文档库 最新最全的文档下载
当前位置:文档库 › 计算流体力学CFD及其应用

计算流体力学CFD及其应用

计算流体力学CFD及其应用
计算流体力学CFD及其应用

关键词:计算流体力学(CFD)应用

正文:

阅读有关计算流体力学的资料,我对于计算流体力学有一些了解。由于计算流体力学与我所学专业有一定联系。以下,我便对于计算流体力学进行简要的阐述并简略介绍其应用。

首先是我对计算流体力学概念的理解。计算流体力学( Computational Fluid Dynamics , 以下简称为CFD) 是基于计算机技术的一种数值计算工具, 用于求解流体的流动和传热问题。它是流体力学的一个分支, 用于求解固定几何形状空间内的流体的动量、热量和质量方程以及相关的其它方程, 并通过计算机模拟获得某种流体在特定条件下的有关数据。CFD 最早运用于汽车制造业、航天业及核工业[见Scott G M , Richardson P1The application of computational fluid dynamics in the food industry1Trends in Food Science and Technology 8 (4) : 119~124] , 用离散方程解决空气动力学中的流体力学问题。

这里是CFD的简要概述。CFD 计算相对于实验研究, 具有成本低、速度快、资料完备、可以模拟真实及理想条件等优点。20 世纪60 年代末, CFD 技术已经在流体力学各相关行业得到了广泛的应用[见Parviz M ,John K1Tackling turbulence with supercomputers1Science American ,1 :276] 。

CFD有多种计算方法,而主要有三种: 差分法、有限元法、有限体积法。计算流体力学是多领域交叉的学科, 涉及计算机科学、流体力学、偏微分方程的数学理论、计算几何学、数值分析等学科。这些学科的交叉融合, 相互促进和支持, 也推动着这些学科的深入发展。

以下是我从阅读过程中总结的CFD几点优势:

(1) 可以更细致地分析、研究流体的流动、物质和能量的传递等过程;

(2) 可以容易地改变实验条件、参数, 以获取大量在传统实验中很难得到的信息资料;

(3) 整个研究、设计所花的时间大大减少;

(4) 可以方便地用于那些无法实现具体测量的场合, 如高温、危险的环境;

(5) 根据模拟数据, 可以全方位的控制过程和优化设计。

当我们着手研究一项课题时, 我们首先需要建立模型: 根据相关专业知识将问题用数学方法表达出来。然后就是如何利用CFD 软件, 对问题进行求解、分析。整个CFD 处理过程大致包括三个部分:

A几何模型

前处理B划分网格

A确定CFD方法的控制方程

一般结构求解器B选择离散方法进行离散

C选用数值计算方法

D输入相关参数

A速度场温度场的分布

后处理B计算机可视化

我们在利用CFD 软件处理问题时, 采用什么样的网格形式、坐标形式、网格密度及湍流模型都是需要研究者慎重考虑的。应在能保证模拟准确度、精确度的前提下, 尽可能地选用简单的方法和模型。这样不仅可以简化问题, 而且可以节约计算机资源, 减少计算时间。随着CFD 在工程技术中应用的推广, CFD 也逐渐软件化、商业化。这些软件能方便地处理工程技术领域内的各种高难度复杂问题, 因而极具吸引力。然而CFD 软件在食品中的应用还没有很成熟, 有必要在计算精度、功能的强化、计算的效率、收敛性和操作的简单化等方面作进一步的完善。CFD 商业软件中既有通用的也有作为特殊用途的专业软件, 而且这些软件大多数都能在一般高性能计算机的UNIX 、LINUX 、WINDOWS 操作系统上运行, 这为这些软件的推广使用打下了良好的基础。本人正学习软件工程,对于CFX,FLUENT,PHOENICS的CFD软件很有兴趣。这些软件多为商业软件并不是十分完善,然而大多软件都在性能上作了很大的改进,以更好的服务CDF技术。

以上我阐述了一些对于计算流体力学的知识以及对于这些知识的一些理解。而对于计算流体力学的应用,我主要从举计算流体力学在制冷工程中的应用作为例子。这里参考了瞿晓华,谢晶等人在《计算流体力学在制冷工程的应用》一文。

CFD在食品冷冻冷藏方面的研究近几年来非常的活跃,这也是有CFD的独特优势决定的。以下我将分成几个方面来讲它在冷冻方面的应用。

冷藏陈列柜是冷藏链中的一个薄弱环节, 国内外许多研究工作者都为如何改善柜内的气流组织、温度控制、湿度控制、节能以及陈列柜外形等方面做了大量有益工作。Baleo 等对

陈列柜风幕的空气流动分布情况作了数值研究, 刘东毓和吴业正建立了冷藏陈列柜的二维CFD 模型, 并在此基础上对柜内气流场和传热机理作了研究; 为了节约占地面积, 维持一个较大的购物环境, 超市更偏向于使用立式冷藏陈列柜。放冷冻食品的陈列柜常装有玻璃门, 但是用于冷却食品的陈列柜一般是敞开式的。Cortella等对敞开式陈列柜作了CFD 研究, 考虑到压力项给计算带来的困难, 计算中没有把压力作为原始变量直接求解, 而是采用了涡量- 流函数法进行间接求解。对陈列柜内的空气流场和温度分布情况作了数值分析, 并进行了实验验证等等。就国内而言。陈天及和孙英英研究了影响冷柜温度分布和能耗的因素, 并指出了柜内温度和柜门的开启次数是两个作用较大的因素。

CFD在制冷方面的应用还体现在冷库方面。由于冷库情况比较复杂, 各类书籍对此介绍不多,而且数值计算在冷库方面的应用不多。余克志和陈天及建立了小型装配式冷库的二维物理模型和紊流数学模型, 并编制计算机程序进行数值求解, 揭示了库内气体流场特性与温度场分布特性, 并分析了装货高度和位置对库内速度场和温度场的影响以及冷风机送风速度及库温控制对库内温度分布的影响[见余克志, 陈天及1 货物对小型冷库流场和温度场影响的数值研究。

CFD在食品冷冻方面的应用研究较多。CFD 是一个强有力的过程模拟工具, 因而可以将CFD 应用于系统、设备的优化设计上。比如:ZEHUA—HU和DA-WAN-SUN对热火腿在吹风冷却过程中的传热、传质进行了CFD 模拟从而达到预测冷却速率及干耗情况的目的。模拟的结果与实验的数据有很好的一致性。在设计和制造前, 调整冷却设备的相关参数如: 进风管的设置、温度、流速, 风机的位置, 出风管的布置等等, 进行模拟计算, 在模拟的基础上对冷却设备进行优化设计, 这样可以最少的代价得到最佳的方案。

CFD在制冷方面还有其他应用,在此就不一一列举了。从以上可知CFD对于我们的日常生活是非常有用的。然而从各文献来看,CFD还主要局限在小型冷冻方面中,所以CFD 在这方面还许有很大的改进。

用计算流体力学里的大师Kuchemann的一句话来结尾我的读书笔记:每一种具体的理论或数值方法都是暂时的,而对流动本质的理解却是永恒的。

中国石油大学流体力学实验报告

中国石油大学(流体力学)实验报告 实验日期:2012-2-15 成绩: 班级:学号:姓名:教师: 同组者: 实验一、流体静力学实验 一、实验目的 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7 截止阀.;8. U形测压管;9.油柱;

10.水柱;11.减压放气阀 图1-1-1流体静力学实验装置图 2、说明 1.所有测管液面标高均以测压管2标尺零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p =+ γ z (1-1-1a ) 形式之二: h p p γ+=0(1-1b ) 式中z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ==(1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=-(1-1-3)

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

流体力学实践报告

黑龙江科技大学建筑工程二学历实践报告 流体力学实践报告 一、实践概述 在此次实践中,老师给我演示了雷诺试验与伯努利方程试验。下面我就实践的主要内容进行一下总结。 二、雷诺实验 (一)、实验目的 1、观察液体流动时的层流与紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。 2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失与断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律就是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。 3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。 (二)、实验原理 1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层

的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 液体运动的层流与紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断: Re=Vd/ν Re 称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。 在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。 2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知: f 2222221111h g 2V a p z g 2V a p z ++γ+=+γ+ 因为管径不变V 1=V 2 ∴=γ +-γ+=)p z ()p z (h 2211f △h 所以,压差计两测压管水面高差△h 即为1-1与1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速A Q V =,作为lgh f 与lgv 关系曲线,如下图所示,曲线上EC 段与BD 段均可用直线关系式表示,由斜截式方程得: lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线的斜率

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

室外风环境模拟计算报告123

新项目 室外风环境模拟计算报告 计算软件:风模拟分析软件PKPM-CFD 开发单位:中国建筑科学研究院 建研科技股份 合作单位:Software Cradle Co., Ltd. 韵能建筑科技 应用版本:Ver1.00 2015.10.19

室外风环境模拟分析报告 项目名称:新项目 项目地址: 建设单位: 设计单位: 参与单位: 规标准参考依据: 1、《绿色建筑评价标准》(GB/T 50378-2014) 2、《民用建筑设计通则》(GB 50352-2005) 3、《绿色建筑评价技术细则》

一、项目概述 1.1计算模型概况 1.2建筑物概况 图 1 建筑群平面图,红线建筑为目标建筑

二、指标要求 针对室外风环境评价依据为《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的条目要求。 2.1规的评价要求 《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的具体要求如下: 4.2.6 场地风环境有利于室外行走、活动舒适和建筑的自然通风。评分规则如下: 1 冬季典型风速和风向条件下,建筑物周围人行区风速低于5m/s,且室外风速放大系数小于2,得2分;除迎风第一排建筑外,建筑迎风面与背风面表面风压差不超过5Pa,再得1分。 2 过渡季、夏季典型风速和风向条件下,场地人活动区不出现涡旋或无风区,得2分;50%以上可开启外窗室外表面的风压差大于0.5Pa,得1分。 2.2模拟条件设置要求 1、室外风环境模拟的边界条件和基本设置需满足以下规定: 1)计算区域:建筑覆盖区域小于整个计算域面积3%;以目标建筑为中心,半径5H围为水平计算域。建筑上方计算区域要大于3H;H为建筑主体高度; 2)网格划分:建筑的每一边人行高度区1.5m或2m高度应划分10个网格或以上; 3)湍流模型选择:标准k-ε模型。高精度要求时采用Durbin模型或MMK模型。

计算流体力学螺旋管分析报告

重庆大学《计算流体力学与计算传热学基础》上机实验水平螺旋管内的对流换热过程 学生:刘伟文 学号:20123000 指导教师:李隆键 专业:热能与动力工程 重庆大学动力工程学院 二O一五年六月

一、前言 螺旋管在热力、化工、石油及核工业等领域得到了广泛应用,螺旋管换热器也具有结构简单、传热系数高等优点。它的传热系数比直管高,在相同空间里可得到更大的传热面积,布置更长的管道,减少了焊缝,提高了安全性。尽管螺旋管的流体阻力增大,压降增大,但是其传热效率的提高导致能量的节约要高于因阻力增大而消耗的能量。因此,螺旋管在许多行业得到普遍应用而倍受青睐。在工程应用中,由于工艺要求,往往需将流体加热至规定的温度范围,传热是其中的基本单元操作,所以有必要对螺旋管的传热与流动特性进行研究。从理论知识我们知道由于向心力的作用,流体从管中心部分由螺旋管内侧流向外侧壁面,因而造成了螺旋管内侧的低压区。在压差作用下,流体从外侧沿着圆管的上部和下部壁面流回内侧。这种流动是与管的轴向垂直的,也就是与流体的主体流动相垂直,称为二次流。流体的这种二次流与轴向主流复合成螺旋式的前进运动。这样,对于流体的传热传质,不仅可依靠流体的径向扩散,还有径向二次流的作用,相当于边界层进行了破坏,增强了流体传质。 二、GAMBIT建模

1、先建立一个半径为6的圆面。 2、将该圆面向X轴正方向移动120。 3、用圆面sweep形成螺旋柱体。(绕Y轴正方向)

4、重复以上操作,得到如图所示几何体弯管。 5、设置边界层。

并应用至每个截面:

6、设置圆面的网格,选择pave方式,interval size 选择0.6,这样边界层网格与圆面中心网格过渡较平缓。 7、依次建立体网格。 8、检查网格质量。 最差网格为0.41,满足要求。 8、输出网格。

流体力学报告

流体力学报告 每一门力学学科的建立,都需要建立模型,也就是把实际的问题抽象化,而抽象过程就是把现实中对所研究问题不重要的因素忽略掉,也就是模型假设,从而建立于这个问题相适应的模型进行研究,如果有意义有价值,也就慢慢深入研究,从而形成一门学科,它们都是随社会的发展而发展形成的.比如现如今最前沿的力学学科"纳米力学"就是如此。我们土木工程常说的三大力学有:1.理论力学---分析力学,振动力学,水力学或称为流体力学(这些研究对材料都不太侧重 )2.材料力学---弹性力学,塑性力学(都是又材料特性而分的) 3.结构力学:就是分析复杂的结构的情形。在此我重点叙述我对流体力学这门课学科的学习和认知。 一·流体的基本信息解释: 流体,是与固体相对应的一种物体形态,是液体和气体的总称. 由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。是液压传动和气压传动的介质。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体的研究内容。

二·流体力学的阐述: 流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同"力学模型"的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 三·对流体的研究假设: 连续体假设 物质都由分子构成,尽管分子都是离散分布的,做无规则的热运动.但理论和实验都表明,在很小的范围内,做热运动的流体分子微团的统计平均值是稳定的.因此可以近似的认为流体是由连续物质构成,其中的温度,密度,压力等物理量都是连续分布的标量场。 质量守恒 质量守恒目的是建立描述流体运动的方程组。欧拉法描述为:流进

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

计算流体力学结课报告

计算流体力学结课报告200Km/h列车fluent仿真计算 学部:化、环、生学部 学院:化工机械与安全学院 学号:31507095 班级:化1512班 学生姓名:孙金

引言 数值仿真就是对所建立的数值模型进行数值实验和求解的过程。而计算流体力学CFD (Computational Fluid Dynamics)就是在工程仿真实验领域中应用最广泛的一门学科。任何流体运动的规律都是以质量守恒定律、动量守恒定律和能量守恒定律为基础的。这些基本定律可由数学方程组来描述,如欧拉方程、N-S方程。采用数值计算方法,通过计算机求解这些控制流体流动的数学方程,进而研究流体的运动规律这就是CFD研究问题的方法。在实际计算流体力学方面,采用通用的CFD软件来完成工程上的一些流体力学问题,有极为广泛的应用前景。近年来,随着计算机技术以及相关技术的发展,CFD技术已经在工程领域内取得重大的进步,特别是在高速列车的外型设计方面起了很大作用。随着国家经济的发展,国家运输业也有了很大的发展,特别是列车经过几次提速后,高速列车在国家运输行业中所占比例不断提高。高速列车的特点是庞大、细长、在地面轨道上运行,其空气动力学问题非常复杂。空气在列车表面形成空气流场,空气阻力急剧增加,作用在列车的阻力大部分来自压强阻力,而一部分来自表面磨擦阻力,这就使能耗过大,同时列车可能出现较大的空气升力,导致列车产生“飘”的现象,激发列车脱轨事故的发生,因此研究高速列车气动力性能非常重要。用CFD仿真可以详细了解高速列车的空气动力特性,从而设计出阻力小、噪音低等各方面性能完善的高质量列车。本文采用CFD学科中的常用商业软件Fluent仿真一个时速200km/h的二维流线型车头的外流场,对其空气动力性能进行分析,从而得到不同车辆形状其周围流场的不同,进而分析哪种车型更适合。

流体力学计算软件报告

三维方管内部二次流特征分析 ——基于NUMECA 数值仿真 2120130457 李明月 【摘 要】运用NUMECA 数值仿真的方法,通过在有粘与无粘的工况下三维方管的内部三维流线对比分析,重点在分析粘性工况下方管内部沿流向各截面上的切向速度矢量分布特征和总压系数分布特征对二次流机理进行讨论和分析。 【关键字】数值仿真 二次流 欧拉方程 N-S 方程 压力梯度 0 前言 在边界层内流体质点向着压力梯度相反并与主流运动方向大致垂直的方向流动,称为二次流。几乎所有的过流通到里面都存在着速度和压力分布不均的情况,压力分布不均则产生一个从高压指向低压的作用力,它与惯性力的大小关系是能否形成二次流的关键。而二次流会使叶轮机械叶片的边界层增厚从而导致分离和损失,而二次流在换热器中增强了对流换热,从而强化了传热,故对二次流的成因和特征的研究具有很大的现实意义。而运用NUMECA 软件对一个简单的三维方管在不同工况下进行数值运算,能够直观地观察得到二次流的结果,并对此进行对比和分析,对流体初学者而言,一方面可以熟悉NUMECA 软件的基本操作,一方面可以基于此加深对二次流的理解。 1 几何描述 如图一所示为三维方管的三维图与所需设定的边界条件。在此算例中,最大的特点在于 中部有一个90°的弯道,且出流部分较长。 10m m 30m m 80m m r20m m r10m m 图1 几何模型

2 网格划分与边界条件 在调入IGG data 文件生成几何文件之后,用网格功能中生成网格块的功能用对应网格顶点与几何顶点重合的方式将网格块贴附在几何模型上,再调整网格数量,和Cluster Points 功能调整边界网格大小,使得近壁面的网格较密,使数值计算时能更好地捕捉到近壁面的参数。生成的网格如图2所示。网格生成后一共33×33×129个网格,网格质量为:最小的正交角度为50.68°,最大宽高比为200,最大膨胀比为1.51,多重网格数为3。在边界条件上,管壁设为SOL 类型,另外短管端面设为INL 类型,剩下那一面设为OUT 类型。 3 边界设定及收敛特性 在NUMECA Fine Turbo 里面建立两个工况并命名为一个无粘一个有粘。在无粘的工况下,选择的流动模型为基于Euler 方程的数学模型。在有粘工况下,流动模型选择的是湍流N-S 方程,并且湍流模型为Spalart-Allmaras 模型。两个工况皆为理想气体的定常流动,进口边界设为总量下(total quantities imposed )马赫数推断(mach number extrapolated ),进口压力为1.3bar ,进口温度为340K 。出口设定为由静压推断(static pressure imposed ),出口压力为1.0bar 。固壁面在欧拉方程下为无粘的欧拉壁,在N-S 方程里为绝热壁。经初始化后选择计算后输出的参数,除了常规的静压静温和速度外,在壁面数据(solid data )里额外输出一个粘性压力(viscous stress )。选择500次迭代后,两种工况下的收敛曲线如图3~图6所示。 图2 三维方管网格划分示意图 图3 Euler 方程下残差收敛曲线

相关文档
相关文档 最新文档