文档库 最新最全的文档下载
当前位置:文档库 › 自动温度控制系统设计

自动温度控制系统设计

自动温度控制系统设计
自动温度控制系统设计

南京邮电大学

毕业设计(论文)

题目自动温度控制系统设计

专业电气工程及其自动化

学生姓名

班级学号

指导教师

指导单位自动化学院

日期: 2012 年 11 月 1 日至 2013 年 7 月 10 日

毕业设计(论文)原创性声明

本人郑重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了谢意。

论文作者签名:

日期:2013 年5 月23日

摘要

随着现代信息技术的飞快发展,温度控制系统被广泛应用于农业和工业生产中,它对人们的生活产生了很大的影响,所以对温度控制系统的研究和设计意义重大。

本文设计的目的在于学习基于STC89C52单片机的自动温度控制系统的设计流程。本设计以单片机为主控单元,以DS18B20温度传感器为温度控制系统。由温度传感器采集温度,然后以数字信号传递给单片机。本设计用单片机实现温度检测,具有良好的实时性。用PC机完成数据显示、存储和统计分析,绘制实时温度曲线,并对系统所处状况作出判断。本设计中的硬件电路部分包括:STC89C52单片机最小系统,键盘扫描及按键处理程序,测温电路,继电器控制程序,PC机,串口通讯电路和接口电路。

关键字:温度控制;STC89C52单片机;串口通讯;DS18B20温度芯片;

ABSTRACT

With the rapid development of modern information technology, the temperature control system is widely used in agriculture and industry, it greatly influences on people's production and life,so the research and design of temperature control system has very important significance.

The purpose of this paper is to study automatic temperature control system design based on STC89C52 single chip microcomputer basic flow. Design with the single chip microcomputer processor as the master control unit, DS18B20 temperature sensor for temperature control system. Collecting temperature by temperature sensors, and then passed to the single chip microcomputer with digital signal. This design using single chip microcomputer temperature detection, has good real-time performance, use PC to complete data display, storage, and statistical analysis, draw the real-time temperature curve, and a judge for what is going on in the system. The design of hardware circuit including: STC89C52 SCM smallest system,digital tube display program,keyboard scanning and processing program,temperature measurement circuit,relay control program, PC ,a serial port communication circuit and interface circuit.

Key words:temperature control;STC89C52 single chip microcomputer;serial communication;temperature chip DS18B20

目录

第一章引言 (7)

1.1课题研究的背景 (7)

1.2目的和意义 (7)

1.3设计要求 (8)

第二章总体设计 (9)

2.1系统实现的功能 (9)

2.2总体设计方案 (9)

2.3本章小结 (9)

第三章硬件电路的设计 (11)

3.1系统总体设计方案 (11)

3.2单片机最小系统电路 (11)

3.3单片机的选择 (12)

3.4温度传感器电路 (14)

3.5电源电路 (16)

3.6串口通讯电路 (17)

3.7按键接口电路 (19)

第四章系统软件的设计 (20)

4.1程序结构分析 (20)

4.2主程序模块 (20)

4.3显示流程图 (22)

4.4DS18B20数据采集模块...............................................................^22 4.5本章小结 (23)

第五章系统调试及结论分析 (24)

5.1硬件调试 (24)

5.2软件调试 (25)

5.3结论分析 (26)

第六章总结及展望 (28)

6.1总结 (28)

6.2展望 (28)

结束语 (30)

致谢 (31)

参考文献 (32)

附录 (33)

第一章引言

1.1课题研究的背景

温度是工业生产和科学实验研究中的一个非常重要的参数,物体的许多物理现象和化学性质都与温度有关,许多生产过程都是在一定温度范围内进行的,需要测量温度的场合极其广泛。随着工业检测技术和自动化程度的不断提高,对温度控制的要求也越来越高。目前的温度测量系统一般使用的都是传统仪器,传统仪器的功能是通过硬件或固化的软件来实现。这种框架结构决定了它只能由仪器厂家来定义、制造,而且功能和规格一般都是固定的,用户无法随意改变其结构和功能。

工业控制是计算机应用的一个重要领域,计算机控制系统正是为了适应这一领域的需要而发展起来的一门专业技术,它主要研究如何将计算机技术、通过信息技术和自动控制理论应用于工业生产过程,并设计出所需要的计算机控制系统。随着微机测量和控制技术的快速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计就是基于STC89C52单片机的温度控制系统,通过本次课程实践,我们更加明确了单片机的广泛用途和使用方法,以及其工作的原理。

目前国内温控仪器的发展,相对国外而言在性能上还存在着一定的差距,它们之间最大的差别主要还是在控制算法方面,具体表现为国内温控仪器在全量程范围内温度控制精度比较低,自适应性较差。造成这种不足的原因是多方面的,如针对不同的被控对象,由于控制算法的不足而导致控制精度不稳定。

1.2目的和意义

随着工业生产的发展,温度的测量及控制变得越来越重要。温度控制技术涉及冶金,机械和电子等领域,是多种高新技术发展的综合集成。一方面,温度控制在制造业的应用范围越来越广阔,其标准化,智能化和网络化程度越来越高。另一方面,温度自动控制逐渐从制作业向非制造业转变,向以人为中心的个人化方向发展,并将服务于人类活动的各个领域。

本课题采用单片机STC89C52设计了自动温度控制系统。单片机STC89C52 能够根据DS18B20温度传感器所采集的温度在电脑上实时显示,从而把温度控制在设定的范围之内。

通过该课程的研究使我们对计算机控制系统有了一个全面的了解。掌握了常规控制算法的使用方法,掌握了简单微型计算机应用系统软硬的设计方法,进一步锻炼了同学们在微型计算机应用方面的实际工作能力。

1.3设计要求

本课题设计的是基于单片计算机的自动温度控制器,用于控制温度。要求熟

悉温度传感器和电阻加热设计器等温度测量控制元件。本文主要介绍了利用VB开发环境设计上位机的监控界面,上位机通过USB转max232串行口与89C52单片机通信,读取温度传感器DS18B20的温度测量数据,从而实现对温度参数的实时控制。本文主要进行了以下几方面的工作:

1、论述了自动温度控制系统的课题目的及意义,以及自动温度控制系统在国外的发展概况。

2、自动温度控制系统的设计思路及方案,选择系统软件开发平台。

3、介绍自动温度控制系统的硬件组成以及各硬件电路的设计。

4、介绍自动温度控制系统的软件整体设计方案,以及上位机和下位机的设计过程。

5、对所做工作进行总结,对未来研究工作的展望。

第二章总体设计

2.1系统实现的功能

本课题研究的自动温度控制系统主要实现以下功能:

1、实现单片机与电脑的串口通信,能及时地将温度数据传给电脑,并将在上位机界面形成曲线,直观的表现温度的变化。

2、检测参数的显示:如测试时间,设定温度和当前温度等,当温度超出某个范围时,及时进行温度的调节。

3、显示温度实时监测曲线,而且具有数字显示和波形图显示。

4、测试结果的数据保存:用户可以将采集到的数据的一部分或者全部保存在Excel表格中,方便查询和打印。

2.2总体设计方案

本论文设计开发的是基于VB的自动温度控制系统,通过对系统功能的分析,根据从总体到局部的设计原则,将整个系统分解为实现不同功能的几个部分,然后分别对每个部分进行设计。为了能够实现自动温度控制系统所提出的各项具体要求,可以将整个系统分解为上位机和下位机两个部分:上位机为装有VisualBasic软件的PC机,下位机是由单片机及外围电路组成的小系统。两个部分通过PC机中的USB串口进行通信。其中下位机部分主要完成的是温度信号的采集以及温度数据的输出;上位机部分完成对硬件的驱动,数据显示、处理与存储以及人机交互操作界面的生成。系统总体设计框图如图3.1所示。

2.3本章小结

本章主要内容是自动温度控制系统的设计方案。首先讲述了系统的设计原则,即从整体到部分的设计思想。在系统设计中要综合考虑系统的经济性、可靠性、可扩展性及易操作性等性能指标,再根据系统的实际情况提出总体设计方案。根据系统的主要功能将系统分为两大部分,即上位机部分和下位机部分,然后分别进行设计。两部分是通过计算机的串口进行通信的。同时选择VB作为温度检测系统的软件开发平台。在系统的整体设计中,软件设计是关键,也占大部分工作量。

第三章硬件电路的设计

3.1系统总体设计方案

图3.1 系统设计图

3.2单片机最小系统电路

在本课题设计的自动温度控制系统中,控制核心是低电压、高性能的CMOS8位STC89C52单片机,片内含有256 bytes随机存取数据存储器(RAM)。器件采用ATMEL公司的高密度,非易失性存储的技术生产。与标准的51单片机指令系统及8052产品引脚兼容,内置Flash存储单元和通用8位中央处理器。其外部晶振为12MHz,一个指令周期为1us,便于用电的方式瞬间擦除和改写,而且价格便宜。使用该单片机完全可以完成设计任务,其最小系统主要包括:复位电路、震荡电路以及存储器选择模式,电路如下图3.2所示:

图3.2.单片机最小系统电路

3.3单片机的选择

本课题设计的自动温度控制系统主控芯片选型为STC89C52单片机,其特点如下:

3.3.1 STC89C52单片机简介

目前,51系列单片机在工业检测领域得到了广泛的应用,我们可以在许多单片机应用领域中,配接各种类型的语音接口,构成具有合成语音输出能力的综合应用系统,来增强人机对话的功能。STC89C52单片机在一小块芯片上集成了一个微型计算机的各个组成部分。每一个单片机包括:一个8位的微型处理器CPU;一个512K的片内数据存储器RAM;4K片内程序存储器;两个定时器/记数器;四个8位并行的I/O接口P0-P3,每个接口既可以输入,也可以输出;五个中断源的中断控制系统;一个全双工UART的串行I/O口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。允许的最高振荡频率是12MHZ。以上各个部分通过内部总线相连。

3.3.2 STC89C52单片机时序

STC89C52单片机的一个机器周期由6个状态(s1—s6)组成,每个状态又持续2个震荡周期,分为P1和P2两个节拍。这样,一个机器周期由12个振荡周期组成。若采用12MHz的晶体振荡器,则每个机器周期为1us,每个状态周期为1/6us;在一般情况下,算术和逻辑操作发生在P1期间,而内部寄存器到寄存器的传输发生在P2期间。对于单周期指令,当指令操作码读入指令寄存器时,便从s1P2开始执行指令。如果是双字节指令,则在同一机器周期的s4期间读入第二字节。若为单字节指令,则在s1期间仍进行读入,但所读入的字节操作码被忽略,且程序计数数据也不加1。多数STC89C52指令周期为1—2个机器周期,只有乘法和除法指令需要两个以上机器周期的指令,它们需要4个机器周期。对于双字节单机器指令,通常是在一个机器周期内从程序存储器中读入两个字节,但是Movx指令例外,Movx指令是访问外部数据存储器的单字节双机器周期指令。在执行Movx指令期间,当外部数据存储器被访问且被选通时,跳过两次取址操作。

3.3.3 STC89C52单片机引脚介绍

STC89C52单片机的40个引脚中有2个专用于主电源的引脚,2个外接晶振的引脚,4个控制或与其它电源复用的引脚,以及32条输入输出I/O引脚。下面按引脚功能分为4个部分叙述各个引脚的功能。

(1)电源引脚Vcc和Vss

Vcc(40脚):接+5V电源正端;Vss(20脚):接+5V电源正端。

(2)外接晶振引脚XTAL1和XTAL2

XTAL1(19脚):接外部石英晶体的一端。在单片机内部,它是一个反相放大器的输入端,这个放大器采用外部时钟时,对于HMOS单片机,该引脚接地;对于CHOMS单片机,该引脚作为外部振荡信号的输入端。

XTAL2(18脚):接外部晶体的另一端。在单片机内部,接片内振荡器的反相放大器的输出端。当采用外部时钟时,对于HMOS单片机,该引脚作为外部振荡信号的输入端;对于CHMOS芯片,该引脚悬空不接。

(3)控制信号或与其它电源复用引脚

控制信号或与其它电源复用引脚有RST/VPD、ALE/P、PSEN和EA/VPP等4种形式。

(A).RST/VPD(9脚):RST即为RESET,VPD为备用电源,所以该引脚为单片机的上电复位或掉电保护端。当单片机振荡器工作时,该引脚上出现持续两个机器周期的高电平,就可实现复位操作,使单片机复位到初始状态。

当VCC发生故障,降低到低电平规定值或掉电时,该引脚可接上备用电源VPD (+5V)为内部RAM供电,以保证RAM中的数据不丢失。

(B).ALE/ P (30脚):当访问外部存储器时,ALE(允许地址锁存信号)以每机器周期两次的信号输出,用于锁存出现在P0口的低电平。

(C).PSEN(29脚):片外程序存储器读选通信输入端,低电平有效。当从外部程序存储器读取指令或常数时,每个机器周期PSEN两次有效,以通过数据总线口读回指令或常数。当访问外部数据存储器期间,PSEN信号将不再出现。

(D).EA/Vpp(31脚):EA为访问外部程序储器控制信号,低电平有效。当EA 端保持高电平时,单片机访问片内程序存储器4KB(MS—52子系列为8KB)。若超出该范围时,单片机自动去执行外部程序存储器的程序。当EA端保持低电平时,无论片内有无程序存储器,只访问外部程序存储器。对于片内含有EPROM的单片机,在EPROM编程期间,该引脚用于接21V的编程电源Vpp。

(4)输入/输出(I/O)引脚P0口、P1口、P2口及P3口

(A).P0口(39脚~22脚):P0.0~P0.7统称为P0口。当不接外部存储器与不扩展I/O接口时,它可作为准双向8位输入/输出接口。当接有外部程序存储器或扩展I/O口时,P0口为地址/数据分时复用口。它分时提供8位双向数据总线。对于片内含有EPROM的单片机,当EPROM编程时,从P0口输入指令字节,而当检验程序时,则输出指令字节。

(B).P1口(1脚~8脚):P1.0~P1.7统称为P1口,可作为准双向I/O接口使用。对于MCS—52子系列单片机,P1.0和P1.1还有第2功能:P1.0口用作定时器/计数器2的计数脉冲输入端T2;P1.1用作定时器/计数器2的外部控制端T2EX。对于EPROM编程和进行程序校验时,P0口接收输入的低8位地址。

(C).P2口(21脚~28脚):P2.0~P2.7统称为P2口,一般可作为准双向I/O

接口。当接有外部程序存储器或扩展I/O接口且寻址范围超过256个字节时,P2口用于高8位地址总线送出高8位地址。对于EPROM编程和进行程序校验时,P2口接收输入的8位地址。

(D).P3口(10脚到17脚):P3.0—P3.7统称为P3口。它为双功能口,可以作为一般的准双向I/O接口,也可以将每一位用于第二功能,而且P3口的每一条引脚均可独立定义为第一功能的输入输出或第二功能。P3口的第二功能见下表1

表1 单片机P3.0管脚含义

综上所述,MCS—51系列单片机的引脚作用可归纳为以下两点:

1).单片机的功能多,引脚数少,因而许多引脚具有第2功能;

2).单片机对外呈3总线形式,由P2、P0口组成16位地址总线;由P0口分时复用作为数据总线。

3.4温度传感器电路

采用一线制数字温度传感器DS18B20作为本课题的温度传感器。传感器输出信号进4.7K的上拉电阻直接接到单片机的P1.0引脚上。

3.4.1DS18B20温度传感器应用

DSl8B20数字温度计提供9位(二进制)温度读数,指示器件的温度。信息经过单线接口送入DSl8B20或从DSl8B20送出,因此从主机CPU到DSl8B20仅需一条线(和地线)。每一个DSl8B20在出厂时已经给定了唯一的序号,因此任意多个DSl8B20可以存放在同一条单线总线上,这允许在许多不同的地方放置温度敏感器件。DSl8B20的测量范围从-55到+125,增量值为0.5。可在l秒(典型值)内把温度变换成数字。

每一个DS18B20包括一个唯一的64位长的序号,该序号值存放在DS18B20内部的ROM(只读存贮器)中。开始8位是产品类型编码(DS18B20编码均为10H),接着的48位是每个器件唯一的序号,最后8位是前面56位的CRC(循环冗余校验)码。DS18B20中还有用于贮存测得的温度值的两个8位存贮器,RAM编号为0号和1号。1号存贮器存放温度值的符号如果温度为负(℃)。则1号存贮器8位全为1,否则全为0。0号存贮器用于存放温度值的补码,LSB(最低位)的“1”表示0.5℃。将存贮器中的二进制数求补再转换成十进制数并除以2就得到被测温度值(-550℃-125℃)。每只DS18B20都可以设置成两种供电方式,即数据总线供电方式和外部供电方式。采取数据总线供电方式可以节省一根导线,但完成温度测量的时间较长;采取外部供电方式则多用一根导线,但测量速度较快。DS18B20的引脚如图3.4.1所示。

图3.4.1

3.4.2DS18B20温度传感器特点

DS18B20是美国DALLAS公司生产的应用单总线技术数字温度传感器,特别适合用于构成多点温度测控系统,可直接将温度转化成串行数字信号(按9位二进制数字)然后给单片机处理,且在同一总线上可以挂接多个传感器芯片。本设计中温度传感器之所以选择单线数字器件DS18B20,是在经过多方面比较和考虑后决定的,主要有以下几方面的原因:

(1)系统的特性:测温范围为-55℃~+125℃,测温精度为士0.5℃;温度转换精度9~12位可变,能够直接将温度转换值以16位二进制数码的方式串行输出;12位精度转换的最大时间为750ms;可以通过数据线供电,具有超低功耗工作方式。

(2)系统成本:由于计算机技术和微电子技术的发展,新型大规模集成电路功能越来越强大,体积越来越小,而价格也越来越低。一支DS18B20的体积与普通三极管相差无几,价格只有十元人民币左右。

(3)系统复杂度:由于DS18B20是单总线器件,微处理器与其接口时仅需占用1个I/O端口且一条总线上可以挂接几十个DS18B20,测温时无需任何外部元件,因此,与模拟传感器相比,可以大大减少接线的数量,降低系统的复杂度,减少工程的施工量。

(4)系统的调试和维护:由于引线的减少,使得系统接口大为简化,给系统的调试带来方便。同时因为DS18B20是全数字元器件,故障率很低,抗干扰性强,因此,减少了系统的日常维护工作。

DS18B20温度传感器只有三根外引线:单线数据传输总线端口DQ ,外供电源线VDD,共用地线GND。DS18B20有两种供电方式:一种为数据线供电方式,此时VDD接地,它是通过内部电容在空闲时从数据线获取能量,来完成温度转换,相应的完成温度转换的时间较长。这种情况下,用单片机的一个I/O口来完成对DS18B20总线的上拉。另一种是外部供电方式(VDD接+5V),相应的完成温度测量的时间较短。

在本设计中采用外部供电方式实现DS18B20传感器与单片机的连接,其接口电路如图3.4.1所示.

图3.4.1温度传感器接口电路

3.5电源电路的设计

本系统采用电源稳压芯片是LM2596,该开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,输入电压是+5v,输入电压是+24v,同时具有很好的线性和负载调节特性。

该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。

该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)

在该温度控制系统中,其电源电路设计如下图3.5.1所示。

图3.5.1电源电路

3.6串口通讯电路

3.6.1MAX232电平转换芯片应用

本课题设计的通讯采用的是常见的串口通讯,协议转换芯片是采用MAX232A。MAX232芯片是美信(MAXIM)公司专为RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。下图3.6.1为MAX232转换芯片的电路引脚图。

图3.6.1MAX232转换芯片的电路引脚图

3.6.2MAX232电平转换芯片的引脚介绍

第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。

其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT 送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS 数据后从R1OUT、R2OUT输出。

第三部分是供电。15脚GND、16脚VCC(+5v)。

3.6.3 MAX232电平转换芯片的主要特点

1、符合所有的RS-232C技术标准

2、只需要单一 +5V电源供电

3、片载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+、V-

4、功耗低,典型供电电流5mA

5、内部集成2个RS-232C驱动器

6、高集成度,片外最低只需4个电容即可工作。

这些器件特别适合电池供电系统,这是由于其低功耗关断模式可以将功耗减小到5uW以内。MAX225、MAXX233、MAX235以及MAX245/MAX246/MAX247不需要外部元件,推荐用于印刷电路板面积有限的应用。Max232主要特点有:符合所有的RS-232C技术标准;只需要单一 +5V电源供电;片载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+、V-;功耗低,典型供电电流5mA;内部集成2个RS-232C驱动器;高集成度,片外最低只需4个电容即可工作。

51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。串口通讯接口图如下:

图3.6.1 通讯接口电路

3.7按键接口电路

本课题按键接口电路如下图所示:

图3.8.1 按键接口电路3.8硬件实物图

第四章系统软件的设计

由于整个系统软件比较复杂,为了便于编写、调试、修改和增删,系统程序的编制适合采用模块化的程序结构,故要求整个控制系统软件由许多独立的小模块组成,它们之间通过软件接口连接,遵循模块内数据关系紧凑,模块间数据关系松散的原则,将各功能模块组织成模块化的软件结构。

系统的软件设计主要包括对端口的初始化、DS18B20 模块设计(包括DS18B20 的复位、写命令字—ROM 操作命令和存储操作命令)、读温度函数和数值处理函数设计以及串口通信设计等几部分。

主模块的功能是为其余几个模块构建整体框架及初始化工作;数据采集模块的作用是将数字量采集并储存到存储器中;数据处理模块是将采集到的数据进行一系列的处理。

4.1程序结构分析

系统的软件主要是采用C语言,对单片机进行编程来实现各种功能。主程序对模块初始化,然后,读温度,处理温度,显示。主程序调用了以下几个子程序:温度信号处理程序,按键处理程序,继电器控制程序,单片机与PC机串口通讯程序。温度信号处理程序对温度芯片送来的数据进行处理、判断和显示。继电器控制程序用来控制继电器的运行。按键处理程序用来识别输入和进入相应程序。串口通讯程序用来实现PC机与单片机的通讯,将温度数据传给PC机。程序结构图如图4.2

图4.1系统程序流程图

4.2主程序模块

主程序模块要做的主要工作是对系统初始化和构建系统整体软件框架,其中

4.3显示流程图

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

基于单片机的智能温控风扇设计

摘要 本设计为智能温控风扇系统,该系统可以实现风扇随实时环境温度而智能变速功能。 系统主要选用STC89C52单片机作为控制中心,DS18B20数字温度传感器采集实时温度,再经单片机处理后通过三极管放大信号后驱动直流风扇的电机。用户可以预设上限、下限温度值,当测得环境温度值在预设上下限值区间中时,此时风扇以半速转动;当温度升高并大于预设上限温度值时,风扇会自动调速,以全速转动;当温度降低并低于预设的下限温度值时,这时风扇电机自动停止转动。全程实现风扇转速随外界温度而智能自变。 关键词:温控风扇,STC89C52单片机,DS18B20数字温度传感器,智能自变

Abstract This design for the intelligent temperature control fan system, the system can realize the fan intelligent variable speed function according to the real-time environmental temperature. STC89C52 single-chip microcomputer system is mainly used as the control center, DS18B20 digital temperature sensor to collect real-time temperature, then through single chip through triode amplifier signal after drive dc fan https://www.wendangku.net/doc/aa4978506.html,ers can preset upper limit and lower limit temperature, when the environment temperature measurement in the preset upper and lower limit range, the fan rotates at half speed;When the temperature is greater than the preset limit temperature, fan speed automatically, with full rotation.When the lower limit of temperature is lower and lower than the preset value, the fan motor automatically stop running.The entire implementation and intelligence from change fan speed varies with temperature. Key words:temperature control fan, STC89C52 Single chip microcomputer and DS18B20 digital temperature sensor, smart since the change

空调控制系统

1总体方案设计 随着人们生活水平的提高,人们对空调的舒适性和空气品质的要求越来越高,分体式空调已不能满足人们的要求,户式中央空调得到了迅猛的发展。就室内居住环境而言,恒温环境并非是卫生和舒适的。因为除了温度外,还有湿度、空气流速、空气洁净度等诸多因素影响到舒适的程度。而传统的中央空调靠设置机械温控开关来实现房间的恒温控制。这种控制方法,一方面操作不方便;另一方面温度波动范围大,不但影响人的舒适感,而且会造成一定的能量损耗。采用单片机温度控制系统控制的户式中央空调系统,可以根据室内的环境因素,调节风机的转速,为人们创造一个舒适的室内环境,同时又节省电。 随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。目前,单片机在工业控制系统诸多领域得到了极为广泛的应用。特别是其中的C51系列的单片机[3]的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。而本次设计就是要通过以C51系列单片机为控制核心,实现空调机温度控制系统的设计。 1.1方案一 选用AT89C51单片机为中央处理器,通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温系统对空气进行处理,从而模拟实现空调温度控制单元的工作情况。在整个设计中,涉及到温度检测电路、驱动控制电路、显示电路、键盘电路以及电源的设计等电路。其中单片机的控制程序是起到各个电路之间的相互协调,控制各个电路正常工作的至关重要的作用。其方框图如下: 图1-1 方案一设计图框 该图控制简单,思路清晰,各单元模块的相互衔接较简单,同时成本低廉,用的各种器件都是常用器件,更具有使用性。 1.2方案二

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

温控风扇系统设计

自动化系统创意设计大赛作品说明书 作品名称:温控风扇系统设计 队员: 2015年4月

目录 1、引言 (3) 2、背景 (3) 3、意义与应用 (3) 4、原理简介 (4) 5、方案设计 (4) 6、STC12C5A60S2单片机 (5) 6.1简介 (5) 6.2 PWM寄存器设置 (5) 6.3 PWM占空比计算方法 (5) 6.4 I/O工作方式设置 (6) 7、LCD液晶显示屏 (6) 8、温度传感器DS18B20 (8) 8.1 初始化 (9) 8.2 写操作 (10) 8.3 读操作 (10) 9、风扇 (10) 拓展1: (10) 拓展2: (11) 10、硬件电路设计 (12) 10.1原理图和部分电路PCB图 (12) 10.2 电机驱动电路 (13) 11、软件设计 (14) 11.1主函数流程图 (14) 11.2 温度控制风扇程序流程图 (15) 11.3 按键控制风扇程序流程图 (16) 11.4 按键设定温度程序流程图 (17) 12、结语 (18) 参考文献: (18) 附录Ⅰ:实物硬件图 (18) 附录Ⅱ:程序 (18)

摘要:本设计是基于STC12C5A60S2单片机技术与温度传感器测量外界温度的设计 原理,进行了不同设计方案的比较,给出了设计的硬件电路,同时对各种关键硬件进行 较详细的介绍,并且以流程图的方式对系统设计作出介绍。系统主要通过温度传感器控 制不同的PWM占空比输出来控制风扇的档位。而出于方便、可选择性的考虑,系统也添 加了辅助功能,就是直接手动控制风扇的档位。 关键词:STC12C5A60S2单片机,DS18B20温度传感器,PWM 1、引言 温控风扇在节能环保方面具有一定的作用,其工作原理除了普通的手动档位调节,主要是通过温度传感器感应外界温度,并自主地进行档位的调节,这样在风扇开着的情况下,不需进行手动就可以根据不同的外界温度进行自主调节风力大小,达到节能目的。 2、背景 随着空调机在日常生活中的普遍应用,很容易想到电风扇会成为空调的社会淘汰品,其实经过市场的考验和证实,真实的并不是这样的,在空调产品的冲击下,电风扇产品仍然具有很强大的生命力,电风扇在市场的考验中并没有淡出市场,反而销售在不停的复苏中,具有强大的发展空间。据市场调查,电风扇的不停复苏主要在以下原因:一,是电风扇虽然没有空调机的强大的制冷功能,但电风扇是直接取风,风力更加温和,比较适合老年人、儿童以及体质虚弱的人使用。二,是电风扇经过多年的市场使用,较符合人们的使用习惯,而且结构简单、操作方便、安装简易。三,是电风扇比起空调产品而言,其价格低廉,相对省电,更易的进入老百姓的家庭。在目前空调还没有普及,并且并不是所有的情况下空调都适合使用的情况下,智能风扇适合人体对温度的要求,智能风扇还有具有相当作用的。 3、意义与应用 1、普通电风扇的现状及存在的隐患:大部分只有手动调速,功能单一。长时间 在高负荷工作容易损坏电器,并且造成电量的损失。 2、作品可运用在家庭中,风扇的风力随温度而调节,即可以避免人因温度低吹 到冷风而着凉,也可达到节能目的,可见温控风扇更具有优越性。 3、其次将此系统装在产热多,急需排热的设备上,可以帮助它及时散掉大量的热。比如电脑散热器等。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

空调温度控制系统

关于空调温度控制系统的研讨 摘要本文介绍了空调机温度控制系统。本温度控制系统采用的是AT80C51单片机采集数据,处理数据来实现对温度的控制。主要过程如下:利用温度传感器收集的信号,将电信号通过A/D转换器转换成数字信号,传送给单片机进行数据处理,并向压缩机输出控制信号,来决定空调是出于制冷或是制热功能。当安装有LED实时显示被控制温度及设定温度,使系统应用更加地方便,也更加的直观。 关键字 AT80C51单片机 A/D转换器温度传感器 随着人们生活水平的日益提高,空调已成为现代家庭不可或缺的家用电器设备,人们也对空调的舒适性和空气品质的要求提出了更高的要求。现代的只能空调,不仅利用了数字电路技术与模拟电路技术,而且采用了单片机技术,实现了软硬件的结合,既完善了空调的功能,又简化了空调的控制与操作;不仅满足了不同用户对环境温度的不同要求,而且能全智能调节室内的温度。为此,文中以单片机AT80C51为核心,利用LM35温度传感器、ADC0804转换器和数码管等,对温度控制系统进行了设计。 一、总体设计方案 空调温度控制系统,只要完成对温度的采集、显示以及设定等工作,从而实现对空调控制。传统的情况时采用滑动电阻器电阻充当测温器件的方案,虽然其中段测量线性度好,精度较高,但是测量电路的设计难度高,且测量电路系统庞大,难于调试,而且成本相对较高。鉴于上述原因,我们采用了ADC0804将输入的模拟信号充当测温器件。外部温度信号经ADC0804将输入的模拟信号转换成8位的数字信号,通过并口传送到单片机(AT80C51)。单片机系统将接收的数字信号译码处理,通过数码管将温度显示出来,同时单片机系统还将完成按键温度设定、一段温度内空调没法使用等程序的处理,将处理温度信号与设定温度值比较形成可控制空调制冷、制热、停止工作三种工作状态,从而实现空调的智能化。原理图如下图所示: 图 1 系统原理图 二、硬件电路设计 该空调温度控制系统的硬件电路,只要由单片机AT80C51最小系统、8段译码管、数码管、按键电路、驱动电路、A/D转换电路、温度采样电路等组成。图2为该实验的系统框图,我们下面主要就几个模块进行扼要介绍。 图2 系统框图 2.1 温度的采集——温度传感器 通过查找资料我们发现,温度传感器并不是什么复杂和神秘的电子器件,在对精度要求不高的一般应用中,可以使用一个型号为LM35【1】的温度传感器,它的外观与一般的三极管没有什么区别,温度传感器LM35只有3个管脚:+Vs、Vout、GND。其中,+Vs接+4V~+20V 的电源,为器件工作供电,GND接地。当加上工作电压后,LM35的外壳就开始感应温度,并在Vout管脚输出电压。Vout的输出与温度具有线性关系。 当温度为0时,Vout=0V,如果温度上升,则每上升1°C,Vout的输出增加10mV。如果温度为25°C时,Vout=25*10=250mV。这样,使用一个简单的温度传感器LM35就可以把温度转换成电压信号,这个电压信号直观地反映环境的温度。 2.2 模拟/数字转换器ADC0804

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

基于单片机的智能温控系统的设计与实现

课程设计报告设计名称基于单片机的智能温控系统的设计与实现 学校陕西电子科技职业学院 学院电子工程学院 学生姓名王一飞 班级1507 指导教师聂弘颖 时间2017年10月23日

一、概述 随着嵌入式技术、计算机技术、通信技术的不断发展与成熟。控制系统以其直观、方便、准确、适用广泛而被越来越广泛地应用于工业过程、空调系统、智能楼宇等。恒温控制系统,控制对象是温度。温度控制在日常生活及工作领域应用的相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制,而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。 本项目设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:被控温度范围可以调整,初始范围25<=T<=35。如果被测温度在25度到35度之间,则既不加热,又不报警;如果被测温度小于25度,则既加热,又报警;如果被测温度大于35度,则报警,不加热。 数码管显示温度,温度精确到整数。 二、方案设计 采用单片机+单总线DS18B20的方案,其中单片机采用51兼容系列 三、详细硬件设计及原件介绍 3.1 单片机最小系统 在基于单片机的应用系统中,其核心是单片机的最小系统,而单片机又是最小系统的核心,为了方便起见,采用的单片机型号是:STC89C52RC,内部资源有:8KB FLASH ,512B SRAM,4个8位I/O,2个TC,1个UART,带ISP和IAP功能。是近年来流行的低端51单片机。时钟电路采用12.0M晶体,复位电路采用简单的RC复位电路。R=10K,C=10uF,详细电路见总体原理图 3.2 DS18B20简介 DS18B20是采用“1-wire”一线总线传输数据的集成温度传感器,信息经过单线接口送入DS18B20或从DS18B20送出,因此从中央处理器到DS18B20仅需连接一条线。可采用外部电源供电,也可采用总线供电方式,此时,把VDD连接在一起作为数字电源。 因为每一个DS18B20有唯一的系列号(silicon serial number),因此多个DS18B20可以存在于同一条单线总线上,这允许在许多地方放置温度灵敏器件。此特性的应用范围包括HVAC环境控制,建筑物、设备或机械内的温度检测。 3.2 DS18B20与单片机接口

自动调温风扇系统设计

自动调温风扇系统设计 发表时间:2016-10-20T13:48:56.933Z 来源:《电力技术》2016年第8期作者:李亚昆 [导读] 该设计以STC89C51为控制核心,利用DS18B20温度传感器进行实时温度检测,并对电机驱动电路进行了设计。 郑州工业应用技术学院机电工程学院河南新郑 451100 摘要:该设计以STC89C51为控制核心,利用DS18B20温度传感器进行实时温度检测,并对电机驱动电路进行了设计,同时本设计增加了LCD1602液晶显示模块,能实时显示温度、风扇转速等信息。最终经过仿真调试和实践证明,该系统有一定应用价值。 关键词:STC89C51;自动调温;风扇;设计 0 绪论 风扇是较为经济和实惠的电器,但是,在实际应用过程中,用户对当前风扇的转速信息、环境温度等信息一无所知,为了实现风扇的智能化和人性化,特此,设计了以STC89C51为控制核心的自动调温风扇控制系统。该系统经济、实惠,有一定的应用价值。 1 总体设计 该设计以STC89C51为控制核心,主要包括:温度采集模块、液晶显示模块、电机驱动模块、人体感应模块等。人体感应模块,通过对红外线人体辐射的探测,判断风扇前方是否有人,在环境温度达到要求的情况下,有人则自行开启,无人则自行关闭。系统总体框图如图1所示。 图1 系统总体框图 2 硬件电路设计 系统硬件电路包含模块较多,该设计主要介绍温度采集模块和风扇驱动模块。先分别介绍如下。 2.1 温度采集模块设计 该设进行温度采集模块设计时,主要采用DS18B20温度传感器。此传感器能快速准确的检测出温度,电路连接简单,温度采集模块电路如图2所示。 图2 DS18B20电路 2.2 风扇驱动电路设计 风扇驱动电路如图3所示,当人体感应模块和温度检测模块同时满足要求时,风扇才开始启动,此时检测到的温度和设置温度进行比较,处理后经过P1.0口输出,驱动风扇。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

空调温度控制系统设计-精品

题目:空调温度控制系统设计

空调温度控制系统设计 摘要 空调温度控制过去一直依赖温控电动阀,电动阀可与温控器配套使用,实现对供暖通风和空调系统中冷热水的开关控制。由于我国工业水质很多是含Ca2+、Mg2+、Coo2-等离子浓度很高的硬水,在温度变化的空调管道中极易结垢,造成电动阀早期即失效损坏。另外,人们还常采用三速风机盘管代替温控电动阀进行调温,它是通过手动开关调整风机的风速来实现调温,不能自动控温,这就不可避免的发生低负荷时出现温度超调而造成能源的浪费。 本次设计的空调温度控制系统中,首先通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机AT89C51,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温程序对空气进行处理,从而模拟实现空调温度控制单元的工作情况。 关键词:空调温度控制系统;温控电动阀;单片机

Air-conditioning Temperature Control System Design Abstract Air-conditioning temperature control has been depended on electric valve, electric valve can be used with matching Thermostat realize heating ventilation and air conditioning systems in hot and cold water control switch. Because many of China's industrial water containing Ca2 +, Mg2 +, Coo2-such as the hard water ions in high concentrations in the temperature of the air-conditioning pipes vulnerable to scaling, resulting in the early stage of electrical failure damaged valve. In addition, it is also often used in place of three-speed fan coil thermostat temperature control for electric valve, which is adjusted by manually switch the fan speed to achieve the thermostat can not be automatic temperature control, which inevitably occurs when low-load temperature overshoot caused by the waste of energy. The design of air-conditioning temperature control system, first of all through the temperature sensor DS18B20 collection of air temperature, the temperature will be collected to the single-chip signal transmission AT89C51, controlled by the single-chip display, and compare the collected temperature and set temperature is line, and then drive the heating or air conditioning to cool the air to deal with procedures, which simulate the temperature control unit for air conditioning work. Key words:Air-conditioning temperature control system; Temperature-controlled electric valve; Single-chip

基于单片机的智能温控系统的设计与实现

基于单片机的智能温控系统的设计与实现 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课程设计报告设计名称基于单片机的智能温控系统的设计与实现 学校陕西电子科技职业学院 学院电子工程学院 学生姓名王一飞 班级1507 指导教师聂弘颖 时间2017年10月23日

一、概述 随着嵌入式技术、计算机技术、通信技术的不断发展与成熟。控制系统以其直观、方便、准确、适用广泛而被越来越广泛地应用于工业过程、空调系统、智能楼宇等。恒温控制系统,控制对象是温度。温度控制在日常生活及工作领域应用的相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制,而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。 本项目设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:被控温度范围可以调整,初始范围25<=T<=35。如果被测温度在25度到35度之间,则既不加热,又不报警;如果被测温度小于25度,则既加热,又报警;如果被测温度大于35度,则报警,不加热。 数码管显示温度,温度精确到整数。 二、方案设计 采用单片机+单总线DS18B20的方案,其中单片机采用51兼容系列 三、详细硬件设计及原件介绍 单片机最小系统 在基于单片机的应用系统中,其核心是单片机的最小系统,而单片机又是最小系统的核心,为了方便起见,采用的单片机型号是:STC89C52RC,内部资源有:8KB FLASH ,512B SRAM,4个8位I/O,2个TC,1个UART,带ISP和IAP功能。是近年来流行的低端51单片机。时钟电路采用晶体,复位电路采用简单的RC复位电路。 R=10K,C=10uF,详细电路见总体原理图

基于STM32温控风扇设计

齐齐哈尔大学 综合实践(论文) 题目基于STM32的温控风扇 学院通信与电子工程学院 专业班级 学生姓名 学生学号 指导教师朱磊

摘要:随着科技的日新月异,智能家居逐渐走入普通家庭,风扇作为基本的家用电器也将成为智能家居的一部分。这里介绍的是以STM32单片机为控制单元并结合嵌入式技术设计的一款具有温控调速、液晶显示温度等信息的智能电风扇。经过前期设计、制作和最终的测试得出,该风扇电源稳定性好,操作方便,运行可靠,功能强大,价格低廉,节约能耗,能够满足用户多元化的需求。该风扇具有的人性化设计和低廉的价格很适合普通用户家庭使用。 关键词:STM32单片机电风扇温控调速

目录 摘要............................................................................. 错误!未定义书签。 第1章绪论 (1) 1.1 概述............................................................ 错误!未定义书签。 1.2 设计目的及应用 (1) 第2章温控电风扇方案论证 (2) 2.1 温度传感器的选择 (2) 2.2 控制核心的选择 (2) 2.3 显示电路的选择 (3) 2.4 调速方式的选择 (3) 第3章温控电风扇硬件设计 (5) 3.1 硬件系统总体设计 (5) 3.2 本系统各器件简介 (5) 3.2.1 DS18B20简介 (5) 3.2.2 STM32简介 (7) 3.2.3 LCD1602液晶屏简介 (8) 3.3 各部分电路设计 (9) 3.3.1 温度传感器的电路 (9) 3.3.2 LCD1602液晶屏显示电路 (10) 第4章温控电风扇软件设计 (11) 4.1 软件系统总体设计 (11) 4.2 系统初始化程序设计 (11) 4.3 温度采集与显示程序设计..................... 1错误!未定义书签。结论 (14) 参考文献 (15) 附录1 (16) 附录2 (25)

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

相关文档
相关文档 最新文档