文档库 最新最全的文档下载
当前位置:文档库 › 国内外抗除草剂基因专利的分析

国内外抗除草剂基因专利的分析

国内外抗除草剂基因专利的分析
国内外抗除草剂基因专利的分析

张玉池,王晓蕾,徐文蓉,等.国内外抗除草剂基因专利的分析[J].杂草学报,2017,35(2):-22.

doi : 10. 19588/j. issn. 1003 - 935X. 2017. 02. 001

国内外抗除草剂基因专利的分析

张玉池,王晓蕾,徐文蓉,刘琪,相世刚,戴伟民,强胜,宋小玲

(南京农业大学杂草研究室,江苏南京210095)

摘要:抗除草剂基因是培育抗除草剂转基因作物的基础。自1983年第1例抗草甘膦基因报道以来,到目前已经从微生物和植物中发掘出大量的抗性基因,并采用人工改造和基因融合的方法获得了新的抗性基因。

本文归纳总结了国内外抗除草剂基因的专利,目的是为我国抗除草剂基因的发掘提供参考。经统计发现,国

际上抗除草剂基因专利有52项,发掘的基因对草甘膦、草丁膦、磺酰脲类、溴苯腈、2,-D、麦草畏、咪唑啉酮

类、苯并呋喃类、吡啶甲酸酯类、原卟啉原氧化酶(P P0)抑制剂类、羟苯基丙酮酸加双氧酶(H P P D)抑制剂类、

芳氧苯氧丙酸酯类(包括喹禾灵)和环己烯酮类13个种类除草剂有抗性。我国有48项专利,发掘的基因对草

甘膦、草丁膦、咪唑啉酮类、磺酰脲类4个种类除草剂有抗性,且40项属于抗草甘膦基因。我国虽在专利数量

上与国外相差不大,但在种类上远不及国外。因此,在我国抗除草剂基因的研究与开发方面面临着挑战。

关键词:抗除草剂基因;专利申请;除草剂;国内外差距;发展策略

中图分类号:S451 ;D913.4 文献标志码:A 文章编号:1003 -935X(2017)02 -001 -22

杂草学报2017年第35卷第2期一1—

Analysis on the Patents of Herbicide Resistance

Gene at Home and Abroad

ZHANG Yu-chi,WANG Xiao-le i,XU Wen-rong,LIU Q i,XIANG Shi-gang,

DAI Wei-min,QIANG Sheng,S0NG Xiao-ling

(W eed Research Laboratory,Nanjing Agricultural University,Nanjing 210095,China) Abstract : Herbicide resistance genes are the basis for breeding herbicide -resistant transgenic c rops.

case of glyphosate - resistance gene was reported in 1983, a large number of resistance genes have been isolated from

microbes and plants,and new resistance genes have been obtained by means of artificial modification and gene fusion.

I n order to provide information for devvloping herbicide - resistant genesdomestically,it summarized the patent of herbi-

cide -resistance gene at home and abroad. Through counting discovering,it was found that there were 52 herbicide -

resistance gene patents at abroad,and the genes were resistant to 13 herbicides lureas,bromoxynil ,2,4 -D,dicamba,imidazolinones,benzofuran,pyridine formate ,protoporphyrin oxidase (P P0) in-

收稿日期=2017 -05 -10

基金项目:国家转基因生物新品种培育科技重大专项(编号:2016ZX08012005 - 006);中国科学院学部咨询评议项目“我国杂草危害问题与对策”。

作者简介:张玉池(1989—),男,山东人,硕士研究生,研究方向为转基因作物安全评估。E- mail:1099564360@qq.c m。

通信作者:宋小玲,博士,教授,博士生导师,研究方向为转基因作物安全性评估。E- mail:sxl@https://www.wendangku.net/doc/a512357660.html,。hibitors, hydroxyl phenyl pyruvate plus dioxygenase ( HPPD ) inhibitors,aryloxy phenoxy propionates (quinoxaline) and cyclohexanediones. There are 48 herbicide -resistance gene patents in China, among which 40belonged to glyphosate resistant gene. While the genes were resistant to 4 herbicides including the glyphosate, glufosinate,imidazolinones and sulfony-lureas. Although the patent numbers had little disparity

转抗除草剂基因玉米的研究综述

转抗除草剂基因玉米的研究综述 学号:2014021120 专业:发育生物学 姓名:王碧微 摘要:玉米( Zea m ays L. )是世界三大谷类作物之一,在世界农业生产中占有相当重要的地位。采用常规育种技术尽管在产量、抗病等方面已取得巨大成效,但很难培育出抗除草剂的玉米材料,而利用转基因手段是改良玉米这一性状的有效途径。(1) 关键词:转基因抗除草剂玉米生理生化指标 1转基因玉米植株的获得 1.1 转基因玉米的遗传转化 利用冻融转化法将载体转入农杆菌中。玉米遗传转化采用茎尖直接转化法。将玉米种子用无菌水冲洗后,放入盛有珍珠岩的盘子中,加入适量的水,覆盖有孔的保鲜膜。常温下进行发芽。条件适宜时,5~6天即可出苗。选取上胚轴已经充分伸长,但第一片真叶尚未突破胚芽鞘的幼芽。用锋利的手术刀依次迅速环切胚芽鞘、第一、二、三、四片真叶,小心剥离,暴露茎端。用锋利的手术刀片垂直茎端轻划1下,破坏原套结构,暴露原体细胞。将切除茎尖的玉米植株放入侵染培养基,然后进行抽真空10 min。取出后迅速栽入营养土中,置于光下常规培养。15天后茎尖处长出新芽。 1.2 转基因玉米的鉴定 待玉米生长至3-5叶期,剪取少量抗性筛选的玉米叶片和野生型玉米叶片进行GUS 蛋白活性检测(Jefferson et al.,1987),在体视显微镜下观察染色结果。按照TIANGEN BIOTECH公司出产的新型植物总DNA提取试剂盒方法分别提取经GUS染色呈阳性玉米植株和野生型玉米植株的基因组DNA,用于转基因植株PCR鉴定。设计特异引物和对植株进行检测。按照以下程序进行扩增:94℃, 5min;94℃, 30 sec , 52.3℃, 30 sec, 72℃, 45sec,35 cycles; 72℃延伸7 min; 4℃保温。反应完毕,取5 μL扩增产物在含Gelred的1%琼脂糖凝胶中电泳,紫外灯下检测结果。(2) 2转基因植株的生理生化指标检测 2.1 转基因后代的除草剂涂抹 转基因植株和对照间隔种植,五叶一心时,用毛笔蘸取2%的草甘膦涂抹新叶下一叶,涂抹14d后统计植株的抗草甘膦株数和枯死株数。(3) 2.2 转基因玉米对草甘膦的敏感性分析 将筛选出的转基因植株与非转基因玉米种植与试验田中。喷药前,首先利用PCR方法剔除掉转基因株系中的非转基因植株。转基因株系和非转基因玉米各分为均等的两个区域。待其长至5叶期。分别喷施草甘膦(4Kg/ha)。喷施剂量为大田中防治杂草的常规剂量。喷施10天和20天后分别记录下植株的敏感性水平。(4) 2.3转基因玉米的农艺性状分析 种植于试验田的转基因玉米株系和非转基因玉米,待其成熟时从实验组和对照组中随机挑取6株植株测量并记录下株高(plant height) ,橞长(ear length),每橞颗粒数(kernelsper ear),千粒重(weight per l 000 kernels)。随后计算出各测量参数平均值及标准差。(5) 2.4 转基因玉米营养成分的比较分析(6)

植物抗病、抗虫及抗除草剂基因与基因工程

植物抗病、抗虫及抗除草剂基因与基因工程 张永强 (西南大学植物保护学院, 重庆 400716) 摘 要:病虫草害历来是植物保护工作的重中之重,农药为病虫草害防治立下了汗马功劳。近来由于大量使用、滥用农药给环境带来了巨大的负面影响。20世纪70年代兴起的基因工程为这一问题的解决带来了新的途径。本文就植物抗病基因分类、最新报道的相关基因;抗虫基因的来源、最新报道的抗虫基因及试验结果;抗除草剂基因以及基因工程技术在现代农业中的应用予以综述。 关键词:植物抗病;植物抗虫;抗除草剂;基因工程 农药伴随人类改造自然,征服自然已经有100多年的历史,在促进农业发展和对人类发展做出卓越贡献的同时,也不可避免的带来许多负面影响,如:对非靶标生物的毒害、对环境的污染、对生态系统的破坏以及病虫草抗药性的产生等。特别是化学农药对动物和人类健康的影响,已经成为全人类普遍关心和急需解决的全球性问题。诞生在20世纪70年代的基因工程技术为这些问题的解决提供了一条新的途径。进入20世纪90年代具有实用价值的转基因生物品种因其诸多的优势,逐渐被人们所接受,而迅速走向商品化和产业化。 1 植物抗病基因与基因工程 植物受病原菌侵染时,会诱导相关的基因产生一系列参与植物防御反应的拮抗物质,阻止病害的传播和病原菌的进一步侵入。将这些参与植物防御反应的相关基因导入植物,使其在植物体内表达,可以提高植物的抗病能力。植物抗病基因在进化中形成了几种共有的进化形式。植物祖先抗病基因的复制创造了新基因座。基因间和基因内重组导致了变异,也导致了新特异性抗病基因的产生;另外,与特异性识别相关的富含亮氨酸重复区顺应于适应性选择;同样,类转座元件在抗病基因座中的插入加速了抗病基因的进化(庄军等,2004)。 1.1 植物抗病基因的分类 植物中许多抗病基因已被克隆,根据抗病蛋白(R蛋白)将抗病基因(R基因)分为以下几类。第一类,玉米抗圆斑病的基因Hml,其编码的解毒酶能钝化病原真菌所产生的HC 毒素,代表着抗病基因中与病原物亲和性因子作用的一类基因。 第二类,番茄抗细菌叶斑病的基因pto,其编码蛋白Pto是一种丝氨酸/苏氨酸激酶。AvrPto 蛋白是病原菌假单胞杆菌Pseudomonas进入植物细胞中通过Ⅲ型分泌系统分泌的,现已证实Pto激酶噜噗结构域中204位苏氨酸决定着Pto对AvrPto的特异性识别。具有自动磷酸化能力的Pto激酶与AvrPto相互作用从而产生了过敏性反应。 第三类抗病基因所编码的蛋白显示出与细胞间信号转导蛋白具有结构相似性。这些蛋白所共有的基元是富含亮氨酸重复序列(Leucine-rich repeat,LRR),一般由24个氨基酸残基组成,其共同蛋白序列是LXXLXXLXXLXLXXNXLSGXIPXX(氨基酸的单字符号,X代表任何一种氨基酸)。这一类型基因的共同结构是LRR-TM,它们编码的蛋白包括胞外N端LRR 重复区、膜锚定蛋白和胞质内C末端部分(如图1所示)。 第四类是水稻抗白叶枯病Xanthomonas oryzae pv.oryzae,Xoo的基因xa27。这一基因所编码的Xa21蛋白具有3个受体激酶特征的主要结构域:胞外LRRs结构、跨膜结构域及胞内激

植物转基因育种概述

植物转基因育种概述 https://www.wendangku.net/doc/a512357660.html, 来源:中学生物学 作者:李志翔 日期:2007-10-1 为了培育高产、优质、抗逆性强的作物新品种,需将一种植物的优良遗传性状转移到另一种植物体中。若采用传统的杂交育种法进行随机筛选或通过组织培养、理化诱变、细胞融合等方法定向筛选优良性状培育新品种,其盲目性较大,筛选效率低,又有明显的种属界限而产生一定的生殖障碍,成功率不高。目前发展起来的植物基因工程技术则能有效地解决上述难题。通过特定目的基因的定向转移,其遗传变异频率比自发突变高出102~104倍,选择效率高,大大地避免了盲目性;又由于基因来源广泛,打破了种属界限,可以克服杂交育种过程中的生殖障碍,成功率提高。因此,植物基因工程技术已成为作物遗传育种的有效新途径,倍受重视。通过基因工程技术定向转移基因后获得的植物,称为转基因植物。 自1983年世界上首次成功获得第一株转基因植物以来,植物基因工程技术已广泛应用于作物品质改良、抗病性、抗虫性、抗病毒性、抗除草剂、杂种优势的利用等方面。迄今,全世界至少有300多种基因(性状)用于转化植物、微生物和动物。许多转基因产品已陆续投放全球市场,经济效益显著。 1 抗病毒转基因植物 植物病毒病是我国农业生产上最主要的病害之一,对我国的粮食作物、经济作物及果树蔬菜均造成严重危害, 经济损失巨大,但迄今缺少有效的化学防治方法。目前

人们已经可以通过植物基因工程技术,获得抗病毒转基因植物,以控制植物病毒的危害。其原理是: 一是利用植物生物技术,将病毒外壳蛋白基因或卫星RNA基因转入到植物基因组中,并获得转基因植株。这些植株叶片细胞中就会有病毒外壳蛋白或卫星RNA的表达和积累,就能够抑制相应的侵染病毒的RNA复制,从而可以减弱病毒病的症状或推迟病毒病发生时间,即具有一定的抗病毒能力。二是将病毒的反义RNA的相应DNA序列重组到植物的基因组里,使其合成反义的RNA。当植物被相应的病毒感染时,病毒的mRNA就可能与植物细胞中合成、积累的病毒反义RNA结合而无法反向复制和转录,从而控制病毒对植物的危害。 1.1 抗烟草花叶病毒的转基因植物 烟草花叶病毒(TMV)是一种RNA病毒,由单链RNA及外壳蛋白组成。研究证明,TMV侵染植物后,其外壳蛋白具有抑制新侵染相应病毒释放mRNA的作用。目前已成功地将TMV外壳蛋白基因转入到烟草细胞中,表达了病毒蛋白并对该病毒产生了抗性。 1.2 抗黄瓜花叶病毒转基因植物 黄瓜花叶病毒(CMV)对农作物危害极为严重,可侵染上千种植物。目前人们已成功地将CMV的卫星RNA基因转入到烟草、辣椒、甜瓜、番茄和矮牵牛等植物中,在植物体内合成、累积的卫星RNA,可以抑制相应的病毒RNA的复制,能显著减轻病毒的危害。 此外,人们还培育出了抗苜蓿花叶病毒(AMV)、抗烟草环斑病毒(TobRV)的转基因植物,抗病毒效应都非常显著。

抗逆和抗除草剂关键基因克隆及功能验证

抗逆和抗除草剂关键基因克隆及功能验证 我于2010年4月26日上午9点在学校行政楼附三楼第一会议室听了报告人华学军中科院植物所研究员关于抗逆和抗除草剂关键基因克隆及功能验证的讨论会其中包括水稻抗旱基因的挖掘与利用,植物激素脱落酸信号转导······很多有重要价值的报告感想良多,下来也查阅了很多有趣的资料!大大提高了自己的兴趣! 基因克隆技术是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。"分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA 连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。 基因是细胞内DNA分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因控制蛋白质合成,是不同物种以及同一物种的不同个体表现出不同的性状的根本原因,即所谓"种瓜得瓜,种豆得豆","一母生九子,九子各不同"。基因通过DNA复制及细胞分裂把遗传信息传递给下一代,并通过控制蛋白质的合成使遗传信息得到表达。 基因克隆技术包括了一系列技术,它大约建立于70年代初期。美国斯坦福大学的伯格(P.Berg)等人于1972年把一种猿猴病毒的DNA与λ噬菌体DNA 用同一种限制性内切酶切割后,再用DNA连接酶把这两种DNA分子连接起来,于是产生了一种新的重组DNA分子,从此产生了基因克隆技术。1973年,科恩(S.Cohen)等人把一段外源DNA片段与质粒DNA连接起来,构成了一个重组质粒,并将该重组质粒转入大肠杆菌,第一s次完整地建立起了基因克隆体系。 一般来说,基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。因此基因克隆技术又称为分子克隆、基因的无性繁殖、基因操作、重组DNA技术以及基因工程等。 采用重组DNA技术,将不同来源的DNA分子在体外进行特异切割,重新连接,组装成一个新的杂合DNA分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子,此过程叫基因克隆。

【转基因水稻讲义】转基因抗虫水稻

【转基因水稻讲义】转基因抗虫水稻 前言:水稻是三大粮食作物之一,世界上近一半人口,都以水稻为主食,它是人类营养和能量摄入最重要的谷物,提供全世界五分之一以上热量消耗。 概况:早在上世纪八十年代早期国际水稻生物技术的研发就在洛克斐勒基金的资助下开展。至今在水稻生物技术方面的专利超过三百项,涉及四百多个组织和机构。从1993年起,在美洲、欧洲、亚洲和澳洲的许多国家陆续开始了转基因水稻的田间试验。目前,已有6个转基因水稻品种获得了不同的批准认可,涉及种植、食用、饲用、进口和加工等方面。全球已培育出近50个转基因抗虫水稻品系,大部分均已进入田间试验阶段,鉴于其环境安全性及食品安全性,还未进行商业化种植,除了2004年伊朗批准抗虫转基因水稻的商业化种植。国内转基因水稻主要是华中农业大学张启发院士课题组在研究,其研发的抗虫转基因水稻“华恢1号”和“Bt 汕优63”于2009年8月获得农业部转基因生物安全证书,但是目前并没有获批进行商业化种植。除抗虫水稻外,一些药用或耐除草剂水稻陆续被批准进口或商业化应用。1998年起,美国批准Ventra Bioscience公司研发的转溶菌酶,乳铁蛋白、人血清白蛋白基因的3个药用转基因水稻的商业化种植。美国批准安万特公司的转bar基因耐除草剂水稻及先正达公司的黄金大米等。 我们组通过上网查找资料、借阅图书馆书籍以及询问老师的方式对转基因水稻有了进一步的了解,现在和大家一起来揭开转基因水稻的神秘面纱。 首先要介绍的是目前人类对转基因水稻研发所能达到的技术水平。 技术比较成熟的有以下四种水稻: 1、抗虫转基因水稻 2、抗除草剂转基因水稻

3、抗花粉过敏转基因水稻 4、金稻 技术还在研发中的水稻主要有抗逆性转基因水稻、高产和优质性状转基因水稻这两种。 表格 接下来介绍转基因水稻的工艺流程。 我们知道,基因工程包括上游技术和下游技术两大组成部分。上游技术主要是对外源基因的重组设计,分为以下几步: 1、切(获取目的基因) 2、接(构建基因表达载体) 3、转(将目的基因导入受体细胞) 4、增(扩增DNA重组分子) 5、检(目的基因的检测与表达产物的测定) 每一步具体的操作方法会根据供体、受体细胞的不同而改变,越具体到可以直接指导我们的实际操作的资料信息就越高精尖,目前我们的能力无法理清这些,所以只总结了一般可以选择的几种方法。 第一步获取目的基因主要有三种方法,分别是鸟枪法(即直接分离目的基因)、人工合成法和从文库中获取。 鸟枪法: cDNA法:将供体生物细胞的mRNA分离出来,利用反转录酶在体外合成cDNA,并将之克隆在受体细胞内,通过筛选获得含有目的基因编码序列的重组克隆,这就是cDNA法克隆蛋白质编码基因的基本原理。

转基因农作物品种的推广是否会带来生态学灾难1

转基因农作物品种的推广是否会带来生态学灾难?

转基因农作物品种的推广是否会带来生态学灾难? 什么是转基因农作物?顾名思义,转基因农作物是利用组织培养技术和基因重组技术引入其它生物或物种的基因而培育出来的,这种农作物也叫基因改性农作物或基因重组农作物。目前,世界种植的主要转基因农作物有4种:即玉米、棉花、大豆和油菜籽;这4种转基因农作物种植面积1998年占转基因农作物种植总面积99%,占该4种农作物种植总面积约16%。其它转基因农作物包括烟草、番木瓜、土豆、西红柿、亚麻、向日葵、香蕉和瓜菜类。未来3~5年内将要正式投入商业化种植转基因农作物有甜菜、水稻、甜椒、草莓等。从性能上区别,现有的转基因农作物可分为4个种类:一是Bt农作物,可抵御害虫的侵害,减少杀虫剂使用量;该种农作物可产生一种对某些害虫有毒性的蛋白,这种蛋白存在于常见的土壤细菌苏云金芽孢杆菌中。二是抗除草剂农作物;三是抗病毒农作物;四是营养增强型农作物;其特定营养组份和维生素含量更高。 转基因农作物是一把双刃剑。 世界人口已达61亿,其中有28亿人口每天人均生活费用不足2美元,而其中最贫穷的有13亿人每天人均生活费用低于1美元。贫穷与饥饿往往相伴而生,在历史上这曾经是同一社会现象的两个方面。当代世界考虑粮食问题时总是把土地与食物一起综合分析。理论上地球可以供养比现在多得多的人口,但是优良的土壤和良好的气候及良好的耕作条件在时空上分布不均,与人口分布更不相称。这个问题由于越来越多的土地退化及气候变化引起的频繁自然灾害而更趋严重。虽然土地退化是全球性问题,但是在食品生产无法提供足够的食物甚至维持基本生存的地方这个问题更为突出。特别是广大的贫困地区,农业产出率低以及人口增长率高的矛盾造成了生存与生活压力,迫使农民砍伐森林和开垦贫瘠的边缘土地作为农田,造成土壤侵蚀、水土流失、生物多样性减少、生态环境退化。这些都加剧农村贫困状况,并造成恶性循环。世界粮农组织根据土地状况对全球按地区的粮食供应情况进行预测时指出,未来的粮食问题将集中在非洲撒哈拉以南的地区和南亚。到2010年这些地区长期营养不良的人口预计将占全球人口的11%。预计粮食供应断区的国家同时也面临人口急剧增长、城市化进程加快、农业生产率下降、高外债又无力进口粮食等问题。

除草剂靶标

目前已确定的15种除草剂靶标: 除草剂作用机制的研究结果表明:目前已开发的各类商品化除草剂作用可归纳为对下列靶标酶所产生的抑制作用: 1—A 乙酰辅酶A羧化酶(Inhibition of Accase) 2—B 乙酰乳酸合成酶(Inhibition of ALS, branched chain amino acid synth.) 3—C 光系统Ⅱ光合成(Inhibition of photosynthesis PSⅡ)C1, C2, C3 4—D 光系统Ⅰ电子传递(PSⅠinhibition) 5—E 原卟啉原氧化酶(Inhibition of protoporphyrinogen oxidase) 6—F 色素合成——白化作用(Inhibition of pigment synthesis-bleaching)F1 八氢蕃茄红素脱氢酶靶位的类胡萝卜素生物合成抑制作用(Inhibition of PPS)F2 4-羟基苯基丙酮酸二氧化酶(Inhibition of 4-HPPD)F3 未知靶位的类胡萝卜素生物合成抑制(Unknown target)7—G 3-磷酸-5-烯醇丙酮酰莽草酸合成酶(Inhibition of EPSP synthase) 8—H 谷氨酰胺合成酶(Glutamine Synth. Inhibition) 9—I DHP合成酶(DHP inhibition) 10—K 生长抑制作用(Growth inhibition)K1 微管综合作用(Microtubule assembly inhibition)K2 组织微管/有丝分裂(Inhibition of mitosis/microtubule organisation)K3 长链脂肪酸,细胞分裂(Inhibition of VLCFAs, Inhibition of cell division.) 11—L 细胞植物纤维生物合成Inhibition of cellulose synth. 12—M 去耦合作用(膜的破坏)Uncoupling(Membrane disruption) 13—N 类脂化合物合成(非乙酰辅酶A羧化酶)Lipid synth. inh. (not Accase) 14—O 吲哚乙酸类作用{合成生长素} Action like indole acetic acid (Synthetic auxins) 15—P 生长素输送抑制剂Inhibition of auxin transport 原卟啉原IX氧化酶抑制剂 作用原理:在植物体内叶绿素与亚铁原卟啉合成中,卟啉生物合成十分重要,而原卟啉原IX氧化酶(protox) 则是催化叶绿素与亚铁原卟啉生物合成最后阶段的酶(图1),它催化原卟啉原IX在亚铁原卟啉与叶绿素生物合成中转变为原卟啉IX;原卟啉原氧化酶固定于叶绿体内,此种酶被抑制,造成对光敏感的原卟啉原IX迅速积累,从叶绿体渗}};于细胞质中;在细胞质中,原卟啉原Ix 自动氧化为原卟啉IX,原卟啉IX与氧反应,在光下形成单态氧,从而引起细胞膜的不饱和脂肪酸过氧化,导致膜渗漏,色素破坏,最终叶片死亡除草剂特点:用量低、对杂草作用迅速、在环境中不易积累,对哺乳动物毒性低。

转基因技术的应用及作物安全性评价(一)

转基因技术的应用及作物安全性评价(一) 【摘要】本文从基因育种,转基因生物制药及基因治疗等方面,介绍了转基因技术在农业和医学上的应用,并简述了转基因作物的环境安全性和食品安全性。 【关键词】转基因技术应用安全性 转基因技术是指用人工方法有目的地将来自一种生物的基因稳定地整合到另一种生物的基因组中去,使其表达并遗传给子代的综合技术。通过转基因技术如农杆菌介导法、基因枪法、电击、聚乙二醇法等培育出许多动、植物新品种。目前,这一技术已广泛应用于农业和医学上。转基因作物在给人们带来巨大经济效益的同时,其安全性问题也在全球范围内引起了广泛的争论。 一、转基因技术在农业上的应用 转基因技术应用于农业生产上,使作物育种从杂交育种走向基因育种。 1.抗性育种。抗性育种包括抗病、抗虫和抗逆性作物的培育。 (1)抗病性。1986年华盛顿大学Powell通过基因工程技术首次将烟草花叶病毒(TMV)外壳蛋白(CP)基因转入烟草,培育出了能稳定遗传的抗病毒植株。 (2)抗虫性。目前,广泛应用的植物抗虫基因是从苏云金芽孢杆菌中分离出来的一种毒蛋白基因——Bt基因。至1997年初,在80种已经批准或即将批准的商品化转基因作物中,有21种是转Bt基因作物,其中以玉米、马铃薯、棉花为主。我国种植的转基因抗虫棉,在完全不喷杀虫剂情况下,单产仍高于喷撒2—3次杀虫剂的国产棉,显示出了控制棉铃虫的极好前景。 (3)抗逆性。抗逆性包括抗除草剂、抗寒、抗旱、抗热等。2000年全球抗除草剂作物种植面积占全球转基因作物的74%。据日本《农业技术》报道:日本北海道生物研究所将小麦过氧化氢酶用电击法导入水稻(尤加拉、松马埃)中,培育成耐低温水稻,与正常水稻相比,过氧化氢酶活性在25。C时约提高4.5倍,在5。C时约提高1.5倍。 2.改善植物品质。这方面的工作主要是通过基因转移改变植物中氨基酸、蛋白质含量等品质特性以及一些材料的加工性能。英国.Zeneca公司和London大学研究小组培育出了总胡 萝卜素和番茄红素含量极高的番茄,这种番茄对预防癌症有良好作。 二、转基因技术在医学上的应用 1.利用转基因植物生产疫苗。1992年,Arntzen等人首先提出了用转基因植物生产医用疫苗的思路,促成了转基因植物疫苗研究的兴起。近10年来,以Arntzen研究小组为代表的多个研究组相继在烟草、马铃薯、苜蓿等植物中成功表达了乙肝病毒表面抗原、大肠杆菌毒素B亚基、霍乱毒素B亚基、诺瓦克病毒衣壳蛋白等,并证实植物表达的抗原可以引发人和动物的免疫反应。 2.利用转基因动植物生产其他生物药。转基因植物可表达多种蛋白如脑啡呔、&干扰素、人血清蛋白以及两种最昂贵药物即葡糖脑苷脂酶和粒细胞一巨噬细胞群刺激因子等。 3.基因治疗。它是指通过转基因技术纠正某些基因缺陷引起的遗传病。

除草剂的分类及除草原理

除草剂的分类及除草原理 一、除草剂分类 (一)、按除草剂的作用方式分类 1、选择性除草剂 除草剂在不同植物间具有选择性,即能毒害或杀死杂草而不伤害作物,甚至只毒杀某种杂草,而不损害作物和其他杂草,凡具有这种选择性作用的除草剂称为选择性除草剂。通俗地讲就是能用于某种作物、杀死其中的一部分杂草的除草剂。如精喹能用于花生、大豆、西红柿等阔叶作物田防除狗尾草等禾本科杂草,而不能用于玉米田,否则它会将玉米当成禾本科杂草杀死,它也不能杀死阔叶杂草。再如莠去津能用于玉米田防除阔叶杂草和部分禾本科杂草,而即使用量稍高也不伤害玉米。精喹和莠去津的这种性质就叫选择性。 但是选择性对用量是有要求的,如果提高莠去津的用量到一定程度,不仅可以轻易地杀死玉米,甚至可以杀死大片的灌木林。 2、灭生性除草剂 这种除草剂对植物缺乏选择性或选择性小,草苗不分,“见绿就杀”。灭生性除草剂能杀死所有植物,如百草枯见绿就杀,既不区分作物和杂草,也不区分杂草所属种类。再如前面所述的提高莠去津用量杀死灌木林,这时的莠去津就成了灭生性除草剂。 (二)、按使用方法分类 1、土壤处理剂 土壤处理剂也叫做苗前封闭剂,施用于土壤中,通过杂草的根、芽鞘或下胚轴等部位吸收而发挥除草作用,可防除未出土杂草,对已出土的杂草效果差一些,一般在作物播前、播后苗前或移栽前施用,如乙草胺、异丙甲草胺、氟乐灵等。 2、茎叶处理剂 指用于杂草苗后,施用在杂草茎叶上而起作用的除草剂,如精喹、烟嘧磺隆。 很多除草剂既可作为土壤处理剂也可作为茎叶处理剂,被称为土壤处理剂是因为它在土壤中的药效更强些,如氰草津,以根吸收为主,也可由茎叶吸收。 应该说明,这种分类中所讲的苗前苗后中的“苗”严格地讲是“杂草苗”,而不是“作物苗”。“作物苗前”施用的不一定全是土壤处理剂,比如玉米田播后苗前为了杀死已经出苗的大草,可以喷施百草枯,这是在作茎叶处理而不是土壤处理;同样,“作物苗后”施用的也不一定全是茎叶处理剂,比如在玉米苗后早期施用莠去津,此时的莠去津仍多为杂草根部吸收,所以仍然应归为土壤处理剂。 (三)、按传导性能分类 按药剂在杂草体内传导性的差异,将其分为触杀型和传导型,触杀型造成的是外伤,药效表现迅速,但是当喷雾不匀时杂草会死而复生;传导型造成的是内伤,药效表现相对慢一些,但杂草所受的伤害不易恢复。 1、触杀型除草剂 这类除草剂与杂草接触后,只对接触部位起作用,而不能或很少在植物体内传导。这类除草剂在施用时要求尽量均匀。如百草枯,如果只覆盖了少量杂草叶面,其余的大量叶面仍能正常进行光合作用,杂草会表现出受害症状,受到一定程度的抑制,然后又慢慢恢复生长能力。

草甘膦与转基因作物

草甘膦与转基因作物 草甘膦与转基因作物有关系么?有,也没有。1970年,孟山都公司的化学家John E. Franz合成了草甘膦。1974年,草甘膦作为除草剂在美国成功登记注册。由于除草效果超级好,草甘膦受到广大农民的热烈欢迎。在草甘膦成功商业化20多年后,1996年第一例转基因抗草甘膦大豆问世了。草甘膦比转基因大20岁。 直接关系:在生产应用上,草甘膦与转基因抗除草剂作物建立了一一对应的关系。 在技术研发上,二者没有关系。 间接关系:由于使用草甘膦,而不用其它除草剂,转基因抗草甘膦作物中草甘膦的残留量相应增加,其他除草剂残留量相应减少。 转基因作物自身安全性与草甘膦农药的安全性没有关系。 抗草甘膦作物为什么能够抗草甘膦呢? 找一种聪明的EPSPS酶,转到植物中去,它能够分得清草甘膦和PEP,并且更喜欢与PEP在一起。即使喷上草甘膦,它也能有效地找到PEP,发挥正常EPSPS

酶的功能。 比如占美国大豆种植面积90%以上的抗草甘膦大豆,就是被转入了一个来源于土壤中常见细菌的基因,因为分离得到这个基因的菌株叫CP4,这个基因表达出来的“聪明”酶就被命名为CP4 EPSPS。 抗草甘膦作物种植面积增加了,草甘膦使用量不就变多了吗? 没错。但是草甘膦的用量上升了,其他除草剂的用量减少了,除草剂总的用量最终减少了。1996-2013年期间,仅转基因耐除草剂棉花大规模种植就使得除草剂用量减少了两万多吨。并且,草甘膦是目前已知的对环境最友好的绿色农药,

没有之一。这么说,转基因技术和草甘膦的配套应用还促进了绿色环保。 草甘膦会残留在食物中吗? 当然会,但残留量很低,远小于联合国粮农组织和世界卫生组织建议的摄入量。在耐草甘膦作物中,大部分草甘膦通过根系排放到土壤中,少部分留在植株中,主要被代谢为AMPA,并进一步转化为简单化合物及天然产物,并且,草甘膦残留量在作物不同部位差异很大,籽粒中的残留明显低于其他部位。 国际食品法典委员会(CODEX)对草甘膦在各类食品中的最大残留量有明确规定。玉米为每公斤5毫克,大豆为每公斤20毫克。 联合国粮农组织和世界卫生组织的下属农药残留专家联席会议(JMPR)在2011年建议,草甘膦每日最大摄入量(ADI)为每公斤体重0至1毫克。结合CODEX 最大残留量规定,成年人一天中要吃4公斤大豆,或16公斤玉米才会达到JMPR 所建议的草甘膦每日最大摄入量。 2015年11月12日,欧盟食品安全局(EFSA)和欧盟成员国完成对草甘膦的重新评估。评估小组结论是草甘膦不大可能对人类有致癌风险。按照欧盟法规(EC)1272/2008号,这些证据不支持将草甘膦归为潜在致癌性一类。2016年欧盟委员会根据欧盟实施条例(EU)2016/1056决定续登记草甘膦至2017年12月31日。

除草剂化学分类

1. 苯氧羧酸类(2,4-D类) 杀草原理 被植物的根和茎叶吸收 通过木质部或韧皮部在植物体内上下传导 在分生组织积累 具有植物生长素的作用。 主要特性 1)低用量时具有激素作用,能够刺激植物生长,高用量时具有选择性除草作用。 2)茎叶处理时主要应用于禾本科作物田,土壤处理主要为大粒种子的作物田进行封闭处理,但盐类化合物不能应用。 3)主要防除阔叶杂草。 4)施药时期为禾本科作物3 叶期以后6 叶期以前,否则药害严重。 5)酯类化合物活性高,但漂移严重,应注意漂移药害问题。 6)均为传导性除草剂。 7)不能与芳氧(基)苯氧基丙酸类混用,会明显降低芳氧(基)苯氧基丙酸类除草剂的除草效果。 2. 苯甲酸类(麦草畏(dicamba)) 主要特性:同苯氧羧酸类 3. 芳氧(基)苯氧基丙酸类(禾草灵, 精喹禾灵) 杀草原理 大多数被植物叶片吸收,在共质体内传导到根、芽的分生组织。个别品种如禾草灵 除了被叶吸收外也能被根吸收,在植物体内进行有限的传导。 作用于乙酰辅酶A 羧化酶(ACCase),从而抑制脂肪酸的合成。 作用于分生组织。 主要特性 1)只能做茎叶处理,土壤处理基本无效。 2)用于阔叶作物田防除禾本科杂草,对阔叶杂草基本无效。 3)不能与苯氧羧酸类除草剂混用,与苯氧羧酸类除草剂混用其自身除草效果明显降低。 4)均为传导性除草剂。 4. 环己烯酮类 杀草原理 被植物叶片吸收,在韧皮部传导。作用于乙酰辅酶A 羧化酶(ACCase ),从而抑制脂肪酸的合成。 主要特性 ①用于阔叶作物田防除禾本科杂草(近年合成了新的化合物,能够防除禾本科作物 田的禾本科杂草); ②茎叶处理。 5. 酰胺类(甲草胺, 乙草胺, 丙草胺, 敌稗 杀草原理 氯乙酰胺类除草剂可抑制脂肪酸、脂类、蛋白质、类异戊二烯(包括赤霉素)、类黄酮的生物合成; 敌稗抑制光合系统Ⅱ的电子传递和花青素、RNA、蛋白质的合成; 主要特性

各大类农药的结构分类情况新

各大类农药的结构分类情况 按用途分大类按化学结构分类别 除草剂有机磷类、磺酰脲类、咪唑啉酮类、嘧啶并三唑类、三嗪类、酰胺类、脲类、氨基甲酸酯类、吡啶类、苯氧乙酸类、二硝基苯胺类、芳氧苯氧丙酸酯类、二苯醚类、环己二酮类、羟基苯腈类、哒嗪类、其他结构类 杀虫剂有机磷类、拟除虫菊酯类、氨基甲酸酯类、烟碱类、杀螨剂类、天然产物类、苯甲酰脲类、其他昆虫生长调节剂类、有机氯类、其他结构类 杀菌剂三唑类、其他唑类、其他甾醇抑制剂类、吗啉类、二硫代氨基甲酸酯类、无机类、酞酰亚胺及苯腈类、其他多作用位点类、甲氧基丙烯酸酯类、苯并咪唑类、苯酰胺类、二甲酰脲类、酰胺类、嘧啶胺类、其他结构类 其他植物生长调节剂、熏蒸剂 除草剂 有机磷类除草剂 草甘膦、草铵膦、双丙胺膦、草硫膦抑草磷、莎稗磷双丙氨酰膦等18种 磺酰脲类除草剂选择性除草剂 烟嘧磺隆、苄嘧磺隆、甲磺隆、砜嘧磺隆、碘甲磺隆、噻吩磺隆、苯磺隆、氯嘧磺隆、甲酰胺磺隆、甲磺胺磺隆(甲基二磺隆)、吡嘧磺隆、磺酰磺隆、氟胺磺隆、氯磺隆、氟啶嘧磺隆、甲嘧磺隆、酰嘧磺隆、环氧嘧磺隆、唑吡嘧磺隆、氯吡嘧磺隆、环丙嘧磺隆、胺苯磺隆、醚苯磺隆、三氟啶磺隆、啶嘧磺隆、氟嘧磺隆、四唑嘧磺隆、氟磺隆、乙氧嘧磺隆、醚磺隆、三氟甲磺隆、丙苯磺隆(propoxycarbazone)、玉嘧磺隆、噻吩磺隆、咪唑磺隆、嘧磺隆、环胺磺隆、氟酮磺隆(flucarbazone) 单嘧磺隆、单嘧磺酯、甲基碘磺隆钠盐、氟吡磺隆、氟唑磺隆、、甲硫嘧磺隆、三氟丙磺隆、 iofensulfuron(开发代号BCS-AA10579)及一新型杀虫剂flupyradifurone(BYI02960), 咪唑啉酮类除草剂乙酰乳酸合成酶抑制剂 咪唑乙烟酸、咪唑烟酸、咪唑喹啉酸、咪草酸、甲氧咪草烟、甲基咪草烟 嘧啶氧(硫)苯甲酸酯类和嘧啶并三唑类、双嘧啶吡唑啉酮类、吡唑啉类 嘧草硫醚、环酯草醚(pyriftalid)、双草醚、嘧草醚、、嘧啶肟草醚、 三唑并嘧啶磺草胺类

完整的除草剂化学分类表

除草剂分类汇总表

18 吡啶类 抑制类叶红素的生物 合成陶氏 氨氯吡啶酸、氯氟吡氧乙酸、 绿草定(三氯吡氧乙酸) 杀草谱广,不仅防除一年生阔叶。个别品种还能有效的防除多年生杂草和木本杂草。 可以被植物叶片与根迅速吸收,并在体内迅速传导,具有植物激素的作用,单位面积 用药量小。在土壤中的稳定性强,故持效期长。 19联吡啶类光合系统、抑制光合 作用 先正达百草枯、敌草快 杀草谱广,可防除多种双子叶杂草。触杀性,作用迅速,往往在光照条件下1-2小 时,植物便产生十分明显的受害症状。 20 有机磷类蛋白质受干扰孟山都 草甘磷、莎草稗灭生性的除草剂用。莎稗磷通过植物的根、胚芽鞘及幼叶被吸收。 21 环己二酮类(环 己烯酮类) 乙酰辅酶A羧化酶(ACC酶)抑制剂 曹达 禾草灭、稀禾啶、噻草酮、烯草酮、苯草酮、丁苯草酮、吡喃草酮、环苯草酮除环苯草酮为水田除草剂外,其它均为旱田除草剂。具有选择性的内吸传导型茎叶处 理剂。具有很好的内吸性(渗透转移型)。施药后药剂可被杂草茎和叶迅速吸收,并很快传导到根系和生长点,1-3个小时被吸收,随后降雨不降低除草活性。作用靶标 是乙酰-辅酶A羧化酶,抑制蛋白质的合成。叶片黄化,停止生长,几天后,枝尖、叶 和根分生组织相继坏死。一般在施药后7-14天可以观察到嫩草组织开始褪绿、坏死。 22 N-苯基肽亚胺类卟啉原氧化酶抑制剂 (Protox),抑制 叶绿素合成。住友 氟烯草酸—利收;丙炔氟草胺 —速收;氟噻甲草酯、嗪草酸 甲酯—阔镰刀 被植物幼芽和叶片吸收,叶片吸收时不向下传导。作用靶标是原卟啉原氧化酶,抑制 叶绿素合成。主要特性:触杀性;超高效。 23 噁二唑类卟啉原氧化酶抑制剂 (Protox),抑制 叶绿素合成。 拜耳 噁草酮 —农思它、恶草灵; 快噁草酮、丙炔噁草酮—稻思 达 被植物幼芽和叶片吸收,叶片吸收时不向下传导。作用靶标是原卟啉原氧化酶,抑制 叶绿素合成。主要特性:触杀性;超高效。 24吡唑类 羟基丙酮酸酯双氧化酶(HPPD)抑制剂 三菱、石原 吡唑特、吡草酮、苄草唑 防除稗草、若干莎草科杂草及多年生阔叶杂草。对羟基丙酮酸酯双氧化酶(HPPD)抑制剂,能阻止植物体中的4-羟基丙酮酸向脲黑酸的转变,从而导致无法合成质体醌和 生育酚,进而间接抑制了类胡萝卜素的生物合成,使植物产生白化症状,直至最终死亡。 25异恶唑类 羟基丙酮酸酯双氧化酶(HPPD)抑制剂 拜耳 异恶唑草酮、异恶氯草酮 一种选择性内吸型苗前除草剂,主要用于玉米、甘蔗等旱作物田防除苘麻、藜、地肤、猪毛菜、龙葵、反枝苋、柳叶刺蓼、鬼针草、马齿苋、繁缕、香薷、苍耳、铁苋菜 、水棘针、酸模叶蓼、婆婆纳等多种一年生阔叶杂草,对马唐、稗草、牛筋草、千金子、大狗尾草和狗尾草等一些一年生禾本科杂草也有较好的防效。

按除草剂的化学结构分类

按除草剂的化学结构分类 同类化合物一般具有相似的性能.根据化学结构分类.便 于相互比较和记忆,易于掌握其用途和使用方法;通常分为 两大类,即无机除草剂和有机除草剂。 (一)无机除草剂 由天然矿物原料组成,不含有碳水的化合物,如氯酸钾、 硫酸钢等,其选择性差、用量大,目前己很少应用。 (二)有机除草剂 它们种类多、选择性强、毒性小、用量少、使用范围广、发 展快.占除草剂的绝大部分.为目前主要使用的除草剂。重要 的有机合成除草剂有以下儿大类: I.苯氧拨酸类如2产一滴丁醋等。特点:①由于该结构 不易溶于水和常见有机溶剂中,生产上多应用其盐或酯类;② 苯氧梭酸类为选择性传导型除草剂,多数品种具有较高的茎 叶处理活性.并兼具土壤封闭处理效果;③该类除草剂的作用 机理为打破植物的激素平衡,使受害植物扭曲、肿胀等,最终 导致死亡;④主要用于水稻、玉米、小麦、甘蔗、首信等作物田 块防除一年生、多年生阔叶杂草和部分莎草科杂草。 2.苯甲酸类如豆科威、百草敌等。苯甲酸类除草剂主 要特性:①除了个别品种如豆科威之外,多数品种具有叶面 处理的活性;②大多数品种具有除草活性之外,还有植物生 长调节剂的活性;③施用后能被植物迅速吸收.积累于植物 代谢活跃的部位,如分生组织;④作用机制与苯氧梭酸类相 似,属于激素型除草剂;⑤苯甲酸类除草剂的盐类在土壤中 易被淋溶,持效期因品种不同差异很大,从2一3周至1年 以上。 3. 酰胺类主要包括甲草胺、乙草胺、丁草胺等产品.其 中乙草胺在国内使用量很大。特性:①几乎所有品种都是防 治一年生禾本科杂草的特效产品,对阔叶杂草防效较差;②大 多数品种都是土壤处理剂;③在土壤中的持效期较短,一般为 1一3个月;④在植物体内易于降解。 4.二峭基苯胺类主要包括氟乐灵、二甲戊乐灵、乙‘T烯 氛灵等。特点:①均为选择性触杀型土壤处理剂.在播种前或 播后苗前应用;②杀草谱广,对一年生禾本科杂草高效,同时 还可以防除部分一年生阔叶杂草;③易于挥发和光解.尤其是 氟乐灵挥发、光解性更强;④土壤中持效期中等(半衰期2一3 个月).对大多数后茬作物安全;⑤水溶性低并易被土壤吸附. 在土壤中不易移动,不易污染水源;⑥对人、畜低毒,使用 安全。 5.取代(月尿)类如敌草隆、绿麦隆、利谷隆、伏草隆、异丙隆等。特点:①属于选择性传导型除草剂;②这类除草剂的杀草 作用机制主要是抑制绿色植物光合作用的电子传递过程;

相关文档