文档库 最新最全的文档下载
当前位置:文档库 › 矩阵可逆的若干判别方法

矩阵可逆的若干判别方法

矩阵可逆的若干判别方法
矩阵可逆的若干判别方法

矩阵可逆的若干判别方法

可逆矩阵是高等代数中不可缺少的一部分,也是矩阵运算中的重要组成部分,对解决数数学问题有重大意义,学习可逆矩阵,对我们解决一些代数问题有极大的帮助。

如何判断矩阵可逆,主要有以下十一种方法。 一、 矩阵可逆的基本概念

(1)对于n 阶矩阵A ,若存在n 阶矩阵B ,使得

AB=BA=I

则称矩阵A 为可逆矩阵(或非退化或非奇异或满秩矩阵),或A 可逆,称B 为A 的

逆矩阵,记作B= A -1

注:若矩阵可逆,则A 的逆矩阵由A 唯一确定。 (2)矩阵A 的行秩等于列秩。

(3)矩阵A 经过一系列初等变换得到矩阵B ,则A 与B 等价。

(4)记矩阵A 中元素a ij 的代数余子式为A ij ,则A*=(A ij )T

n ×n ,我们就称A*为A 的伴随矩阵。 二、矩阵可逆的性质

(1)若矩阵A 可逆,则A 的逆矩阵A -1也可逆,且(A -1)-1

=A 。

(2)若矩阵A,B 均可逆,则矩阵AB 也可逆,且(AB) -1=B -1A -1

(3)若矩阵A 可逆,则A T 也可逆,且(A T )-1=(A -1)T

(4)若矩阵A 可逆,λ≠0,则λA 也可逆,且(A λ)=

λ

1A -1

。 (5)若矩阵A 可逆,则|A -1

|=

|

|1A 。 (6)矩阵A 的逆矩阵A -1

=

|

|*A A 。 (7)若A 为m ×n 阶矩阵,P 为m 阶矩阵,Q 为n 阶矩阵,A,P,Q 均为可逆矩阵,则有r(PAQ)=r(PA)=r(AQ)=r(A)。 三、矩阵可逆的若干判别方法 (一)定义判别法

对于n 阶方阵A ,若存在n 阶方阵B ,使得AB=BA=I,则A 可逆,且B 为A 的逆,

记为B=A -1

例1. 判断矩阵A=???

?

? ??010100001 是否可逆?

证 存在矩阵B=????? ??010100001,使得AB=BA=???

?

?

??100010001

所以矩阵A 可逆。

注:此方法大多适用于简单的矩阵。

(二)行列式判别法

矩阵A 可逆的充要条件是A 为方阵且|A|≠0。

例2. 判断矩阵A=????? ??311283501与矩阵B=???

?

? ??2-04131120是否可逆?

证 因为|A|=-3≠0,|B|=0,所以矩阵A 可逆,而B 不可逆。

(三)秩判别法

n 阶矩阵A 可逆,则r (A )=n 。

证 因为矩阵A 可逆,则|A|≠0,可得到r (A )=n ,反之也成立。

例3. 判断矩阵A=????? ??711012531与矩阵B=???

?

? ??1-22011121是否可逆?

证 A=????? ??711012521→????? ??---2101030521???

?

? ??--→2101600901

所以r (A )=3,A 可逆。

B=????? ??122001121????

? ??→????? ??→000120001120001120

所以r (B )=23≠,B 不可逆。

(四)伴随矩阵判别法 若A 可逆,则存在矩阵B=

|

|*

A A ,使得AB=BA=E 。 例4.矩阵A=???

?

? ??341253621,判断它是否可逆,若可逆,求出它的逆。

证 因为|A|=35≠0,则A 可逆, A*=???

?

? ??-----127163726187,所以

A -1

=||*A A =

????

???

?

??351-352-5135163

1-51-3526-351851 注:求伴随矩阵时,要注意元素的位置与符号。

(五)初等变换判别法

对矩阵A 施行行(列)初等变换,得到矩阵B ,若B 可逆,则A 也可逆。 证 因为A 与B 等价,则有r(A)=r(B),所以当矩阵B 可逆时,矩阵A 也可逆。 注:也可用初等行(列)变换求A 的逆。 用初等行变换:)()(B E E

A

→ B 为A 的逆,B=A -1。

列初等变换:???

?

??→???? ??B E E A B 为A 的逆。

例5.求矩阵A=???

?

? ??410113201的逆。

????

?

??→????? ??→????? ??→????? ??11-354-122-25-10001000111-3013-0011005-10201100013-0014105-10201100010001410113201 所以A -1=???

?

?

??----1135412225 (六)初等矩阵判别法

若矩阵A 可逆,则A 可以表示为一系列初等矩阵的乘积, 即A=P 1P 2 ……P S

证 因为|A|=| P 1P 2 ……P S |0≠,所以矩阵A 可逆,反之也成立。 同时,若矩阵A 可逆,则A 可经过一系列初等变换化为单位矩阵。

例6.判断矩阵A=???

?

? ??01-2411210是否可逆?

证 A=????? ??01-2411210???

?

?

??→????? ??→????? ??→????? ??→1000100012-002102018-3-021

041101-2210411 所以矩阵A 可逆。

(七)矩阵的向量组的秩判别法

若矩阵A 可逆,则A 的各行或各列所形成的向量组线性无关。 若矩阵A 可逆,则有r(A)=n,且行秩等于列秩等于n. (八)线性方程组判别法

有方程组?????

????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛM M

ΛΛΛΛ22112222212111212111 ① 当b 1=b 2=……=b n =0时,方程组为齐次线方程组,

所以有??

???

?

?

? ??????????

?

?n nn n n n n x x x a a a a a a a a a M M ΛΛM M M M M M M M

M M ΛΛΛ

Λ21212222111211= 0,AX=0,当且仅当此方程组有零解时,即x 1=x 2=……=x n =0时,设矩阵A 各列形成的向量组为1α、2α、……、n α,

所以02211=+++n n x x x αααΛΛ,而x 1=x 2=……=x n =0,则1α、2α、……、n α线性无关,因此矩阵A 可逆。

② 当≠i b 0时,即方程组为非齐次线性方程组时,方程组有唯一解时,矩阵A 可逆。

证 (1b =β、2b 、……、)n b ∴βααα=+++n n x x x ΛΛ2211 因为|A|≠0,则x 1、x 2、……、x n 由β唯一确定。 (九)标准型判别法

任一s ×n 阶方阵A 都与形为???

?

??---r s r s r n E 000r 的矩阵等价,此矩阵称为矩阵A 的标

准型,且r=r(A),E 为单位矩阵,0为零矩阵。

即若n 阶方阵A 可逆,则可化为标准型E 。 (十)多项式判别法

n 矩阵A 可逆,则有多项式,满足=0,常数项不为零。

)=

λn -(a 11+a 22+……+a nn )λn-1+……+(-1)|A|

Θ|A|0≠,则(-1)|A|0≠,常数项不为零。 反之也成立。 (十一)特征值判别法

n 阶矩阵A 可逆,则矩阵A 的特征值不全为零。 证

)=

λn -(a 11+a 22+……

+a nn )λn-1

+……+(-1)|A|

Θ 则 |A|=r λλλΛΛ21 (r ≤n )

,所以矩阵A 可逆。 四、常见矩阵的可逆性

(一)单位矩阵可逆,EE=E 。

(二)数量矩阵A=???

??

?

?

? ?

?a a a ΛΛM M M M M M M M M M

ΛΛΛ

Λ0

000

00可逆。 A=aE,A -1

=(aE)-1

=

E a

1

(三)对角阵A=???

??

?

?

? ?

?n a a a ΛΛM M M M M M M M M M

ΛΛΛ

Λ0000

0021

可逆,主对角线上元素全不为零。

证 主对角线上元素全不为零,则|A|0≠,所以A 可逆。

(四)分块矩阵可逆。

(五)上三角与下三角矩阵可逆。

(六)正交矩阵可逆,且A -1=A T

。 (七)过度矩阵与度量矩阵均可逆。 小结:

学会了如何判断一个矩阵是否可逆,了解这十一种判别方法,会让我们更快的解决此类问题,同时也让我们领略到了高等代数的魅力,解决方法是多样化的,探索解决问题的过程是美妙的。矩阵的运用极其广泛,可逆矩阵就是其中的关键部分,不伦结果是怎样的,毫无疑问的是数学真的是一门很神奇的学科。

一般矩阵可逆的判定电子教案

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:阶方阵;;;; 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际

2矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; } (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(== 若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。

2.1.2 矩阵的运算 1.加法 ~ (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 . (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置 ~ (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )(=, (2)运算规律 ①;)(A A T T = ②T T T B A B A +=+)(;

矩阵理论第一二章典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x||x 则为向量 的范数. ( ) 提示:因为非负性不成立,故结论错误。 2.设A n 为阶Hermite 矩阵, 12,,,n λλλ是矩阵A 的特征值,则2 2 21 ||||n m i i A λ==∑. ( ) 提示:A n 为阶Hermite 矩阵?22 2 212||||||(,, ,)||H m n m A Udiag U λλλ= 2 212||(,, ,)||n m diag λλλ=21 n i i λ==∑. 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( ) 提示:AA -为幂等矩阵?AA - 的特征值为0或1。又0A ≠,?A AA - ≥秩()=秩()1? 0AA -≠?1是AA -的特征值 ?2||||AA -=max ()i AA λ-= =1 4. 若设n x R ∈ ,则212||||||||||x x x ≤≤. ( ) 提示: 2 2 2 2 2 2 1221 ||||||||||||||x x x x x =++ +≤, 11||||||n i i x x ==∑1 ||1n i i x ==?∑ 21/21 ||)n i i x =≤ ∑2||x = 5. 设m n A R ?∈的奇异值为12n σσσ≥≥ ≥,则2 22 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11 ||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 提示:

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

(完整版)可逆矩阵教案

§1.4 可逆矩阵 ★教学内容: 1.可逆矩阵的概念; 2.可逆矩阵的判定; 3.利用转置伴随矩阵求矩阵的逆; 4.可逆矩阵的性质。 ★教学课时:100分钟/2课时。 ★教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求逆的方法;难点在于转置伴随矩阵概念的理解。 ★教学设计: 一可逆矩阵的概念。 1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2.定义1.4.1(可逆矩阵)对于矩阵A,如果存在矩阵B,使得AB BA E ==则称A为可逆矩阵,简称A可逆,并称B为A的逆矩阵,或A的逆,记为1 A-。 3.可逆矩阵的例子: (1)例1 单位矩阵是可逆矩阵; (2)例2 10 11 A ?? = ? ?? , 10 11 B ?? = ? - ?? ,则A可逆; (3)例3 对角矩阵 100 020 003 A ?? ? = ? ? ?? 可逆; (4)例4 111 011 001 A ?? ? = ? ? ?? , 110 011 001 B - ?? ? =- ? ? ?? ,则A可逆。 4.可逆矩阵的特点: (1)可逆矩阵A都是方阵; (2)可逆矩阵A的逆唯一,且1 A-和A是同阶方阵;

(3)可逆矩阵A 的逆1A -也是可逆矩阵,并且A 和1A -互为逆矩阵; (4)若A 、B 为方阵,则1 AB E A B -=?=。 二 可逆矩阵的判定及转置伴随矩阵求逆 1.方阵不可逆的例子: 例5 1100A ?? = ??? 不可逆; 例6 1224A ?? = ??? 不可逆; 2.利用定义判定矩阵可逆及求逆的方法: (1)说明利用定义判定及求逆的方法, (2)说明这种方法的缺陷; 3.转置伴随矩阵求逆 (1)引入转置伴随矩阵 1)回顾行列式按一行一列展开公式及推论 1122,0,i s i s in sn D i s a A a A a A i s =?+++=?≠?L (1,2,,)i n =L , 1122,0,j t j t nj nt D j t a A a A a A j t =?+++=? ≠?L (1,2,,)j n =L ; 2)写成矩阵乘法的形式有: 111211121 1212221222212 120 00000n n n n n n nn n n nn a a a A A A A a a a A A A A A E a a a A A A A ?????? ? ?? ? ? ???== ? ??? ? ?? ? ?????? ? L L L L L L M M O M M M O M M M O M L L L 3)定义1.4.2(转置伴随矩阵)设ij A 式是()ij n n A a ?=的行列式中ij a 的代数余 子式,则 1121 112 22 2* 12n n n n nn A A A A A A A A A A ?? ? ? = ? ??? L L M M O M L 称为A 的转置伴随矩阵。 (2)转置伴随矩阵求逆: 1)* AA A E =; 2)定理1.4.1 A 可逆的充分必要条件是0A ≠(或A 非奇异),且

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

可逆矩阵判定典型例题

典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若0||≠A , 则T T A A )()(11--=; (2)若A 、B 都是n 阶可逆矩阵, 则* **)(A B AB =; (3)T T A A )()(**=; (4)若0||≠A , 则* 11*)()(--=A A ; (5) * 1*)1()(A A n --=-; (6)若0||≠A , 则l l A A )()(11--=(l 为自然数); (7) * 1*)(A k kA n -=. 证 (1)因为0||≠A , 故A 是可逆矩阵, 且 E AA =-1 两边同时取转置可得 E E A A AA T T T T ===--)()()(11 故由可逆矩阵的定义可知 T A )(1-是A T 的逆矩阵. 即 1 1)()(--=T T A A (2)利用方阵与其对应的伴随矩阵的关系有 E AB AB AB ||)()(*= (2-7) 另一方面 B I A B B A A B AB A B )|(|)())((*****== E AB E B A B B A |||| ||||*=== (2-8) 比较式(2-7)、(2-8)可知 ))(()()(***AB A B AB AB = 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘1 )(-AB 可得 ***)(A B AB = (3)设n 阶方阵A 为 ?????????? ????=nn n n n n a a a a a a a a a A 2 1 2222111211 于是可得A 的伴随矩阵* A 为 ??????? ??? ????=nn n n n n A A A A A A A A A A 2122212 12111 * 注意到A 的转置矩阵为

可逆矩阵教案(可编辑修改word版)

? ? ? ? ? ? ? §1.4 可逆矩阵 ★ 教学内容: 1. 可逆矩阵的概念; 2. 可逆矩阵的判定; 3. 利用转置伴随矩阵求矩阵的逆; 4. 可逆矩阵的性质。 ★ 教学课时:100 分钟/2 课时。 ★ 教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★ 教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵 求逆的方法;难点在于转置伴随矩阵概念的理解。 ★ 教学设计: 一 可逆矩阵的概念。 1. 引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2. 定义 1.4.1(可逆矩阵)对于矩阵 A ,如果存在矩阵 B ,使得 AB = BA = E 则称 A 为可逆矩阵,简称 A 可逆,并称 B 为 A 的逆矩阵,或 A 的逆,记为 A -1 。 3. 可逆矩阵的例子: (1) 例 1 单位矩阵是可逆矩阵; ?1 0 ? ? 1 0 ? (2) 例 2 A = 1 1 ? , B = -1 1 ? ,则 A 可逆; ? ? ? ? ? 1 0 0 ? (3) 例 3 对角矩阵 A = 0 2 0 ? 可逆; 0 0 3 ? ? 1 1 1? ? 1 -1 0 ? (4)例 4 A = 0 1 1? , B = 0 1 -1? ,则 A 可逆。 ? 0 0 1? 4. 可逆矩阵的特点: (1) 可逆矩阵 A 都是方阵; ? 0 0 1 ? (2) 可逆矩阵 A 的逆唯一,且 A -1 和 A 是同阶方阵;

矩阵可逆的一个充分必要条件的几种讲法

矩阵可逆的一个充分必要条件的几种讲法 不论是在线性代数的教学中还是高等代数的教学中,矩阵的相关内容都是十分重要的。而其中矩阵可逆的部分又是要重点讲授的,因为逆矩阵在讨论研究矩阵问题时有重要作用。在矩阵可逆的这部分内容中,矩阵可逆及逆矩阵的定义是必然要介绍的,而矩阵可逆的条件中有一个充分必要条件即一个方阵可逆的充分必要条件是它的行列式不等于零是一定会讲授的,也是应用较多的,因此要求同学们一定理解掌握。 而就这一个充分必要条件不同的教师有不同的讲法,本文根据自己的体会,介绍了这一个充分必要条件的三种讲法并进行了一定的对比分析。 第一种讲法是非常常见的,很多教师都采用,特别是刚开始 教线性代数的新教师。我在第一次教这部分时也用的是这种讲法。首先介绍了矩阵可逆的定义[1],即设A为n阶方阵,如果存在n阶方阵B,使得AB=BA=E(E是n阶单位矩阵),则称方阵A是可逆的,而B称为A的逆矩阵。在同学们知道理解了矩阵可逆及逆矩阵概念后,就引入介绍矩阵可逆的条件,我们主要介绍矩阵可逆的一个常用的充分必要条件。而为了介绍这个充分必要条件,首先需要介绍一个相关的内容,那就是伴随矩阵的相关概念[2] 。对于伴随矩阵首先介绍伴随矩阵的定义: 设矩阵A,则称矩阵为A的伴随矩阵,其中Aij是矩阵A中元素

aij 的代数余子式。 接着介绍伴随矩阵的一个重要性质:同时给出其证明:事实 上,由代数余子式的性质同理可得,所以。 这样准备工作已做好,就来讲最重要的矩阵可逆的充分必要条件。 定理(矩阵可逆的充分必要条件)矩阵 A 可逆的充分必要条 件是,且。 证明:(必要性)若,且,则,故 A 可逆且。 (充分性)若 A 可逆,,那么,因此。 以上是第一种讲法的基本过程,当然这其中还有很多教师的引导讲解,这里未体现。但这种讲法的讲授思路和顺序基本按照教材中给出的顺序来讲,其实就是直接教授给学生们概念和结论,让学生们去理解应用,缺乏探究这些结论的过程。而第二种讲法恰恰是由矩阵可逆的定义出发按照正常的推理过程得到了矩阵可逆的充分必要条件。 第二种讲法首先仍是介绍矩阵可逆的定义,接着就探究矩阵可逆的充分必要条件。探究过程如下: 由矩阵可逆的定义,要想方阵 A 可逆,首先得找出同阶方阵B,使得AB=E再看BA是否也等于E。那么我们假设A=, B=, 那么由矩阵乘法,AB的第i行第j列(i , j=1 , 2,…,n)元素应该是(1) 此时引导学生从已有知识中寻找与该问题类似或相关的内容来

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

小度写范文【可逆矩阵判定典型例题】 矩阵可逆模板

【可逆矩阵判定典型例题】矩阵可逆典型例题(二)方阵可逆的判定 例1 设A是n阶方阵, 试证下列各式: (1)若|A|≠0, 则(AT)-1=(A-1)T ; (2)若A、B都是n阶可逆矩阵, 则 (AB)*=B*A* ;(3) (AT)*=(A*)T;(4)若|A|≠0, 则(A*)-1=(A-1)* ;(5) (-A)*=(-1)n-1A*;(6)若|A|≠0, 则(Al)-1=(A-1)l (l为自然数);(7) (kA)*=kn-1A*. 证(1)因为|A|≠0,故A是可逆矩阵, 且 AA-1 =E两边同时取转置可得 (AA-1)T=(A-1)TAT=(E)T=E 故由可逆矩阵的定义可知 (A-1)T是AT的逆矩阵. 即 (A-1)T=(AT)-1 (2)利用方阵与其对应的伴随矩阵的关系有 (AB)*(AB)=|AB|E 另一方面

(B*A*)(AB)=B*(A*A)B=B*(|A|I)B =|A|B*B=|A| |B|E=|AB|E 比较式(2-7)、(2-8)可知 (AB)*(AB)=(B*A*)(AB) 又因为A、B均可逆, 所以(AB)也可逆, 对上式两端右乘(AB)-1 可得 (AB)*=B*A* (3)设 n 阶方阵A为 ?aa12 a?11 1n?A=?a??21a22 a2n?? ? ??aa? ?n1n2 ann? 于是可得A的伴随矩阵A* 为 ?AA?11 21 An1?A*=?A??12A22 An2?? ? ???AA?1n2n Ann注意到?A 的转置矩阵为 2-7)2-8)( ( T 可推出A的伴随矩阵为 ?a11??a12

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵可逆的若干判别方法.doc

山西师范大学本科毕业论文 矩阵可逆的若干判别方法 姓名郭晓平 院系数学与计算机科学学院专业数学与应用数学 班级0701班 学号0751010139 指导教师宋蔷薇 答辩日期 成绩

矩阵可逆的若干判别方法 内容摘要 对线性代数和代数学而言,矩阵是一个主要研究对象和重要工具,其中可逆矩阵又是矩阵运算理论的整体不可或缺的一部分。在矩阵理论,可逆矩阵所占的地位是不可替代的,在坐标轴旋转变换公式的矩阵表示、线性变换、线性方程组等理论研究中,它均有重要意义。而且由于在许多有关数学、物理,经济的实际问题中,常常需要通过建立合适的数学模型化为线性代数和代数学等的问题,因此可逆矩阵也是解决实际问题比较常用的工具之一。鉴于可逆矩阵具有重要的理论和实践意义,研究矩阵可逆的判别方法也就相当有必要了。 本文结合所学知识并查阅相关资料,系统地整理并归纳总结了十一种矩阵可逆的判别方法及其证明过程。其中,可逆矩阵判别方法主要包括定义判别法、伴随矩阵判别法、初等变换判别法、线性方程组法、矩阵向量组的秩判别法等。另外,本文还给出了十种特殊矩阵可逆性的相关结论,最后针对这些判别方法选取了典型的例题,以便我们更好的掌握矩阵可逆的判别方法。 【关键词】矩阵逆矩阵初等变换伴随矩阵线性方程组

Some Methods for Judging Invertible Matrix Abstract The matrix is a main research subject and an important tool in linear algebra and algebra. The invertible matrix, which plays the role of the invertible number in rational numbers, is an essential part of the matrix theory. The very important status ,which the invertible matrix holds in the matrix theory ,can not be replaced. It has the important meaning for solving linear equations, linear transformation theory problems, rotating coordinate transform formula of matrix representation theory. And In solving practical problems such as mathematics, physics, economic and other fields, it is often need to establish proper mathematical models into linear algebra and algebra issues. Therefore it also is a commonly used tool, which is widely applied in practical problem. In view of the fact that the invertible matrix has important significance in both theory and practice, the study of judging invertible matrix is quite necessary. Through combining with my knowledge, referring to the relevant materials, this paper systematically organizes and summarizes eleven kinds of methods for judging invertible matrix ,which contain definition method, the adjoin matrix method, elementary transformation method, linear equations method and so on ,and the proof process. This paper also gives ten special matrix invertible conclusions. Finally, this paper selects several typical examples aiming at these discriminate methods, so that we know the methods for judging invertible matrix. 【Key Words】matrix inverse matrix elementary transformation adjoin matrix Linear equations

矩阵可逆的若干判别方法

矩阵可逆的若干判别方法 可逆矩阵是高等代数中不可缺少的一部分,也是矩阵运算中的重要组成部分,对解决数数学问题有重大意义,学习可逆矩阵,对我们解决一些代数问题有极大的帮助。 如何判断矩阵可逆,主要有以下十一种方法。 一、 矩阵可逆的基本概念 (1)对于n 阶矩阵A ,若存在n 阶矩阵B ,使得 AB=BA=I 则称矩阵A 为可逆矩阵(或非退化或非奇异或满秩矩阵),或A 可逆,称B 为A 的 逆矩阵,记作B= A -1 。 注:若矩阵可逆,则A 的逆矩阵由A 唯一确定。 (2)矩阵A 的行秩等于列秩。 (3)矩阵A 经过一系列初等变换得到矩阵B ,则A 与B 等价。 (4)记矩阵A 中元素a ij 的代数余子式为A ij ,则A*=(A ij )T n ×n ,我们就称A*为A 的伴随矩阵。 二、矩阵可逆的性质 (1)若矩阵A 可逆,则A 的逆矩阵A -1也可逆,且(A -1)-1 =A 。 (2)若矩阵A,B 均可逆,则矩阵AB 也可逆,且(AB) -1=B -1A -1 。 (3)若矩阵A 可逆,则A T 也可逆,且(A T )-1=(A -1)T 。 (4)若矩阵A 可逆,λ≠0,则λA 也可逆,且(A λ)= λ 1A -1 。 (5)若矩阵A 可逆,则|A -1 |= | |1A 。 (6)矩阵A 的逆矩阵A -1 = | |*A A 。 (7)若A 为m ×n 阶矩阵,P 为m 阶矩阵,Q 为n 阶矩阵,A,P,Q 均为可逆矩阵,则有r(PAQ)=r(PA)=r(AQ)=r(A)。 三、矩阵可逆的若干判别方法 (一)定义判别法 对于n 阶方阵A ,若存在n 阶方阵B ,使得AB=BA=I,则A 可逆,且B 为A 的逆, 记为B=A -1 。 例1. 判断矩阵A=??? ? ? ??010100001 是否可逆? 证 存在矩阵B=????? ??010100001,使得AB=BA=??? ? ? ??100010001 所以矩阵A 可逆。 注:此方法大多适用于简单的矩阵。

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

可逆矩阵判定典型例题

. 典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若, 则 ; (2)若A 、B 都是n 阶可逆矩阵, 则 ; (3) ; (4)若, 则 ; (5) ; (6)若, 则(l 为自然数); (7) . 证 (1)因为, 故A 是可逆矩阵, 且 两边同时取转置可得 故由可逆矩阵的定义可知 是A T 的逆矩阵. 即 (2)利用方阵与其对应的伴随矩阵的关系有 (2-7) 另一方面 (2-8) 比较式(2-7)、(2-8)可知 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘可得 (3)设n 阶方阵A 为 于是可得A 的伴随矩阵为 注意到A 的转置矩阵为 0||≠A T T A A )()(11--=* **)(A B AB =T T A A )()(**=0||≠A *11*)()(--=A A * 1*)1()(A A n --=-0||≠A l l A A )()(11--=* 1*)(A k kA n -=0||≠A E AA =-1 E E A A AA T T T T ===--)()()(11T A )(1-1 1)()(--=T T A A E AB AB AB ||)()(*=B I A B B A A B AB A B )|(|)())((*****==E AB E B A B B A |||| ||||*===))(()()(***AB A B AB AB =1 )(-AB * **)(A B AB =??? ???????????=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 * A ??? ???????????=nn n n n n A A A A A A A A A A ΛΛΛΛΛΛΛ212221212111 *

相关文档
相关文档 最新文档