文档库 最新最全的文档下载
当前位置:文档库 › 仿真实验报告

仿真实验报告

仿真实验报告
仿真实验报告

大学物理仿真实验报告——塞曼效应

一、实验简介

塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。

塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。

塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据洛仑兹(H.A.Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J 、J 汤姆逊(J 、J Thomson)宣布电子发现之前几个月,J 、J 汤姆逊正是借助于塞曼效应由洛仑兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。

塞曼效应被誉为继X 射线之后物理学最重要的发现之一。

1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。

本实验通过观察并拍摄Hg(546.1nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。

二、实验目的

1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂;

2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系;

3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。

三、实验原理

1、谱线在磁场中的能级分裂

设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为

B Mg E E B μ+=0(1)

其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m

hc

B πμ4=

);B 为磁感应强度。 对于S L -耦合

()

()()(121111++++-++

=J J S S L L J J g (2)

假设在无外磁场时,光源某条光谱线的波数为

)(010201

~E E hc

-=γ(3)

式中h 为普朗克常数;c 为光速。 而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为

hc B g M g M E E hc

B

μγγγγγ)()(112201200~1

~~~~-+=?-?+=?+= L g M g M )(1

1220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为

mc

Be g M g M L g M g M πγγγ4~~~1

12211220)()(-=-=-=?(4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位(B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为[]

1

1--特斯拉

米。1

2M M 、的选择定则是:0=?M 时为π成分,是振动方向平行于磁场的线偏振光,只能在垂直于磁场的方向上才能观察到,在平行于磁场方向上观察不到,但当0=?J 时,

0012==M M ,到的跃迁被禁止;1±=?M 时,为σ成分,垂直于磁场观察时为振动垂

直于磁场的线偏振光,沿磁场正方向观察时,1+=?M 为右旋偏振光,1-=?M 为左旋偏振光。

若跃迁前后能级的自旋量子数S 都等于零,塞曼分裂发上在单重态间,此时,无磁场时的一条谱线在磁场作用下分裂成三条谱线,其中1+=?M 对应的仍然是σ态,0

=?M 对应的是π态,分裂后的谱线与原谱线的波数差mc

eB

L πγ

4~==?。这种效应叫做正常塞曼效应。

下面以汞的nm 1.546谱线为例来说明谱线的分裂情况。汞的nm 1.546波长的谱线是汞原子从{}13

76S S S 到{}23

66P P S 能级跃迁时产生的,其上下能级的有关量子数值和能级分

裂图形如表1—1所示。

表1—1

可见,的一条谱线在磁场中分裂成了九条谱线,当垂直于磁场方向观察时,

中央三条谱线为π成分,两边各三条谱线为σ成分;沿磁场方向观察时,π成分不出现,对应的六条线分别为右旋和左旋偏振光。

2、法布里—珀罗标准具

塞曼分裂的波长差很小,波长和波数的关系为γλλ?=?2,若波长m 7105-?=λ的谱线在T B 1=的磁场中,分裂谱线的波长差约只有m 1110-。因此必须使用高分辨率的仪器来观察。本实验采用法布里—珀罗(P F -)标准具。

P F -标准具是由平行放置的两块平面玻璃或石英玻璃板组成,在两板相对的平面上镀有高反射率的薄银膜,为了消除两平板背面反射光的干涉,每块板都作成楔形。由于两镀膜面平行,若使用扩展光源,则产生等倾干涉条纹。具有相同入射角的光线在垂直于观察方向的平面上的轨迹是一组同心圆。若在光路上放置透镜,则在透镜焦平面上得到一组同心圆环图样。

在透射光束中,相邻光束的光程差为

?cos 2nd =?(5)

取1=n

?cos 2nd =?(6)

产生亮条纹的条件为

λ?K d =cos 2(7)

式中K 为干涉级次;λ为入射光波长。

我们需要了解标准具的两个特征参量是

1、 自由光谱范围(标准具参数)FSR λ~

?或FSR

γ~?同一光源发出的具有微小波长差的单色光1λ和2λ(21λλ ),入射后将形成各自的圆环系列。对同一干涉级,波长大的干涉环直径小,所示。如果1λ和2λ的波长差逐渐加大,使得1λ的第m 级亮环与2λ的第(1-m )级亮环重合,则有

21)1(cos 2λλθ-==m m nd (8)

得出m

2

12λλλλ=

-=?(9)

由于大多数情况下,1cos ≈θ,(8)式变为1

2λnd

m ≈

并带入(9)式,得到

nd 221λλλ=?nd

22

λ≈(10)

它表明在P F -中,当给定两平面间隔d 后,入射光波长在λλ?—间所产生的干

涉圆环不发生重叠。

2、 分辨本领 定义

λ

λ

?为光谱仪的分辨本领,对于P F -标准具,它的分辨本领为 KN =?λ

λ

(11) K 为干涉级次,N 为精细度,它的物理意义是在相邻两个干涉级之间能分辨的最大条纹数。N 依赖于平板内表面反射膜的反射率R 。

R

R

N -=

1π(12)

反射率越高,精细度就越高,仪器能分辨开的条纹数就越多。

利用P F -标准具,通过测量干涉环的直径就可以测量各分裂谱线的波长或波长差。参见图2,出射角为θ的圆环直径D 与透镜焦距f 间的关系为f

D

2tan =θ,对于近中心的圆环θ很小,可以认为θθθtan sin ≈≈,于是有

22

2

2

81212sin 21cos f

D -=-≈-=θθθ(13)

代入到(7)式中,得

λθK f

D nd nd =-=)81(2cos 22

2

(14) 由上式可推出同一波长λ相邻两级K 和)(1-K 级圆环直径的平方差为

nd

f D D D

K K λ

22

212

4=

-=?-(15)

可以看出,2

D ?是与干涉级次无关的常数。

设波长a λ和b λ的第K 级干涉圆环直径分别为a D 和b D ,由(14)式和(15)式得

K D D D D D D K f nd K

K a b a b b a λλλ)()(42

21222

22--=-=-- 得出

波长差)(2221222

K K a b D D D D nd --=?-λλ(16) 波数差)(21

2

2122K K a b D D D D nd --=?-γ(17) 3、 用塞曼效应计算电子荷质比

m

e 对于正常塞曼效应,分裂的波数差为

mc

eB

L πγ4=

=? 代入测量波数差公式(17),得

)(22

2122K

K a b D D D D ndB c

m e --=-π(18) 若已知d 和B ,从塞曼分裂中测量出各环直径,就可以计算出电子荷质比。

四、实验内容

通过观察)(nm Hg 1.546绿线在外磁场中的分裂情况并测量电子荷质比。 1、 在显示器上调整并观察光路。

实验装置图

标准具光路图

(1)、在垂直于磁场方向观察和纪录谱线的分裂情况,用偏振片区分成分π和σ成分,改变励磁电流大小观察谱线分裂的变化,同时观察干涉圆环中σ成分的重叠。

(2)、在平行于磁场方向观察和纪录谱线的分裂情况及变化。

(3)、利用计算机测量和计算电子的荷质比,打印结果。

五、实验结果

经过测量可得a D =154.0mm b D =166.0mm Dk=166.0mm Dk-1=257.0mm Dk ’=154.0mm Dk-1′=252.5mm 带入上述公式可得电子的荷质比

111065.1?=m

e

11,

1062.1?=m

e

取二者平均值得

111064.1?=m

e

实验误差E=(1.72-1.64)/1.76=4.7%

六、误差分析

1. 测量磁场时霍尔元件可能未与磁场完全垂直而导致测量的磁场偏小而导致结果偏

大。

2. 未能给出法珀腔介质折射率而是使用n=1代替而导致结果偏大。

3. 在图上找圆心时不够准确而导致误差。

4. 汞灯放置位置不一定是垂直的,因此光线方向分量有误差。

七、思考题

1.如何鉴别F-P 标准具的两反射面是否严格平行?如发现不平行应该如何调节?例如 当眼睛向某方向移动,观察到干涉纹从中心冒出来,应如何调节? 答:实验时当眼睛上下左史移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面基本平行了。当发现不平衡时,利用标准具上的三个旋钮来调节水平。如果当眼睛向某方向移动,观察到干涉纹从中心冒出来时,由干涉公式可得该处的等倾干涉条纹所对应的厚度较大。此时应调节旋扭减小厚度;相反若干涉条纹有吞吐现象则条纹的级数在减小,那么该处的等倾条纹对应的厚度较小,此时应调节旋扭增加厚度。最后直至干涉条纹稳定,无吞吐现象发生。

2.已知标准具间隔圈厚度d=5mm,该标准具的自由光谱范围是多大?根据标准具自由光谱范围及546.1nm 谱线在磁场中的分裂情况,对磁感应强度有何要求?若B=0.62T ,分裂谱线中哪几条将会发生重叠?

标准具厚度d=5mm 自由光谱范围d

22

1λλλ=?d 22λ≈,所用的Hg 灯λ=546.1nm ,故 Δλ=1.065A.故磁感应强度应大于0.72T ,若B=0.62T ,中间的三条谱线将发生重叠。

3.沿磁场方向观察,Δm=1和Δm=-1的跃迁各产生那种圆偏振光?用实验现象说明。

1M ?=±时,在垂直于磁场方向观察到的都是电矢量垂直于磁场的线偏振光,在平行

于磁场方向上观察到的都是圆偏振光。这两个辐射分量被称为σ线。并且,当1M ?=+时,迎着或逆着磁场方向分别观察到右旋或左旋前进的圆偏振光,这个分量被称为σ+

线;当

1M ?=-时,迎着或逆着磁场方向分别观察到左旋或右旋前进的圆偏振光,这个分量被称

为σ-

线.

结果如下:

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

生产系统建模与及仿真实验报告

生产系统建模与及仿真 实验报告 实验一Witness仿真软件认识 一、实验目的 1、学习、掌握Witness仿真软件的主要功能与使用方法; 2、学习生产系统的建模与仿真方法。 二、实验内容 学习、掌握Witness仿真软件的主要功能与使用方法 三、实验报告要求 1、写出实验目的: 2、写出简要实验步骤; 四、主要仪器、设备 1、计算机(满足Witness仿真软件的配置要求) 2、Witness工业物流仿真软件。 五、实验计划与安排 计划学时4学时 六、实验方法及步骤 实验目的: 1、对Witness的简单操作进行了解、熟悉,能够做到基本的操作,并能够进行简单的基础建模。 2、进一步了解Witness的建模与仿真过程。 实验步骤: Witness仿真软件是由英国lanner公司推出的功能强大的仿真软件系统。它可以用于离散事件系统的仿真,同时又可以用于连续流体(如液压、化工、水力)系统的仿真。目前已成功运用于国际数千家知名企业的解决方案项目,有机场设施布局

优化、机场物流规划、电气公司的流程改善、化学公司的供应链物流系统规划、工厂布局优化和分销物流系统规划等。 ◆Witness的安装与启动: ?安装环境:推荐P4 1.5G以上、内存512MB及以上、独立显卡64M以上显存,Windows98、Windows2000、Windows NT以及Windows XP的操作系统支持。 ?安装步骤:⑴将Witness2004系统光盘放入CD-ROM中,启动安装程序; ⑵选择语言(English);⑶选择Manufacturing或Service;⑷选择授权方式(如加密狗方式)。 ?启动:按一般程序启动方式就可启动Witness2004,启动过程中需要输入许可证号。 ◆Witness2004的用户界面: ?系统主界面:正常启动Witness系统后,进入的主界面如下图所示: 主界面中的标题栏、菜单栏、工具栏状态栏等的基本操作与一般可视化界面操作大体上一致。这里重点提示元素选择窗口、用户元素窗口以及系统布局区。 ?元素列表窗口:共有五项内容,分类显示模型中已经建立和可以定义的模型元素。Simulation中显示当前建立的模型中的所有元素列表;Designer中显示当前Designer Elements中的所有元素列表;System中显示系默认的特殊地点;Type中

测试装置动态特性仿真实验报告

测试装置动态特性仿真实验 班级:7391 学号:2009301828 姓名:张志鹏 一、实验目的 1、加深对一阶测量装置和二阶测量装置的幅频特性与相频特性的理解; 2、加深理解时间常数变化对一阶系统动态特性影响; 3、加深理解频率比和阻尼比变化对二阶系统动态特性影响; 4、使学生了解允许的测量误差与最优阻尼比的关系。 二、实验原理 1、 一阶测量装置动态特性 一阶测量装置是它的输入和输出关系可用一阶微分方程描述。一阶测量装置的频率响应函数为: 式中:S S 为测量装置的静态灵敏度;τ为测量装置的时间常数。 一阶测量装置的幅频特性和相频特性分别为: 可知,在规定S S =1的条件下,A (ω)就是测量装置的动态灵敏度。 当给定一个一阶测量装置,若时间常数τ确定,如果规定一个允许的幅值误差ε,则允许测量的信号最高频率ωH 也相应地确定。 为了恰当的选择一阶测量装置,必须首先对被测信号的幅值变化范围和频率成分有个初步了解。有根据地选择测量装置的时间常数τ,以保证A (ω)≥1-ε 能够满足。 2、二阶测量装置动态特性 二阶测量装置的幅频特性与相频特性如下: 幅频特性202220)/(4))/(1(/1)(ωωξωωω--=A 相频特性2200))/(1/()/(2()(ωωωωξφ--=arctg w Α(ω)是ξ和ω/0ω的函数,即具有不同的阻尼比ξ的测试装置当输入信??????ωτ+ωτ-ωτ+=ωτ+=ω22s s )(1j ) (11S j 11S )j (H ()()2 11 A ωτ+=ω()ωτ -=ωφarctan

号频率相同时,应具有不同的幅值响应,反之,当不同的频率的简谐信号送入同一测试装置时它们的幅值响应也不相同,同理具有不同的阻尼比ξ的测试装置当输入信号频率相同时,应有不同的相位差。 (1).当ω=0时,Α(ω)=1;(2).当ω→∞,A (ω)=0;(3).当ξ≥0.707时随着输入信号频率的加大,Α(ω)单调的下降, ξ<0.707时Α(ω)的特性曲线上出现峰值点;(4)如果ξ=0,))/(1/(1))/(1(/1)(202 20ωωωωω-=-=A ,显然,其峰值点出现在ω=0ω处。其值为“∞”,当ξ从0向0.707变化过程中随着的加大其峰值点逐渐左移,并不断减小。 对以上二阶环节的幅频特性的结论论证如下: (1).当ω=0时A(ω)=1 (2).当ω→∞时,A(ω)=0 (3).要想得到A(ω)的峰值就要使202220)/(4))/(1(/1)(A ωωξ-ωω-=ω 中的202220)/(4))/(1(ωωξωω--取最小值。 令:t=20)/(ωω t t t f 224)1()(ξ+-= 对其求导可得t=1-22ξ时,f(t)取最小值.由于t=20)/(ωω≥0,所以1-22ξ≥0, 2ξ必须小于1/2时,f(t)才有最小值,即ξ>2/2时,A(ω)不出现峰值点;当ξ<2/2时4244)(ξξ-=t f ,f(t)对ξ求导得)21(82ξξ-,可以看出f(t): ξ属于[0, 2/2]时单调递增,于是得A(ω)的峰值点A 为4244/1)(/1ξξ-=t f ; 在ξ属于[0,2/2]递减。 (4).当ξ=0时 A=∞,t=20)/(ωω,ω/0ω=1,即ξ=0时A(ω)的峰值为∞,且必出现在ω/0ω=1时,当ξ=2/2时,t=0→ω=0,A(ω)=1. 还可以看出,在ξ属于[0,2/2]增大时t=1-22ξ就减小,即f(t)的峰值左平移。 (二)阻尼比的优化 在测量系统中,无论是一阶还是二阶系统的幅频特性都不能满足将信号中的所有频率都成比例的放大。于是希望测量装置的幅频特性在一段尽可能宽的范围内最接近于1。根据给定的测量误差,来选择最优的阻尼比。

仿真实验报告经典案例概述

XXXXX 实验报告 学院(部)XX学院 课程名称生产系统仿真实验 学生姓名 学号 专业 2012年9月10日

《生产系统仿真》实验报告 年月日 学院年级、专业、班实验时间9月10日成绩 课程名称生产系统仿真 实训项目 名称 系统仿真软件的基础应 用 指导 教师 一、实验目的 通过对Flesim软件进一步的学习,建立模型,运用Flesim软件仿真该系统,观察并分析运行结果,找出所建模型的问题并进行改进,再次运行循环往复,直到找出构建该系统更为合理的模型。 二、实验内容 1、建立生产模型。 该模型生产三种产品,产品到达速率服从均值为20、方差为2的正态分布;暂存器的最大容量为25个;检测器的检测时间服从均值为30的指数分布,预制时间为10s;传送带的传送速率为1m/s,带上可容纳的最大货件数为10个。 2、运行生产模型。 3、对运行结果进行分析,提出改进方案在运行,直到找到更为合理的模型。 三、实验报告主要内容 1、根据已有数据建立生产模型。 将生产系统中所需实体按组装流程进行有序的排列,并进行连接如图1所示

图1 2、分别对发生器、暂存器、检验台和传送带进行参数设置。 (1)发生器的产品到达速率服从均值为20、方差为2的正态分布。如图2所示。 (2)暂存器的最大容量设置为25件。如图3所示。 (3)设置检验台的检测时间服从均值为30s的指数分布,预制时间为10s.如图4所示。 (4)传送带的传送速率为1m/s,最大容量为10件。如图5所示 图2 图3 图4 图5 3、对发生器及暂存器进一步设置。 (1)发生器在生成产品时设置三种不同类型的产品,通过颜色区分。如图6所示。 (2)暂存器在输出端口通过设置特定函数以使不同颜色的产品在不同的检验台检验。如图7所示。

仿真实验报告

大学物理仿真实验报告一一塞曼效应 一、实验简介 塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。 塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的 电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。 塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据 洛仑兹(H.A?Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、 J汤姆逊(J、J ThomSOn)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑 兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。 塞曼效应被誉为继X射线之后物理学最重要的发现之一。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。 本实验通过观察并拍摄Hg(546.1 nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 二、实验目的 1?学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2?观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3?利用塞曼分裂的裂距,计算电子的荷质比 e m e数值。 三、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为E0,相应的总角动量量子数、轨道量子数、 自旋量子数分别为J、L、S。当原子处于磁感应强度为B的外磁场中时,这一原子能级将 分裂为2J 1层。各层能量为 E = E o MgJ B B(1) 其中M为磁量子数,它的取值为J , J -1 ,…,-J共2J 1个;g为朗德因子;J B为 hc 玻尔磁矩(A B= );B为磁感应强度。 4兀m 对于L-S耦合

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

物流系统flexsim仿真实验报告

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101 姓名:李春立 20110402088 吴可为 201104020117 陈诗涵 201104020119 丘汇峰 201104020115

目录 一、企业简介 (2) 二、通达企业立体仓库模型仿真 (2) 1................................ 模型描述:2 2................................ 模型数据:3 3.............................. 模型实体设计4 4.................................. 概念模型4 三、仿真模型内容——Flexsim模型 (4) 1.................................. 建模步骤4 2.............................. 定义对象参数5 四、模型运行状态及结果分析 (7) 1.................................. 模型运行7 2................................ 结果分析:7 五、报告收获 (9) 一、企业简介 二、通达企业立体仓库模型仿真 1. 模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、

储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运输到分类输 送机上,根据设定的分拣系统将A,B,C,D分拣到1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理器检验合格 的产品被放在暂存区,不合格的产品则直接吸收掉;每个操作工则将暂存 区的那些合格产品搬运到货架上;其中,A,C产品将被送到同一货架上, 而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个暂存区上; 此时,在另一传送带上送来包装材料,当产品和包装材料都到达时,就可 以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2. 模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端: A: normal(400,50) B: normal(400,50) C: uniform(500,100) D: uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣装置将其推 入到四个不同的分拣道口,经各自的分拣道到达操作台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检验器旁的暂 存区;不合格的吸收器直接吸收;A的合格率为95%,B为96%,C的合格 率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将货物送至货 架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间为返回60 的常值),储存货物的容器容积各为1000单位,暂存区17,18,21容量为 10;

物流仿真实验报告

《物流仿真实验》 实验报告书 实验报告题目: 物流仿真实验学院名称: 管理学院 专业: 物流管理 班级: 物流1303 姓名: 孟颖颖 学号: 2 成绩: 2016年7月 实验报告 一、实验名称 物流仿真实验 二、实验要求 ⑴根据模型描述与模型数据对配送中心进行建模;

⑵分析仿真实验结果,进行利润分析,找出利润最大化的策略。 三、实验目的 1、掌握仿真软件Flexsim的操作与应用,熟悉通过软件进行物流仿真建模。 2、记录Flexsim软件仿真模拟的过程,得出仿真的结果。 3、总结Flexsim仿真软件学习过程中的感受与收获。 三、实验设备 (1)硬件及其网络环境 服务器一台:PII400/10、3G/128M以上配置、客户机100台、局域网或广域网。 (2)软件及其运行环境 Flexsim,Windows 2000 Server、SQL Server 7、0以上版本、IIS 5、0、SQL Server 数据库自动配置、IIS 虚拟目录自动配置 四、实验步骤 1 概念模型 1个Sink到操作区,如图:

第二步:连接端口 根据配送流程,对模型进行适宜的连接,所有端口连接均用A连接,如图: 第三步:Source的参数设置 为使Source产生实体不影响后面Processor的生产,尽可能的将时间间隔设置尽可能的小,并对三个Source做出同样的设定。 打开Source参数设置窗口,将时间到达间隔设置为常数1,同时为对三个实体进行区别,进行设置产品颜色,点击触发器,打开离开触发的下拉菜单,点击设置临时实体类型,设置不同实体类型,颜色自然发生变化。并对另外两个Source 进行同样的设置,如图:

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

物流系统flexsim仿真实验报告

物流系统f l e x s i m仿真 实验报告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101

目录

一、企业简介 二、通达企业立体仓库模型仿真 1.模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运 输到分类输送机上,根据设定的分拣系统将A,B,C,D分拣到 1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理 器检验合格的产品被放在暂存区,不合格的产品则直接吸收掉; 每个操作工则将暂存区的那些合格产品搬运到货架上;其中,A, C产品将被送到同一货架上,而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个 暂存区上;此时,在另一传送带上送来包装材料,当产品和包装 材料都到达时,就可以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2.模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端:

A:normal(400,50)B:normal(400,50)C:uniform(500,100)D:uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣 装置将其推入到四个不同的分拣道口,经各自的分拣道到达操作 台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检 验器旁的暂存区;不合格的吸收器直接吸收;A的合格率为95%, B为96%,C的合格率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将 货物送至货架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间 为返回60的常值),储存货物的容器容积各为1000单位,暂存 区17,18,21容量为10; ⑦.分拣后A、C存放在同一货架,B、D同一货架,之后由 叉车送往合成器。合成器比例A/C : B/D : 包装物 = 1: 1 :4 整个流程图如下: 3.模型实体设计

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

生产系统仿真实验报告

实验一:工艺原则布置 实验项目名称:工艺原则布置( ) 实验项目性质:综合性实验 所属课程名称:《设施规划与物流分析》 实验计划学时:学时 一、实验目的 通过本实验,掌握四种布置设计方法中最常用的工艺原则布置。 二、实验内容和要求 对于常用的工艺原则布置设计,最常用的设计方法为新建法()和改建法(),最常用的工具是从至表()。 本试验要求学生在熟练掌握工艺原则布置方法的基础上,使用物流仿真软件实现布置设计。 要求: . 认真学习教材第章第节 . 复习运筹学的二次分配问题 . 预先查阅遗传算法相关基本概念 三、实验主要仪器设备和材料 电脑,软件 四、实验方法、步骤及结果测试 见附录一 五、实验报告要求 实验报告要求:任选思考题中的一题 . 教材方法求解,确定你的最佳布置并计算物流量大小。 . 进行建模,可以仿照附录的步骤进行,相关的图、表、文字说明全过程体现在试验报告内。 . 请考虑并回答问题:如果只知道搬运量的从至表和作业单位设施的面积,以及总面积大小,具体位置不能确定,这时我们一般采用的是方法来进行布置设计,如何在实现?不需要你在里面建模,但是希望你考虑实现的方法和一些设想,请把这些思考内容体现在你的实验报告最后,这是体现综合性和设计性的关键点,也是决定你的成绩的评判标准之一。 这里我们统一:假设有台设备要布置到个工作地 .作业单位到作业单位之间如果有物料交换,则二者间的搬运量为。(,…) (,…) .工作地到工作地之间搬运距离为。(,…) (,…) .总的物流量:,而工艺原则布置优劣评判的其中一个标准是。 问题回答: 、通过作业单位搬运量从至表和作业单位距离从至表运行程序得出物流相关表。

计算机仿真实验报告实验

《计算机仿真》上机实验报告 姓名: 学号: 2012104021 专业:测控 班级: 12级

实验一常微分方程的求解及系统数学模型的转换一.实验目的 通过实验熟悉计算机仿真中常用到的Matlab指令的使用方法,掌握常微分方程求解指令和模型表示及转换指令,为进一步从事有关仿真设计和研究工作打下基础。 二. 实验设备 个人计算机,Matlab软件。 三. 实验准备 预习本实验有关内容(如教材第2、3、5章中的相应指令说明和例题),编写本次仿真练习题的相应程序。 四. 实验内容 1. Matlab中常微分方程求解指令的使用 题目一:请用MATLAB的ODE45算法分别求解下列二个方程。要求:1.编写出Matlab 仿真程序;2.画出方程解的图形并对图形进行简要分析;3.分析下列二个方程的关系。 1.2. 1.function fun=funl(t,x) fun=-x^2;

[t,x]=ode45('fun1',[0,20],[1]); figure(1);plot(t,x); grid 2.function fun=fun2(t,x) fun=x^2; [t,x]=ode45('fun2',[0,20],[-1]); figure(2);plot(t,x); grid

题目二:下面方程组用在人口动力学中,可以表达为单一化的捕食者-被捕食者模式(例如,狐狸和兔子)。其中1x 表示被捕食者, 2x 表示捕食者。如果被捕食者有无限的食物,并且不会出现捕食者。于是有1'1x x ,则这个式子是以指数形式增长的。大量的被捕食者将会使捕食者的数量增长;同样,越来越少的捕食者会使被捕食者的数量增长。而且,人口数量也会增长。请分别调用ODE45、ODE23算法求解下面方程组。要求编写出Matlab 仿真程序、画出方程组解的图形并对图形进行分析和比较。 1.ODE45

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

FLEXSIM软件在生产物流系统仿真实验报告

FLEXSIM软件在生产物流系统仿真实验报告 专业:学号:姓名: 1.FLEXSIM软件简介 Flexsim是一个强有力的分析工具,可帮助工程师和设计人员在系统设计和运作中做出智能决策。采用Flexsim,可以建立一个真实系统的3D计算机模型,然后用比在真实系统上更短的时间或者更低的成本来研究系统。 Flexsim是一个通用工具,已被用来对若干不同行业中的不同系统进行建模。Flexsim已被大小不同的企业成功地运用。使用Flexsim可解决的3个基本问题 1)服务问题 - 要求以最高满意度和最低可能成本来处理用户及其需求。 2)制造问题 - 要求以最低可能成本在适当的时间制造适当产品。 3)物流问题 - 要求以最低可能成本在适当的时间,适当的地点,获得适当的产品。 2.实验内容及目的 在这一个实验中,我们将研究三种产品离开一个生产线进行检验的过程。有三种不同类型的临时实体将按照正态分布间隔到达。临时实体的类型在类型1、2、3三个类型之间均匀分布。当临时实体到达时,它们将进入暂存区并等待检验。有三个检验台用来检验。一个用于检验类型1,另一个检验类型2,第三个检验类型3。检验后的临时实体放到输送机上。在输送机终端再被送到吸收器中,从而退出模型。图1-1是流程的框图。 本实验的目的是学习以下内容:

?如何建立一个简单布局 ?如何连接端口来安排临时实体的路径 ?如何在Flexsim实体中输入数据和细节 ?如何编译模型 ?如何操纵动画演示 ?如何查看每个Flexsim实体的简单统计数据 3.实验过程 为了检验Flexsim软件安装是否正确,在计算机桌面上双击Flexsim3.0图标打开应用程序。软件装载后,将看到Flexsim菜单和工具按钮、库、以及正投影视图的视窗。 步骤1:从库里拖出所有实体拖到正投影视图视窗中,如图1-3所示: 图1-3 完成后,将看到这样的一个模型。模型中有1个发生器、1个暂存区、3个处理 器、3个输送机和1个吸收器。 步骤2:连接端口 下一步是根据临时实体的路径连接端口。连接过程是:按住“A” 键,然后用鼠标左键点击发生器并拖曳到暂存区,再释放鼠标键。拖曳时你将看到一条黄线,

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

相关文档