对比: 以DQY-40000/220为例: 注:温升还可以稍微再降低一点点。 变压器器身干燥工艺: 1.适用范围 本工艺适用于电压35Kv、110kV变压器器身真空干燥。 2.适用目的 保证器身干燥,提高变压器运行质量。 3.设备及工具 3.1设备 3.1.1立式真空罐:外形8.8*5.2*5.1m, 净空7.4*4*4m。 3.1.2真空泵 a. H-150A滑阀真空泵,2只,抽气速率150L/S,极限真空1Pa; b. ZJ-1200A机械增压泵,1只,抽气速率1200L/S,极限真空0.06Pa。 3.2测量仪器仪表及工具 3.2.1真空计 a.指针式真空表:(0-0.1)MPa; b.麦氏真空计:(0-650)Pa; c.电子式真空计:(1Pa-1kPa); 3.2.2兆欧表:2500v/2000MΩ; 3.2.3温度计:水银温度计. 0-150℃; 3.2.4量杯:1000ml,2000ml,各一只。 4.工艺准备 4.1器身吊入烘房前,应对真空干燥设备进行检查

4.1.1检查真空干燥设备是否正常完好,尤其注意有无漏气、漏水、漏油。罐沿密封要良好,罐底应清洁无污物; 4.1.2检查真空泵内的油位是否在要求范围内(泵上有油标),并打开放油阀门检查油是否有污物及水份,如果有水必须放出后关闭阀门; 4.1.3定期对真空泵内油进行过滤及添加(一个月进行一次并作记录)。 4.2器身吊入烘房前,对器身进行检查 4.2.1清除器身各处的污物,灰尘,杂物; 4.2.2将器身吊起,用布或棉纱等擦净垫角上的灰尘污物; 4.3器身吊入烘房: 将器身吊入罐内,要求器身各处距烘房壁或蒸汽管距离300mm以上,以防止损坏绝缘件。操作人员对器身栓钢丝绳或接线时,必须穿戴干净的工作服、工作鞋,装配工的服饰要杜绝金属及零散小物件,以防随身物品掉入器身及污染产品。 4.4放测温元件 4.4.1每炉测温元件2只,在靠近加热管最近的线圈侧面上、中、下三处分别放上测温元件一只,测量温度以中间温度为主,其他两只测温元件温度只作为参考。在真空度(20-40)kPa阶段,各个温度均不得超过120℃; 4.4.2测温导线不得互相接触; 4.5关闭罐盖之前检查测量线圈温度计的位置是否正确,测温元件运行是否正常; 4.6把需要与器身一同处理的附件放在器身上,如果器身上无法放置,必须将附件垫高到距烘房底500mm以上,不可直接放在烘房底上; 4.7要求每隔1小时检查测温元件温度值、蒸汽压力、真空度、出水量,如实填入记录表格,同时记录变压器型号、容量、电压、台数、工作号、入炉出炉时间等。 5.工艺过程 5.1真空干燥的工艺过程按表一; 注:下面所注真空度指罐内残压值,单位(Pa) 表一真空干燥工艺过程

自耦变压器工作原理

1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器). 图1: 图2: 自藕变压器原,副绕组的电流方向和普通变压器一样是相反的. 在忽略变压器的激磁电流和损耗的下,可如下关系式 降压:I2=I1+I,I=I2-I1 升压:I2=I1-I,I=I1-I2 P1=U1I1,P2=U2I2 式中: I1是原绕组电流,I2是副绕组电流 U1是原绕组电压,U2是副绕组电压 P1是原绕组功率,P2是副绕组功率

很实用的自耦变压器设计方法方法

自耦变压器设计 一. 自耦变压器的定义 绕组间具有电磁及电气连接的变压器称为自耦变压器。 自耦变压器的优.缺点: 优点:体积小,成本低,传输功率大,效率比普通变压器高,电压调整率比普通变压器低。 缺点:由于绕组间具有公共的连接点,电磁及电气有连接,所以不能作为隔离变压器使用。 二. 自耦变压器设计原则: 自耦变压器的设计应按照电磁感应传递的功率即结构容量(也就是铁芯功率)来设计,而不是按其传递容量即输出功率P 来设计。 三. 自耦变压器的特点: 特点:公共绕组的电流是初.次级电流之差. 四. 自耦变压器的结构容量计算: 1. 升压式 如图一所示,0----U1输入,0----U2输出,功率P . 初级电流I1=P/U1 次级电流I2=P/U2 公共绕组电流为I1-I2 设计输入: 初级输入电压:U1 次级输出电压:U2-U1 次级输出电流:I2 结构容量V AB=(U2-U1)×I2=U2I2-U1I2=P-U1×P/U2=P ×(1-U1/U2) 结构容量相等的公式: U1×(I1-I2)=(U2-U1)×I2=P ×(1-U1/U2) 例题1: 0---100V 输入,0----120V 输出,功率为600V A 的自耦变压器. 解: 初级电流I1=600/100=6A 次级电流I2=600/120=5A 公共绕组电流I1-I2=6A-5A=1A 结构容量V AB=P ×(1-U1/U2)=600×(1-100/120)=100V A 结构容量相等: 100V ×1A=20V ×5A=100V A

设计输入: 初级输入电压:100V 次级输出电压:20V 次级输出电流:5A 2. 降压式 如图一所示,0----U1输入,0----U2输出,功率P . 初级电流I1=P/U1 次级电流I2=P/U2 公共绕组电流为I2-I1 设计输入: 初级输入电压:U1-U2 次级输出电压:U2 次级输出电流:I2-I1 结构容量V AB=U2×(I2-I1)=U2I2-U2I1=P-U2×P/U1=P ×(1-U2/U1) 结构容量相等的公式: U2×(I2-I1)=(U1-U2)×I1=P ×(1-U2/U1) 例题2: 0---120V 输入,0----100V 输出,功率为600V A 的自耦变压器. 解: 初级电流I1=600/120=5A 次级电流I2=600/100=6A 公共绕组电流I2-I1=6A-5A=1A 结构容量V AB=P ×(1-U2/U1)=600×(1-100/120)=100V A 结构容量相等: 100V ×1A=20V ×5A=100V A 设计输入: 初级输入电压:100V 次级输出电压:20V 次级输出电流:5A 例题3: 自耦变压器0V~187V~220V ,187V 抽头电流为120A 解:设公共绕组0~187V 电流为I1,187~220V 段电流为I2, 则: I1+I2=120A 根据结构容量相等公式有:187I1=33I2 得出:I1=18A I2=102A 设计输入: 初级输入电压:33V 次级输出电压:187V 次级输出电流:18A

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初 级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的 变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。 220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电 机降压启动使用。 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有 中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 工作原理自耦变压器零序差动保护原理图 自耦变压器 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是 左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一 部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线 匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部 分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、 电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得 到广泛应用.。 三相自耦变压器

一种高可靠性的中性点调压自耦变压器设计

技术与应用 2019年第9期 117一种高可靠性的中性点调压自耦变压器设计 徐春苗 司秉娥 (特变电工沈阳变压器集团有限公司,沈阳 110144) 摘要 印度常规400kV 电压等级有载调压自耦变压器电压调节位置通常被设在串联绕组220kV 侧,单独设置的220kV 调压绕组出头引出对变压器绝缘设计是非常困难的。本文提出一种将调压绕组设置在中性点侧的自耦变压器设计方案。通过与常规调压位置的变压器进行技术性、经济性对比分析证明,该方案更加安全可靠,经济性更好。 关键词:自耦变压器;波过程;中性点侧调压 Design of auto transformer with neutral end tapping for better reliability Xu Chunmiao Si Bing’e (TBEA Shengyang Transformer Group Co., Ltd, Shenyang 110144) Abstract Indian 400kV auto transformer taps are provided on 220kV side series winding. The tapping lead take out from inside 220kV tap winding is big challenge for transformer design. In this paper present a new design of auto transformer with neutral end tapping for better reliability and economy. According to technical and economic comparition and analysis. Keywords :auto transformer; wave process; neutral end tapping 在印度国家电网中,400kV 自耦变压器调压位置通常被设置在串联绕组220kV 侧。变压器绕组的布置为LV —TAP —MV —HV 。220kV 等级的调压绕组出头从内线圈引出,给变压器设计造成了很大的 困难。调压绕组引线结构复杂,很难精确计算调压端部的实际冲击过电压。由于调压绕组被连接在220kV 绕组的线路侧,所以其端部产生了很高的冲击过电压。近年来,400/220/33kV 变压器因调压绕组(或调压引线或调压开关)而发生了多起故障。 最近,印度国家电网推出了无调压绕组400/ 220/33kV 自耦变压器。无调压绕组自耦变压器与有调压绕组变压器相比,可靠性更高。无调压绕组是这种类型自耦变压器的一种解决方案,但是在电网中,完全消除电压的波动是非常困难的。本文提出的解决方案是,在变压器的中性点侧提供调压绕 组,这种调压方式比现有的自耦变压器调压方式更可靠[1-10]。一方面,分接绕组和分接开关的电压等级将降低到中性点绝缘水平,从而提高变压器的运行可靠性,降低了变压器的制造成本;另一方面,在中性点侧提供调压绕组将成为变磁通变压器,变 磁通变压器意味着铁心中的磁通密度随调压分接位 置的变化而变化。变磁通设计主要是变低压。低压电压将随分接位置的不同而变化。 1 中性点调压变压器的分接范围选取 在中性点调压变压器中,高压绕组(串联绕组)和中压绕组(公共绕组)的中性点侧设有调压抽头,以改变高压侧的电压。这种变压器是变磁通调压变压器(VFVV 型)。在这种类型的变压器中,铁心中的磁通密度随分接位置的变化而变化。400kV 自耦 变压器额定参数见表1。 表1 400kV 自耦变压器额定参数 容量/MVA 500 电压等级/kV 400/220/33 阻抗(高压—中压) 12.5%(额定分接) 高压绝缘水平 SI1050/LI1300/AC570 中压绝缘水平 LI950/AC395 低压绝缘水平 LI250/AC95 线圈排列 LV —TAP —MV —HV 调压分接范围是变磁通变压器的重要组成部分。当调压范围大时,在额定分接调压处的磁通密

自耦变压器降压启动电路图

自耦变压器降压启动电路图【改进版】 自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示

自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,

有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。 三、改进后的接线方法 经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线 路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。 四、改进后的工作原理 接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

电力变压器的电磁设计

目录 100/35/电力变压器的电磁设计 (3) 摘要 (5) Abstract (6) 第1章绪论 (7) 1.1 课题背景 (7) 1.2 变压器在电力系统中的作用 (7) 1.3 电力变压器的发展 (7) 1.4 电力变压器的结构特点 (11) 1.5 电力变压器性能参数 (12) 1.6 变压器的设计原则 (13) 1.7 变压器计算的一般程序 (13) 第2章变压器电磁计算 (15) 2.1 本设计的技术条件 (15) 2.2 变压器设计 (15) 2.2.1 变压器主要结构的确定 (15) 2.2.2 硅钢片的选用 (15) 2.2.3 铁心直径的确定 (15) 2.2.4 铁心截面积确定 (16) 2.2.5 铁心级数的确定 (16) 2.3 电磁计算 (17) 2.3.1 额定电压和额定电流的计算 (17) 2.3.2 绕组匝数计算 (17) 2.3.3 绕组计算 (19) 2.3.4 绝缘半径及导线长度计算 (22) 2.3.5 75℃时绕组直流电阻计算 (24) 2.3.6 绕组导线质量计算 (25) 2.3.7 短路阻抗计算 (26) 2.3.8 负载损耗的计算 (28) 2.3.9 空载损耗及空载电流计算 (29) 2.3.10 绕组的温升计算 (31) 2.4 油箱尺寸计算 (34) 2.4.1 油箱尺寸估计 (34) 2.4.2 箱壁散热面积计算 (35) 2.4.3 散热器的选择及油和绕组温升的计算 (36) 2.5 短路电动力计算 (38) 2.5.1 绕组区域划分 (38) 2.5.2 安匝分布计算 (38)

2.5.3 漏磁计算 (39) 2.5.4 短路电流稳定值倍数计算 (40) 2.5.5 不平衡安匝漏磁组所产生的总轴向力计算 (41) 2.5.6 绕组导线应力计算 (41) 2.6 变压器质量计算 (43) 2.6.1 总油量计算 (43) 2.6.2 变压器箱体质量计算 (45) 2.6.3 附件质量计算 (45) 2.6.4 变压器总质量计算 (46) 2.7 本章小结 (46) 结论 (47) 致谢 (48) 参考文献 (49) 附录 (50)

相关文档