文档库 最新最全的文档下载
当前位置:文档库 › 变压器油中气体总含量的测定方法概述

变压器油中气体总含量的测定方法概述

变压器油中气体总含量的测定方法概述
变压器油中气体总含量的测定方法概述

变压器油中气体总含量的测定方法概述

文章简述了变压器油中气体总含量测定的意义,三种测定方法,及根据气体总含量判断变压器故障的标准。

标签:变压器油;气体总含量;测定

随着变压器不断向着高电压、大容量的方向发展,在变压器维护方面,人们不仅重视油中溶解气体分析,以便及时发现变压器内部早期故障,而且对油中气体的总含量也引起了广泛的注意。含氧量高会加速绝缘油的老化并使油氧化,进而腐蚀固体绝缘。有的文献指出,如果运行中保持含氧量小于500?滋L/L时,可以使油老化速率大为减缓,变压器的寿命将延长5倍,如果仍按原寿命计算的话,则可以明显的提高出力。除了氧气的影响外,油中总含气量的大小对变压器的安全运行也是有不可忽视的影响的。对含气量来说,在施加电压时间较短时,即使油中含有大量溶解气体,也不会影響介质的耐压强度。但是它对游离放电却有不可忽视的影响,因为气体可以聚集起来形成气泡,特别是当温度和压力骤然下降而形成气泡时,其影响是较大的。这时,这种气体在电场中被拉成长体,极易发生气体碰撞游离,甚至造成热击穿。这也就是电晕产生的原因。如果气体骤集在高场强的部位,更是极为危险的。

实践证明,监测并控制变压器油中的气体含量不仅能防止油中气泡和氧气对绝缘的危害,而且把油中含气量的实测数据与不同油保护方式变压器油中正常含气量水平进行比较,可获得设备内部状态的某些信息,特别是与油中溶解气体分析数据综合判断更是有益的。事实上以往人们利用真空脱气法进行油中溶解气体分析时,首先就很重视测定油中总含气量和含氧量。对于密封变压器,当油中总含气量超过6%,而氧气含量明显增长时,则可能存在大气泄漏于油箱内。如果油中含气量很高(>6%),但含氧量却很低,甚至为零或出现负峰时,则变压器内部可能存在早期热性或电性故障。对于开放式变压器,如果油中含气量超过11%,且氧气含量低于16%时,则预示着设备存在内部故障。如果油中总含气量和含氧量均很高,则可能油中溶解空气过饱和,这随着温度或压力的变化,将会形成大量气泡进入气体继电器而引起动作报警。

下面介绍几种油中含气量测定的方法。

1 真空法

早在20世纪70年代国内就采用真空脱气法测量油中总含气量即在油中溶解气体分析过程中的脱气阶段就读出油中总含气量。我国在20世纪80年代制订了YS-C-3-1-84真空脱气法,该方法虽有操作简单、分析速度快的优点,但因受平衡时间、注油速度等因素影响。其重复性较差,且存在气体回溶现象。

1991年,我国先后发布了DL/T 423-1991(采用真空压差法)和DL/T 450-1991(采用二氧化碳洗脱法)。真空压差法除了存在与真空脱气法类似的缺点之外,

变压器油色谱分析

方法概述 用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。 GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。 执行标准: GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 气路系统流程图: 性能指标: (1)最小检测量:一次进样,进样量为1mL时的最小检测浓度: 溶解气体的分析(uL/L) H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% (2)热导检测器(TCD) ◎采用半扩散式结构 ◎电源采用恒流控制方式 ◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷) ◎基线噪音:≤20μv ◎基线漂移:≤50μv/30min ◎线性:≥105 ◎载气流速稳定性:≤1%。 (3)火焰离子化检测器(FID) ◎收集极采用圆筒型结构,石英喷口 ◎检测限:≤8×10-12g/s(正十六烷/异幸烷) ◎基线噪声:5×10-14A ◎基线漂移:≤2×10-13A/30min ◎线性:≥107 ◎自动点火 ◎稳定时间10min 主要特点 主机介绍 GC-9310SD变压器油色谱分析系统是上海荆和分析仪器有限公司最新推出的一款新型全微机控制气相色谱仪。仪器充分吸收了国外同类产品的先进技术,大量采用进口元件,使GC-9310的稳定性、可靠性以及灵敏度和重复性蓖美进口同类型产品;并且在结构上更加简洁合理;人性化的中文菜单式操作,精美的外观设计,让色谱分析工作者使用的更加自信。

GE_KELMAN安装手册

GE KELMAN 一、需要了解的一些资料 1、重要特性 TRANSFIX 是变压器油中溶解气体及微水在线监测系统,它被用来测量反映变压器状态分析的关键气体数值。这些气体有:氢气、甲烷、乙烷、乙烯、一氧化碳、二氧化碳、氧气及乙炔。TRANSFIX 也同样测量绝缘油中的水分含量及变压器负载电流。TRANSFIX 从变压器绝缘油中取得气样并使用光声光谱技术分析气样。这些数据被储存在设备内部并可以下载至电脑上。 关键特性 ●TRANSFIX 使用动态顶空脱气法从油样中获取目标气体。 ●不需要消耗气体,例如载气等。 ●可在一小时内测量出精确的结果,不需要因为薄膜平衡脱气法而等待数小 时。 ●安装后免维护。 ●使用高精度及高稳定性的光声光谱技术。 ●完全嵌入式微处理器及固态内部记忆体可存储10,000 条记录(采用1 小时 的采样间隔至少可存储1 年的测量数据)。 ●室外等级为NEMA 4X, IP55 的不锈钢外壳通过坚固的不锈钢钢管连接到 变压器上。 ●TRANSFIX 本体上提供手动采样口。 ●所有气体测量装置均安装在TRANSFIX 内部,没有任何外部气体测量探头。 ●可使用变压器负载监测。 ●外壳表面上安装有一个红色及一个黄色的抗日光冲刷且用户可设定的LED 指示灯,并且对于气体 ●及微水的绝对数值或气体变化率配有四个用户可设定的继电器输出。 ●外壳上安装有一个绿色LED 电源指示灯及一个蓝色LED 维护灯。 ●通讯选项包括:以太网、RS-232、移动电话Modem (GSM 或CDMA)、 固定电话Modem、租用线路Modem、RS-485 及其他可选通讯方式。 ●为调试及本地数据下载提供USB 连接。 2、对变压器的要求: 变压器应该满足如下要求: ●含有矿物类型油(石蜡或环烷烃)的变压器应满足IEC-60296、BS EN148、 VDE 0370 或 ●ASTM D 3487 标准中规定的内容。 ●变压器油内不含多氯联苯。 ●变压器出油阀处的油温应该介于-10°C~120°C。 ●变压器应处于大气压力或以上。(见下) ●变压器油箱上应有独立的连接TRANSFIX 和变压器的系统取油及回油阀

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油的气相色谱分析浅析

变压器油的气相色谱分析浅析 【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。 【关键词】变压器绝缘油色谱分析 一、气相色谱分析的意义 变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。一般有25#和45#两种变压器油。运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。 二、气相色谱分析的特征气体及产生的原理 体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。在对所做油样的品质进行判定时,还要对总烃含量做判断。总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。那么,就需要我们

大概清楚在什么情况下会分解出什么气体。

产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。在低能量故障时,如局部放电。通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。其次,固体绝缘材料的分解也会产生部分特征气体。纸、层压板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键,它的热稳定性比油中的碳氢键要软,并能在较低的温度下重新化合。在生成水的同时生成大量的CO和CO2及少量的烃类气体,同时油被氧化。 三、气相色谱分析油样的取样方法 气相色谱分析的取样部位应注意,所取油样应能代表油箱本体的油。一般应在设备下部的取样阀门取油样,在特殊情况下,可在不同的取样部位取样。取样量,对大油量的变压器、电抗器等均可为50-80mL,对少油量的设备要尽量少

变压器油取样方法

变压器油取样方法 一、取样工具 ?1.取样瓶:KDZD-GKP油化瓶,规格500CC;KDZD-ZSQ针筒油化瓶规格100CC。500~1000mL 磨口具塞玻璃瓶,并应贴标签。 适用范围:适用于常规分析。发电厂,电力,钢铁,铁路,变电站,石化等部门相关单位实验室做油品取样试验。 ?取样瓶的准备:取样瓶先用洗涤剂进行清洗,再用自来水冲洗,最后用蒸馏水洗净,烘干、冷却后,盖紧瓶塞。 2.注射器:应使用20~100mL的全玻璃注射器(最好采用铜头的),注射器应装在一个专用油样盒内,该盒应避光、防震、防潮等。注射器头部用小胶皮头密封。适用于油中水分含量测定和油中溶解气体(油中总含气量)分析。 3.注射器的准备 ??取样注射器使用前,按顺序用有机溶剂、自来水、蒸馏水洗净,在105℃温度下充分干燥,或采用吹风机热风干燥。干燥后,立即用小胶头盖住头部待用(最好保存在干燥器中)。 4.油桶取样用的取样管 5.油罐或油槽车取样用的取样勺 从充油电气设备中取样,还应有防止污染的密封取样阀(或称放油接头)及密封可靠的医用金属三通阀和作为导油管用的透明胶管(耐油)或塑料管。 6. 二、取样方法和取样部位 1.对于变压器、油开关或其他充油电气设备,应从下部阀门处取样。取样前,油阀门需先用干净甲级棉纱或布擦净,再放油冲洗干净。对需要取样的套管,在停电检修时,从取样孔取样。 ?没有放油管或取样阀门的充油电气设备,可在停电或检修时设法取样。进口全密封无取样阀的设备,按制造厂规定取样。 2.检查油的脏污及水分时,自油箱底部取样。 注:①在取样时应严格遵守用油设备的现场安全规程。

?②基建或进口设备的油样除一部分进行试验外,另一部分尚应保存适当时间,以备考查。 ?③对有特殊要求的项目,应按试验方法要求进行取样。 三、变压器油中水分和油中溶解气体分析取样 取样方法: 1.取样的要求 ??a.油样应能代表设备本体油,应避免在油循环不够充分的死角处取样。一般应从设备底部的取样阀取样,在特殊情况下可在不同取样部位取样。 ??b.取样要求全密封,即取样连接方式可靠,不能让油中溶解水分及气体逸散,也不能混入空气(必须排净取样接头内残存的空气),操作时油中不得产生气泡。 ??c.取样应在晴天进行。取样后要求注射器芯子能自由活动,以避免形成负压空腔。 ??d.油样应避光保存。 2.取样操作 ??a.取下设备放油阀处的防尘罩,旋开螺丝6让油徐徐流出。 ??b.将放油接头4安装于放油阀上,并使放油胶管(耐油)置于放油接头的上部,排除接头内的空气,待油流出。 ??c.将导管、三通、注射器依次接好后,装于放油接头5处,按箭头方向排除放油阀门的死油,并冲洗连接导管。 ??d.旋转三通,利用油本身压力使油注入注射器,以便湿润和冲洗注射器(注射器要冲洗2~3次)。 ??e.旋转三通与设备本体隔绝,推注射器芯子使其排空。 ??f.旋转三通与大气隔绝,借设备油的自然压力使油缓缓进入注射器中。 ??g.当注射器中油样达到所需毫升数时,立即旋转三通与本体隔绝,从注射器上拔下三通,在小胶头内的空气泡被油置换之后,盖在注射器的头部,将注射器置于专用油样盒内,填好样品标签。 3.取样量: ??a.进行油中水分含量测定用的油样,可同时用于油中溶解气体分析,不必单独取样。 ??b.常规分析根据设备油量情况采取样品,以够试验用为限。

变压器油中气体的产生机理

变压器油中气体的产生机理 油和纸是充油电气设备的主要绝缘材料,油中气体的产生机理与材料的性能和各种因素有关。 一、变压器油劣化及产气 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各种碳氢化合物所组成的混合物,其中,碳、氢两元素占其全部重量95%~99%,其他为硫、氮、氧及极少量金属元素等。石油基碳氢化合物有环烷烃(C n H2n)、烷烃(C n H2n+2)、芳香烃(C n H2n - m)以及其他一些成分。 一般新变压器油的分子量在270~310之间,每个分子的碳原子数在19~23之间,其化学组成包含50%以上的烷烃、10%~40%的环烷烃和5%~15%的芳香烃。表2-4列出了部分国产变压器油的成分分析结果。 表2-4部分国产变压器油的成分分析依据 环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体。变压器油中芳香烃含量高,则油的吸气性强,反之则吸气性差。但芳香烃在电弧作用下生成碳粒较多,又会降低油的电气性能;芳香烃易燃,且随其含量增加,油的比重和黏度增大,凝固点升高。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,在电场作用下易发生电离而析出气体,并形成树枝状的X腊,影响油的导热性。 变压器油在运行中因受温度、电场、氧气及水分和铜、铁等材料的催化作用,发生氧化、裂解与碳化等反应,生成某些氧化产物及其缩合物(油泥),产生氢及低分子烃类气体和固体X腊等。绝缘油劣化反应过程为 RH + e → R*+ H* (2-2) 式中,e为作用于油分子RH的能量;R*和H*分别为R和H的游离基。游离基是极其活泼的基团,与油中的氧作用生成更活泼的过氧化游离基,即 R* + O2→ ROO*(过氧化基) (2-3) H* + H* →H2(2-4) ROO* + RH →ROOH + R* (2-5) 过氧化氢也是极不稳定的,可分解成ROO*和OH*两个游离基,使氧化反应继续下去。

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

电力中断随时都会发生,因此必须进行实时监测。

电力中断随时都会发生,因此必须进行实时监测。/ 采用维萨拉产品,有助于防止电力变压器发生故障

好消息是:电力变压器故障中的50%可以通过使用适当的在线监测手段进行预防,这些手段包括实时监测变压器油中的水分含量和溶解气体。 油中水分降低了变压器油的绝缘性能,同就收入损失和品牌信誉损害两项而言,最严重的情况就是意外性电力中断。在典型的大型公共设施范围内,每年平均会有六个变压器出现但是如果您的监测系统发出错误警报或者需要定期保养,那么你就可能因为无法预测即将发生的故障而浪费时间和损失金钱。 你需要一个可以为您完成所有工作的在

系统重新进行了设计,以期最大程度地消除误报并提供可靠的长期趋势。您可以获得真实的数据,用于安全的延长您的电力变压器寿命所使用以及简化主要设备投资决策,例如:当维护或改造现有变压器时。 我们了解您在这个行业中所面临的压力。逐步老化的电力变压器,如果更换即昂贵又费时。一旦出现故障,则会付出巨大的代价。 在线监测可以解决这个问题。但是如果

测量参数 ? 氢气H 2?一氧化碳CO ?二氧化碳CO 2?甲烷CH 4?乙烷C 2H 6?乙烯C 2H 4?维萨拉Optimus DGA 监测装置为什么会如此不同? 用于变压器状态监测的维萨拉Optimus DGA OPT100监测系统是基于本公司几十年来对客户需求的关注和理解以及现有的设备研究,包括利用我们80年的安全行业和严苛环境下的传感器和检测设备生产经验,精心设计的一款巅峰之作。 可在任何地方使用的装置 不锈钢管,IP66级温控机箱,磁力泵和磁力阀门意味着其具有卓越的性能和耐用性,适用范围从北极可以延伸到热带地区。不存在替换或维修产生的耗材。 针对无障碍监测的智能功能 用于变压器的维萨拉O p t i m u s D G A

变压器油色谱分析的基本原理及应用

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

变压器油介损异常分析及处理

92 | 电气时代2006年第9期 EA 应用与方案供配用电 变 压器油在交变电场作用下 统称为介质损耗因数(通常用tan 原 因 分 析 1.溶胶杂质的影响 变压器在出厂前油品或固体绝缘材料中存在着尘埃 投入运行一段时间后 一般仅在1010 扩散慢 粒子可自动聚结处于非平 衡的不稳定状态油中 存在溶胶后 从而导致油tan 电压的影响 造成分散体系在各水平面上的浓度不 等 底部浓度较大 则上层油的介损值较小 取样部位的不同 直接影响变压器油介质损耗的测定 蚊子和细 菌类生物侵入所造成的 因此 而 微生物胶体都带有电荷 变压器油处在全密封 油中的微 生物厌氧 特别是在 无色透明玻璃瓶中放置时 运行油温不同 油温在50 范围内 运行 所以介损相对增加比较快 一般冬季的 介质损耗因数比较稳定 可以通过油中的生物化验来确定 线圈铜导线严重 过热或烧损等都会使铜离子溶入到油中 导致介损的升高 当油中含水量较低(如30 对油的tan 其介质损耗因数急剧增加 目前有的变压器制造厂家取 消了净油器(热虹吸器)减少 了渗漏油点 尽管 目前变压器油是通过油枕内的胶囊与外界空气是隔绝的 但变压器上装有净油器(热虹吸器)更有利于 绝缘油质量的稳定 吸出 从而减缓了绝缘中水分的 增加对没有安装净油器(热虹吸器)的变压器油介损增 大 制造厂家的油介损测试设备进行油样试验 时 电桥的准确度达不到要求或温控装置加热过快 由于充电导体对绝缘油的介质损耗影响十分显著净化程度和变压器的运行 状况

电气时代2006年第9期 | 93 EA 应用与方案 供配用电应避免取样容器受到污染 保证空杯的介损值并在湿度小的清洁的试 验室内进行加热到终点温度 后立即测量 一般认为 最好在达到温度平衡后立即测量 需用两台介损仪进行对比试验 还应根据其他试验项目进 行综合判定应采用再生处理的 方法进行处理 恢复或改善油的理化指标 吸附剂法适合于处理劣化程度较轻的油 接触法系采用粉状吸附剂(如白土 而渗滤法即强迫油通 过装有颗粒状吸附剂(如硅胶 进行渗滤再生处理 当遇到油介损升高时 油经真空 净化处理后但油 的介质损耗因数值仍较高 而且与许多因数有关 大多数变压器油介质损耗因数增大的 原因是油中溶胶杂质等影响所致 9 能通过压板滤油机的滤纸 往 往不能达到目的 通常采用接触法和渗滤法再生处理可以得到良好效果 801 又能使油介损降到合格范 围 801 4%比例进 行浸泡 801 60  最后用压板式滤油机将浸泡后的变压器 油进行过滤后 使用AL2O3 吸附剂进行油再生时 油从变压器本体出来 真空滤油机 最后到油罐当中 将本体中的 油全部倒入油罐中 吸附 将油温加热至70  该滤油纸形状 及大小与普通滤油纸相同 四周用缝纫机缝好皱 纹纸内有丝棉 首先将药粉滤油纸放入烘箱内干 燥油温控制在 70  待油全部过滤一遍后 随着过滤遍数的增多 经过6 可将换纸时间固定为8 h/次 就会使油达到较好的处理效果 就采用硫酸 硫酸处理能除去油中多种老化产物 硫酸 主要包括沉降1)沉降阶段 首先 沉降下来的水分和杂质从沉降罐底部排渣阀排出 加酸处理时 边加酸边搅拌 酸 渣分次排出加入白土前 预热温度一般为100 温度一般不超过60 则认为反应基本完全 从罐底排掉白土渣 EA (收稿日期

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器色谱在线监测系统及其关键技术

变压器色谱在线监测系统及其关键技术 1 引言 变压器是电力系统的主要设备之一,保证变压器的安全可靠运行,对提高电力系统的供电可靠性具有十分重要的意义。变压器油中溶解气体色谱分析的在线监测方法是基于油中溶解气体分析理论,它直接在现场实现油色谱的定时在线智能化监测与故障诊断,不仅可以及时掌握变压器的运行状况,发现和跟踪存在的潜伏性故障,并且可以及时根据专家系统对运行工况自动进行诊断。 从变压器安全可靠运行的重要性与变压器油色谱在线监测装置的性价比来看,采用在线监测装置在技术和经济上有显著的优势,既提高了变电站运行的管理水平,又可为状态检修体系奠定基础。因此,变压器油中溶解气体在线监测及故障诊断装置的应用具有重要的现实意义和实用价值。本文中介绍了现有的几种在线监测方法,并以宁波某公司生产的MGA2000-6 型变压器油色谱在线监测系统为例,说明变压器色谱在线监测系统的原理及结构方式。 2 变压器在线监测方法 从检测机理上讲,现有油中气体检测产品大都采用以下三种方法。 (1)气相色谱法。 色谱气体检测原理是通过色谱柱中的固定相对不同气体组分的亲和力不同,在载气推动下,经过充分的交换,不同组分得到了分离,经分离后的气体通过检测转换成电信号,经A/D 采集后获得气体组分的色谱出峰图。根据组分峰高或面积进行浓度定量分析。大部分变压器产品的在线监测都采用气相色谱法,但这种方法具有需要消耗载气、对环境温度很敏感以及色谱柱进样周期较长的缺点。

(2)阵列式气敏传感器法。 采用由多个气敏传感器组成的阵列,由于不同传感器对不同气体的敏感度不同,而气体传感器的交叉敏感是极其复杂的非线性关系,采用神经网络结构进行反复的离线训练可以建立各气体组分浓度与传感器阵列响应的对应关系,消除交叉敏感的影响,从而不需要对混合气体进行分离,就能实现对各种气体浓度的在线监测。其主要缺点是传感器漂移的累积误差对测量结果有很大的影响;训练过程(即标定过程)复杂,一般需要几十到一百多个样本。 (3)红外光谱法。 红外光谱气体检测原理是基于气体分子吸收红外光的吸光度定律(比耳定律,Beer’s Law),吸光度与气体浓度以及光程具有线性关系。由光谱扫描获得吸光度并通过吸光度定律计算可得到气体的浓度。这种方法具有扫描速度快、测量精度高的特点,但其有价格昂贵。精密光学器件维护量大、检测所需气样较多(至少要100mL)以及对油蒸汽和湿度敏感等缺点。 (4)光声光谱法。 光声光谱检测技术是基于光声效应,光声效应是由于气体分子吸收电磁辐射(如红外线)而造成。气体吸收特定波长的红外线后温度升高,但随即以释放热能的方式退激,释放出的热能使气体产生成比例的压力波。压力波的频率与光源的截波频率一致,并可通过高灵敏微音器检测其强度,压力波的强度与气体的浓度成比例关系。由敏感元件(微音器或压电元件)检测,配合锁相放大等技术,就得到反映物质内部结构及成分含量的光声光谱。光声光谱方法的检测精度主要取决于气体分子特征吸收光谱的选择、窄带滤光片的性能和电容型驻极微音器的灵敏度;分析所需样品量小(仅需2mL~3mL),不需载气。其主要缺

变压器油中含气量气相色谱分析方案

变压器油中含气量气相色谱分析方案 GC-2010变压器油专用色谱仪是我公司最新推出的一款专用于电力用绝缘油中溶解气体组份含量测定的专用气相色谱仪,仪器采用先进三检测器流程,配TCD检测器和两个FID检测器,一次进样,10分钟内即可完成绝缘油中溶解的7种气体组分含量的全分析。其中H2通过TCD检测;烃类气体(CH4、C2H4、C2H6、C2H2)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是对C2H2的影响,缩短检测时间的同时也大大提高了检测灵敏度。 技术参数: 1、最小检测浓度(单位μL/L): H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 2、定性重复性:偏差≤1% 3、定量重复性:偏差≤3% 执行标准: 1、GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 2、GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 流程图: 自动故障诊断:分析结束自动超标提示、提供符合国标的三比值诊断、TD图示、组份浓度图示,大卫三角形等多种故障诊断方式。 数据图示:根据已经入库的历史记录,直观显示某设备历史数据中各组分的浓度趋势图。

GC-2010变压器油专用色谱仪配置清单 1 色谱主机GC-2010气相色谱仪1套 2 进样器填充柱液体进样口(PIP)2个 3 转化器甲烷化转化器1个 4 检测器1 氢火焰检测器(FID)2套 5 检测器2 热导检测器(TCD)1套 6 色谱柱φ3×1m 不锈钢3根 7 气源氮空氢气体发生器1套 8 振荡仪自动加热振荡仪1套 9 色谱工作站变压器油分析专用1套 GC-2010变压器油专用色谱仪广泛应用于铁路电力系统、国家电网,学校教学等。

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 摘要】以某公司送来两台运行中变压器的油样,经 色谱分析,其中台有C2H2气体(4.9PPm)为例,以实例 分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱 分析绝缘油中溶解气体, 能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 1)变压器内部放电性故障产生的特征气体主要是乙 炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中

关于变压器油处理的方法探讨

关于变压器油处理的方法探讨 发表时间:2016-12-14T14:37:07.157Z 来源:《电力设备》2016年第20期作者:杨立新[导读] 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。 (中设工程机械进出口有限责任公司) 摘要:变压器油是流动的液体,可充满油箱内各部件之间的气隙,排除空气,从而防止各部件受潮而引起绝缘强度的降低。变压器本身绝缘强度比空气大,所以油箱内充满油后,可提高变压器的绝缘强度。变压器油还能使木质及纸绝缘保持原有的物理和化学性质,并对金属起到防腐的作用,从而使变压器得绝缘保持良好的状态。此外,变压器油在运行中还可以吸收绕组和铁芯产生的热量,起到冷却的作用。所以变压器油的作用是绝缘和冷却。变压器油需要按国家质量标准检验合格后方可使用,如果达不到国家质量标准要求,需进行处理。介绍了变压器油从开始过滤到抽真空注入整个阶段过程控制的一些流程及工艺,阐述了通过使用这些方法来提高施工进度,有效地保证施工质量,减轻劳动强度。 关键词:变压器油;过程控制;过滤 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。随着电力技术的发展,电压等级越高变压器用油量越大,油的试验项目要求越多,验收标准也越来越高(见表1),在工期紧,工作量大、滤油设备有限的变压器油处理中,极易造成返工。因此,探讨变压器油的处理技术成为一项重要的课题。本文主要给出了普通变压器、直流变压器以及特高压变压器油从开始过滤、注入以及抽真空注入整个阶段的过程控制,以确保变压器用油各项指标的合格性。 1变压器油初始过滤阶段 1.1变压器滤油机和管道材料的选用及清洁 在500kV及以上的变压器油处理中使用的滤油机参数为:油处理能力为12000L/h,过滤器的粗滤芯为0.25mm,精过滤芯为1μm,体积为1869L,4组加热器功率为180kW。滤油机联管使用的为钢丝网骨架保温可伸缩性复合管。在使用滤油设备前,先对滤油机、联管整个系统进行30min以上抽真空除湿处理,再进行30min以上1t左右的热油循环过滤处理,取样合格后(含水量、电气强度)才能进行正常过滤处理。 1.2变压器油过滤时并联油路的设计 按单台变压器(换流变)注入100t油考虑,需准备8~9个15~20t油罐,到达现场的油罐一般布置在变压器附近,呈两行均匀排列,油罐的出口均朝向内侧布置在一条直线上,每个油罐的出口处安装控制阀对油的流入、流出进行单体控制,控制阀出口接一个T型三通接口,所有油罐的接口通过油管连接在一起,留一个空油罐作为滤油时油的转换使用。这样实现了油在过滤时,可以按需要进行任意油罐内油的过滤,避免了频繁拆除管道的繁琐。 1.3变压器油的防潮控制 在南方的天气湿度很大,已滤好油罐中油的含水量搁置一段时间后往往不能满足要求,处理方法为:在单罐油过滤时,油罐上的呼吸器保持通畅,当某个油罐过滤结束,油温降至常温后,可立即将油罐顶部的呼吸器连同顶盖一起用多层塑料布包紧,以防止空气中的水分渗入罐中。 1.4变压器油颗粒度的控制 一般来讲变压器油颗粒度是最难以控制的,在油样的其他值满足要求,仅颗粒度值不满足要求的前提下,可以在不投入滤油机的加热装置的情况下,进行反复过滤。防止油加热时间过长,造成油的粘度增加,而降低了油的品质。 特高压变压器油对颗粒度的控制,在使用普通滤油机过滤后还使用了精滤器进行再过滤,选用的精滤器参数为:油处理能力为12m3/h,运行温度为40~75℃,设计压力为0.4MPa,精滤器的系统分4级过滤,后3级过滤采用绝对过滤精度的滤材进行过滤。 1.5变压器油取样的控制 变压器油取样也是非常重要的一个环节,往往因为取样的方法不适宜,而造成油样的指标不合格。取油样一般适宜在晴朗天气,上午11:00至下午14:00之间进行。先放掉最初的油约1000mL进行放油油嘴的清洗,再取油进行取样瓶的清洗。取样时宜搭建简易的塑料棚进行防护,取样的人员2人为宜,周围10m内不宜有人走动,并禁止进行任何其他作业,以防止周围的扬尘影响颗粒度数值的控制。取样时操作人员不仅要将手部清洗干净,衣袖扎紧,在取样时还宜减缓呼吸。取变压器本体油样可用大瓶、小瓶、针管分别进行取样,大瓶的油样可用于简化分析取样,小瓶可用于颗粒度分析取样,针管可用于含气量、微水、色谱的分析取样。 2变压器抽真空注油阶段 2.1变压器油注入时排气阀和真空压力计的设计 a)排气阀。用于排出变压器油注入前管道内的空气。具体做法为:关闭注油阀,打开排气阀,打开滤油机,将油罐中的油缓缓注入连通变压器的油管内,在变压器油快到油管的底部入口时,将进油速度减缓,油面产生的许多气泡夹杂着油沫通过放气阀排出管道外部。调整从滤油机出口到变压器入口之间的油管,确保油管内的空气均被放气阀排出管外。

浅谈变压器油中溶解气体的形成及分析方法

浅谈变压器油中溶解气体的形成及分析方法 【摘要】运行中的变压器必须定期对箱体内的油进行取样分析,以实时在线监测变压器的内部状态。获取准确可靠的试验结果是正确诊断变压器故障的基本前提。 【关键词】变压器;油中溶解气体;形成;故障判别 1.变压器油的作用 变压器油作为绝缘介质,使各绕组之间以及绕组与铁芯和箱壳之间有良好的绝缘;另一方面它又是散热的媒介,将铁芯和绕组的热量进行传递冷却。变压器油在运行过程中与空气接触的机会比较多,在保护不良的情况下,很有可能渗入雨、雪和露水等。变压器在较高的温度下运行或是长时间过负荷时,上层油温在高温状态下,都会使变压器的油质变劣,电气绝缘强度降低。因此,除处理好变压器的散热、防潮及防劣化三个问题外,还应定期地取油样试验或安装在线监测装置,以实时了解变压器油质在运行中的状态,及时发现问题应并解决,避免事故扩大化。 2.变压器油中气体产生的原因 变压器油是具有不同键能的化学键键合在一起的碳氢化合物,不同的物质分子是原子以化学键联接所构成的,因各分子的不同化学键及不同的键能,在不同的温度下会产生不同气体。 在正常运行条件下,变压器油和固体绝缘材料由于受到电场、热、水分、氧的作用,随时间而发生速度缓慢的老化现象,产生少量的氢、低分子烃类气体和碳的氧化物。 当变压器在故障状态下运行时,故障点周围的油温升高,其化学键断裂,形成多种特征气体。因不同键能的化学键在高温下有不同的稳定性,根据热力动力学原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大值。随着温度的上升,最大值出现的顺序是:CH4、C2H6、C2H4、C2H2。在温度高于1000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,存在于变压器油的各个部分。 随故障的发展,当产气量大于溶解量时,便有一部分气体以自由气体的形态释放出来,分解出的气体形成气泡,在油里经对流、扩散不断地溶解在油中。这些故障气体的组成和含量与故障的类型及其严重程度有密切关系。因此,分析油中溶解气体就能尽早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。 3.变压器常见内部故障及判断 3.1不同故障类型产生的气体 变压器内部故障主要有过热性故障、放电性故障及绝缘受潮等类型。油过热,主要生成气体CH4,C2H4;油纸过热CH4,C2H4,CO,CO2油纸绝缘中局部放电H2,CH4,CO;油中火花放电H2,C2H2;油中电弧H2,C2H2。 3.2故障判断概述 变压器故障诊断中应综合各种有效的检测手段和方法,对得到的各种检测结果要进行综合分析和评判,根据DL/T596-1996电力设备性试验规程规定的试验项目及试验顺序,通过变压器油中气体的色谱分析这种化学检测的方法,在不停电的情况下,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常

相关文档