文档库 最新最全的文档下载
当前位置:文档库 › 铝合金和钢异种金属CMT焊接性分析

铝合金和钢异种金属CMT焊接性分析

铝合金和钢异种金属CMT焊接性分析
铝合金和钢异种金属CMT焊接性分析

铝与异种金属的焊接

第四节铝与异种金属的焊接 现代工业对零部件的性能提出了更高的要求,如耐蚀性、导电性、导热性、磁性、熔点、硬度及耐磨性、低温韧性、耐高温持久强度等多方面的性能。有些情况下,任何一种金属材料都不可能全面满足使用性能要求,或者即使某种金属比较理想,却由于十分稀贵,不能在工程实际中大量应用。当需要制作一个在不同工作部位上具有不同性能的机件或构件,却找不到一种同时都能满足这些性能要求的金属材料时,最合理而又经济的办法是:对任何一个部位都根据其最重要的工作性能,选择相对最合适的金属材料制作,然后用焊接方法把这些各具特殊性能的金属材料连接成一个整体。这种把化学性能或物理性能有差异的金属焊接在一起的工艺过程称为异种金属焊接。 目前,在石油化工、能源、机车车辆、海洋开发、军工及航窑航天技术等方面,越来越多的铝与异种金属韵焊接结构投入了实际应用。主要有铝与铜、铝与钛、铝与钢及不同型号铝合金之间的焊接。 异种金属的焊接要比同种金属焊接困难和复杂:不同母材之间、母材与填充金属之间的相互作用是不同的,这给焊接带来了冶金上的困难;又有因物理性能上存在差异带来焊接工艺上的困难。 一、铝与铜的焊接 铝和铜导电性能都很好,都是常用于制造导电体的材料。铝比铜的密度小(属于轻金属),价格便宜,许多场合需要以铝代铜,因此常常需要将铝、铜连接起来,铝-铜接头广泛用于化工、电器和制冷工业中。铝与铜之间采用机械连接是不可靠的,需用焊接方法连接。

从表2-4-1中可以归纳出铝与铜的以下几点特性: 1.铝与铜的特性 表2-4-1 铝和铜的物理性能及主要力学性能 (1)铝和铜的导电及导热性很好。在所有金属中,铜居第二位,铝居第四位。 (2)铝和铜都是面心立方品格,具有极好的塑性,因此都能够通过冷、热压力加工。 (3)铝与铜在液态时相互无限固溶,固态时有限固溶。 (4)铝和铜在液态时流动性都很大。 (5)铝的强度比铜低得多。铝在550℃以上强度显着降低。虽然铝可经冷变形加工硬化提高强度,但同时塑性也会下降。

异种材料焊接存在的八大问题

异种材料焊接存在的八大问题 随着现代工业的发展和科学技术的进步,对焊接构件的性能提出了更高、更苛刻的要求,往往除通常的力学性能之外,还有如高温强度、耐磨性、耐蚀性、低温韧性、抗辐照性、磁性、导电性、导热性以及熔点等多方面的性能,在这种情况下,单靠任何一种金属材料都不可能完全满足使用要求,即使可能有某种金属相对比较理想一些,也常常由于十分稀贵而不能在工程实际中应用。现代焊接技术已经可以将具有不同性能的异种金属牢固地接合起来,既能满足各种性能要求,又可节约贵重金属,降低成本,做到“物尽其用”,因而日益受到人们的重视,并正在航天、航空、石油化工、电站锅炉、机械电子、造船及其他一些领域获得越来越广泛地应用。 异种金属是指那些不同元素的金属(如铝、铜等)或从冶金现点来看性质,如物理性能、化学性能等有显著差异的某些以相同基本金属形成的合金(如碳钢、不锈钢等)。它们可以用作母材、填充金属或焊缝金属。异种材料的焊接,是指两种或两种以上的不同材料(指化学成分、金相组织及性能等不同)在一定工艺条件下进行焊接加工的过程。在异种金属的焊接中,最常见的是异种钢焊接,其次是异种有色金属焊接和钢与有色金属的焊接。从接头形式看来也有三种基本情况,即两种不同金属母材的接头,母材金属相同而填充金属不同的接头(如用奥氏体焊接材料焊接中碳调质钢的接头等),以及复合金属板的焊接接头等。

异种材料的焊接 把不同的两种金属焊接在一起时,必定会产生一层性能和组织与母材不同的过渡层。由于异种金属在元素性质、物理性能、化学性能等方而有显著差异,与同种材料的焊接相比,异种材料的焊接无论从焊接机理和操作技术上都比同种材料要复杂得多。 异种材料焊接中存在的主要问题如下: 1、异种材料的熔点相差越大,越难进行焊接。 这是因为熔点低的材料达到熔化状态时,熔点高的材料仍呈固体状态,这时已经熔化的材料容易渗入过热区的晶界,会造成低熔点材料的流失、合金元素烧损或蒸发,使焊接接头难以焊合。例如焊接铁与铅时(熔点相差很大),不仅两种材料在固态时不能相互溶解,而且在液态时彼此之间也不能相互溶解,液态金属呈层状分布,冷却后各自单独进行结晶。 2、异种材料的线膨胀系数相差越大,越难进行焊接。 线膨胀系数越大的材料,热膨胀率越大,冷却时收缩也越大,熔池结晶时会产生很大的焊接应力。这种焊接应力不易消除,结果会产生很大的焊接变形。由于焊缝两侧材料承受的应力状态不同,容易导致焊缝及热影响区产生裂纹,甚至导致焊缝金属与母材的剥离。 3、异种材料的热导率和比热容相差越大,越难进行焊接。 材料的热导率和比热容会使焊缝金属的结晶条件变坏,晶粒严重粗化,并影响难熔金属的润湿性能。因此,应选用强力热源进行焊接,焊接时热源的位置要偏向导热性能好的母材一侧。 4、异种材料的电磁性相差越大,越难进行焊接。 因为材料的电磁性相差越大,焊接电弧越不稳定,焊缝越差。 5、异种材料之间形成的金属间化合物越多,越难进行焊接。 由于金属间化合物具有较大的脆性,容易导致焊缝产生裂纹、甚至断裂。

铝-钢异种金属搅拌摩擦焊研究

铝-钢异种金属搅拌摩擦焊研究 摘要:搅拌摩擦焊是一种新型的固相方法,在异种材料连接方面有广阔的应用前景。本文从搅拌摩擦的工艺、性能及组织三方面分别介绍了铝-钢搅拌摩擦焊的研究进展,为其深入研究提供了依据。采用搅拌摩擦焊,异种金属铝-钢可以实现连接,但工艺参数选择范围较小,钢置于前进边时,铝-钢更易连接。由于铝-钢物理性能的差异,二者流动状态不同,焊核两侧呈现不同结构,接头的力学性能由于脆性金属间化合物的存在而降低。通过改变热输入或添加第三组元等微量元素的办法可以改善接头的力学性能。 前言 在航空航天、交通运输、船舶制造等工业中,为了减轻重量、节约能源、降低成本、满足不同的工作条件, 异种材料的焊接技术日益受到人们的重视[1]。利用铝及铝合金密度小(大约是钢的1/3),耐腐蚀性、导热率和导电性好的优势,用铝合金代替钢可以减轻结构件的重量,在重型装备轻量化方面具有良好应用前景,然而如何解决铝-钢异种材料间的连接是决定其安全使用的关键问题。 目前,铝-钢的主要连接方法有熔焊中的爆炸焊[2]、焊[3]、熔钎焊[4], 还有固相连接的摩擦焊[5]。通常爆炸焊接只适用于铝-钢复合板。采用激光焊和熔-钎焊时,由于铝和钢的熔点、导热性能差异很大,在接头过渡区容易形成多种脆性的金属间化合物,无法获得高质量的接头。旋转摩擦焊焊接铝-钢又只适用于柱形材料,接头受限制。以上各种方法都难以保证制备出质量良好的铝-钢焊接接头,限制了其大规模应用。 搅拌摩擦焊(friction stir welding, FSW)是一种新型的固相连接方法,具有高效、环保、热变形和残余应力小等综合优点[6]。它是利用搅拌头和工件之间的摩擦热,一般低于母材的熔点,因此焊接过程中工件没有熔化,与传统的焊接方法相比,能够有效避免气孔、裂纹等组织缺陷。此外,搅拌摩擦焊基本不受材料物理化学性能、机械性能及晶体结构等因素的影响,对克服不同材料性能差异带来的焊接困难具有极大的优势[7],因此在异种金属连接中具有广阔前景,相关机理研究也越来越受到重视。本文将从工艺、组织、性能三分面分析铝-钢搅拌摩擦焊的研究现状。 1铝-钢工艺过程及参数 1.1搅拌头 在搅拌摩擦焊中,搅拌头的尺寸和形状对焊缝成形质量和金属流动有重要的影响。在铝-钢的搅拌摩擦焊过程中,由于钢的硬度较大,且熔点为1500℃左右,因此对搅拌头的材料提出了更高的要求,即具有良好的耐高温及耐磨性以提高搅拌头的使用寿命。合适材料的搅拌头能够增加摩擦,提高热量的输入,有利于焊缝金属塑化和提高焊接质量。据文献显示,可用作铝-钢搅拌摩擦焊的搅拌头材料很多, 如热处理的工具钢[8]、钢[9,10,11]、镍基合金[12]、wc-co合金钢[13]等。

浅析异种金属材料物理性质对焊接的影响

龙源期刊网 https://www.wendangku.net/doc/aa6509484.html, 浅析异种金属材料物理性质对焊接的影响 作者:花雷生 来源:《中国高新技术企业》2016年第08期 摘要:异种的金属材料由于其物理性的不同对焊接的结果会产生不同的影响。在实际的工程焊接中,异种金属焊接的需求非常多,根据焊接金属材料的不同可以将焊接分为异种钢材料焊接、异种有色金属焊接、钢材料与有色金属的焊接。鉴于异种金属对焊接的影响,在进行异种金属的焊接过程中通常需要注意一些事项,文章对此进行了研究。 关键词:异种金属材料;物理性质;焊接质量;相溶性;焊接工艺文献标识码:A 中图分类号:TG453 文章编号:1009-2374(2016)08-0061-02 DOI:10.13535/https://www.wendangku.net/doc/aa6509484.html,ki.11-4406/n.2016.08.032 异种金属材料焊接指的是两种或者多种金属材料进行的焊接工作,最为常见的是铜和铝的焊接。除了金属的物理性质不同,对同种金属材料而言,同种材料的不同种性质的存在,比如钢材料的Q235和16Mn焊接,物理性质的不同使得同种金属在焊接时也要采用不同的焊接技术,只有这样才会保障焊接的质量。 1 金属的物理性质不同对焊接的影响 1.1 金属的熔点 在两种金属焊接的过程中,要将两种金属融化。假如这两种金属的熔点相差较小,都在100℃之内的话,焊接就非常容易;但是如果金属的熔点相差很大,比如一种金属的熔点在100℃之内,另一种金属的熔点在100℃以上或是两种金属熔点温度差在100℃以上,在焊接的时候就会出现这样的情况:熔点温度低的金属在加热的过程中熔化成液体,而熔点高的金属由于没有达到熔点就没有熔合;熔点高的金属在焊接过程中会出现凝固收缩情况,对部分凝固的金属形成压力,导致在焊接的过程中出现裂缝。 1.2 热导率和比热容的差异 不同种金属的热导率和比热容存在着差异,当两种金属的热导率和比热容差异比较大的时候,会出现热输入不平衡的情况。在焊接的过程中金属熔化的不均匀,导致焊接的缝隙出现变化,两侧金属的结晶情况也会发生转变。比如热导率比较高的金属在焊接的过程中容易受到热的影响,在冷却的过程中也会迅速发生冷却出现淬硬现象,而热导率较低的金属在焊接的过程中会出现过热的情况。 1.3 线膨胀系数

异种金属焊接注意事项

异种金属焊接注意事项 一、异种金属焊接存在的问题 异种金属焊接所存在的一些固有问题也阻碍了它的发展,如异种金属熔合区的 构成和性能,异种金属焊接结构的破坏多半发生在熔合区,由于靠近熔合区各 段上焊缝结晶特点不同,又易形成性能不好的,成分变化的过渡层。 另外,由于处在高温的时间长,这一区域的扩散层会扩大,会进一步使金属的 不均匀性增加。而且异种金属焊接时或焊后经热处理或经高温运行后,经常发 现低合金一侧的碳通过焊缝边界向高合金焊缝中“迁移”的现象,分别在熔合 线两侧形成脱碳层和增碳层,在低合金一侧母材形成脱碳层,在高合金焊缝一 侧形成增碳层。 防碍和阻止异种金属结构的使用和发展主要表现在以下几个方面: (1)在室温下,异种金属焊接接头区的机械性能(如拉伸、冲击、弯曲等)一般优于被焊母材的性能,但高温下或高温长期运行后,接头区的性能劣于母材。 (2)在奥氏体焊缝与珠光体母材之间存在一个马氏体过渡区,该区韧性较低,是 一个高硬度脆性层,也是导致构件失效破坏的薄弱区,它会降低焊接结构的使 用可靠性。 (3)焊后热处理或高温运行过程中碳迁移会导致在熔合线两侧分别形成增碳层和 脱碳层。一般认为脱碳层由于碳的减少而导致该区域组织、性能发生较大变化

(一般是劣化),从而使得该区域容易在服役过程中发生早期失效。很多服役中的高温管线或者试验中的高温管线的失效部位都集中在脱碳层。 (4)失效与时间,温度和交变应力等条件有关。 (5)焊后热处理不能消除接头区的残余应力分布。 (6)化学成分的不均匀性。 异种金属焊接的时候,由于焊缝两侧的金属和焊缝的合金成分有着明显的差别,焊接过程中,母材和焊材都会熔化并相互混合,混合的均匀程度随着焊接工艺的改变而改变,而且焊接接头不同的位置,混合均匀程度也有很大差异,这就造成了焊接接头化学成分的不均匀性。 (7)金相组织的不均匀性。 由于焊接接头化学成分的不连续,经历了焊接热循环后,焊接接头各个区域出现不同的组织,往往在某些区域出现极其复杂的组织结构。 (8)性能的不连续性。 焊接接头的化学成分和金相组织的差异,带来了焊接接头力学性能的不同。沿焊接接头的各个区域强度、硬度、塑性、韧性、冲击性能、高温蠕变、持久性能都有很大差别。这种显著的不均匀性使得焊接接头不同区域在相同的条件下,表现出来的行为有很大的差异,出现弱化区域和强化区域,尤其是在高温的条件下,异种金属焊接接头在服役过程中经常出现早期失效。

异种金属激光焊接关键问题研究

异种金属激光焊接关键问题研究 现代工程结构要求对异种金属材料进行焊接。激光焊接具有密度高、焊缝深宽比大、热影响区窄以及变形小等特点,成为异种金属材料焊接的有效方法。异种金属激光焊接过程包含多种效应,机制复杂。比如,材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制;熔池凝固过程焊接缺陷及残余应力形成等。围绕异种金属激光焊接过程中的关键问题,国内外开展了诸多研究工作,对此进行了全面阐述。在此基础上,指出异种金属材料激光焊接研究中的不足及发展方向。 1 引言 异种金属材料焊接是解决构件同时满足多方面性能要求的有效途径。焊接方法有多种,比如氩弧焊(TIG)、电阻焊、摩擦焊、电子束焊以及激光焊等。与其他焊接方法相比,激光焊具有热源密度集中、焊缝深宽比大、热影响区小、可控性好等特点,而且相对电子束焊,激光焊接气压要求低,通常不需要真空环境。异种金属激光焊接始于20世纪70年代,目前成为航空航天、船舶制造、汽车制造诸领域重要的先进制造技术之一。 异种金属激光焊接过程包含多种物理效应。具体表现为:金属材料对激光的吸收;激光材料相互作用引起的材料相变;能量与动量的传递与转换;光致等离子体对激光的散射与吸收;熔池形成及演化;匙孔(keyhole)效应以及熔池凝固等。从复杂物理现象中提取科学问题,并对这些科学问题开展研究工作具有重大意义。 2 异种金属激光焊接关键问题 异种材料激光焊接机制复杂。比如,焊接材料热物性随温度变化差异;异种金属对于激光的吸收率差异及其随温度变化特性;熔池形成及演化机制;凝固过程焊缝熔化区与热影响区组织演化;激光焊接接头缺陷的形成、焊接残余应力与变形产生等。但其关键问题可归结为材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制和熔池凝固过程焊接缺陷及残余应力形成。 2.1 材料性能差异对焊接接头微观组织与宏观性能的影响 异种金属材料具有热物性差异(常见金属热物性见表1所示),这种差异是影响焊接过程的最主要因素。具体表现为:异种材料熔点不同,熔点低的材料达到熔化状态时,熔点高的材料仍呈固体状态,这时已经熔化的材料容易渗入过热区的晶界,造成低熔点材料的流失、合金元素烧损或蒸发,使焊缝的化学成分发生变化,力学性能难以控制,尤其是焊接异种有色金属时更为显著。异种材料线膨胀系数差异导致熔池结晶时产整较大焊接应力与焊接变形,由于焊缝两侧材料承受的应力状态不同,容易导致焊缝及热影响区产生裂纹,甚至导致焊缝金属与母材的剥离。材料的热导率和比热容差异使焊缝金属的结晶条件变坏,晶粒严重粗化,并影响难熔金属的润湿性能。异种材料焊接时易产生金属间化合搦,同时会发生组织变化,导致焊接接头力学性能下降,尤其是热影响区容易产生裂纹,甚至发生断裂。向时,材料膨胀系数、热导率和比热容等热物性参数随温度变化而变化,导致异种材料激光焊接过程更加复杂。 表1 部分常用金属热物性参数(室温) 点击图片查看大图

铝和铁怎样焊接最简便

铝和铁怎样焊接最简便 常用焊接方法及特点: 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。二、电弧焊的分类有哪些,有什么优点?利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?(1)焊接接头由焊缝金属和热影响区组成。1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。(2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。1)熔合区位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。3)正火区加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。4)部分相变区加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合?电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。电阻焊分为点焊、缝焊和对焊3种形式。(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。1)电阻对焊焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑

铜钢异种材料焊接

1 试验研究内容 紫铜是工业上重要的金属材料,具有极好的导热性、常温和低温塑性,对大气、海水、非氧化性酸及钙盐等有良好的耐腐蚀性。但由于它强度低,比重大,单独作为容器结构材料在大型化工装备上的应用受到限制。若采用加工硬化提高其强度,其塑性会大幅度降低,同时耐蚀性受损,因而它对某些介质的良好耐蚀性这一优点难以充分发挥。异种金属爆炸复合连接方法的出现,使铜能够真正大量应用于化工装备,但铜的焊接性差,铜—钢之间的焊接连接成为铜—钢化工装备制造中的一个主要难题。 随着经济的迅速发展和科学技术的不断进步,新材料、新工艺、新设备不断涌现,对零部件的性能提出了更高的要求。采用钢和铜复合零部件,因在性能与经济上优势互补,具有广阔的应用前景,如在转炉炼钢工程的氧气管道需要采用T2铜管和不锈钢管焊接,新一代航空发动机采用铬青铜与双相不锈钢电子束焊接,弹带上钢与纯铜的熔敷扩散焊等。 本实验以紫铜和Q235钢为主要材料,主要研究紫铜和钢在TIG氩弧钎焊焊接性,研究接头的力学性能,分析其接头的组织成分特点,找到相对合适的焊接工艺。 2 研究方案论证 2.1 铜-钢焊接分析 在铜-钢焊接中,铜与铁的熔点、导热系数、线膨胀系数和力学性能等都有很大的不同,容易在焊接接头中产生应力集中,导致各种焊接裂纹。 另一方面,铜与钢的原子半径、晶格类型、晶格常数及原子外层电子数目等都比较接近,且铜与铁属于在液态时无限固溶,在固态下,虽为有限固溶,但并不形成脆性金属间化合物,而是以(α+ε)的双相组织形式存在,这是二者实现焊接的基本依据。因此,只要克服前述的铜与铁在物理性能上存在差异的困难,是可以获得正常焊接接头的。 两种金属物化性能如表1-1。 表1-1 铁和铜的物理性能 钢与铜及铜合金的焊接主要存在下面几个问题: (1)焊缝易产生热裂纹 由于铜与钢会形成低熔点共晶,以及线膨胀系数相差较大,焊缝容易产生热裂纹和晶界偏析(即低熔点共晶合金或是铜的偏析),因而焊接时,在较大焊接应力作用下,呈现出宏观

异种金属焊接时的焊接材料和焊接方法选择讲解

第二节异种金属焊接时的焊接材料和焊接方法选择 一、熔合区的特点 异种金属焊接时,在母材和焊缝之间有一个成分和母材或焊缝都不相同且往往介于两者之间,实际上形成了化学成分的过渡层(图3-2-1。如果焊条(或焊丝)成分和母材成分,或者两种母材的成分相差很大时,熔合区的性能将对焊接接头的性能有着很大的影响。所以,在选择焊接材料和确定焊接工艺时,不仅要考虑焊缝金属本身的成分和性能,还要考虑熔合区成分和性能。虽然熔合区的厚度极小,通常只有几个晶粒,或者更小,但它对接头的性能影响却是很大的。 实际上熔合区可分为未混合区和半熔化区。如果焊缝金属和母材金属化学成分差别愈大,愈不容易充分混合,则熔合区越明显。熔合比和稀释率高时,熔合区也更明显。熔合区金属液体存在时间越长,或液体金属流动性越好,则成分越均匀,熔合区会有所减小。熔合区成分的不均匀性,可通过调整焊接参数、热处理工艺来进行适当的改善。 图3-2-1化学元素的含量在过渡区的分布 1—化学元素在母材中的含 量大于在焊缝中的含量 时的理论分布曲线 2—化学元素在母材中的含量 小于在焊缝中的含量 时的理论分布曲线 3—实际分布曲线 二、异种钢焊接时焊接方法的选择原则 大部分的焊接方法都可以用于异种钢的焊接,只是在焊接参数及措施方面需适当考虑异种钢的特点。在选择焊接方法时,既要保证满足异种钢焊接的质量要求,又要尽可能考虑效率和经济。在一般生产条件下使用焊条电弧焊最为方便,.因为焊条的种类很多,便于选择,适应性强,可以根据不同的异种钢组合确定适用的焊条,而且焊条电弧焊熔合比小。堆焊可以降低熔合比。埋弧焊则生产效率高。焊接金相组织不同的钢,如珠光体钢和奥氏体钢焊接时,还应考虑尽量使金属熔化量降到最小限度,即尽可能地降低熔合比,以防止过渡区出现脆性的淬硬组织和裂纹等缺陷。不同的珠光体钢焊接以及珠光体钢与高铬马氏体钢焊接,采用二氧化碳气体保护焊,具有广泛实用性。高合金异种钢焊接一般采用惰性气体保护焊,一般薄件采用钨极氩弧焊,厚件采用熔化极惰性气体保护焊。电子束焊可以用于制造异种钢真空设备薄壁构件。小直径的异种钢管可用闪光对焊。形状

异种钢焊接的特点及工艺

异种钢焊接的特点及工艺 摘要:由于异种钢接头两侧的母材无论从化学成分上还是物理、化学性能上都存在着差异,因此,焊接时,要比同一种钢自身之间的焊接要复杂得多。正确地选用焊材是焊接异种钢的关键,焊接接头的质量和使用性能与所选用的焊材密切相关。本文通过对异种钢焊接的特点及工艺的描述,以供同行业参考。 关键词:异种钢焊接特点工艺 一、异种钢焊接概述及其焊接特点 1.异种钢焊接概述 两种牌号不同的钢之间的焊接称之为异种钢焊接,它是属于异种金属焊接中应用最为广泛的一类接头。对于异种钢焊接接头又可分为两种情况,第一类为同类异种钢组成的接头,这类接头的两侧母材虽然化学成分不同,但都属于铁素体类钢或都属于奥氏体类钢;第二类接头为异类异种钢组成,即接头两侧的母材不属于同一类钢,例如一侧为铁素体类钢,另一侧为奥氏体类钢(如奥氏体不锈钢)。对于母材都属于铁素体类钢,其焊缝采用奥氏体不锈钢焊条或镍基焊条焊接的接头,也属于第二类接头。 2.焊接特点 2.1预热、缓冷、焊后热处理,特别是针对中厚板、拘束力较大的焊接,采用一定温度的预热、缓冷以及焊后消应力热处理的措施,可以有效地减小焊接应力,降低冷裂倾向。 2.2焊缝金属化学成分的不均匀,熔焊时,焊缝是由局部熔化的母材和熔化的焊条金属形成,不同的坡口型式和焊接参数,熔合比也不同,为确保焊缝金属成分的稳定性,防止焊缝因熔合比过大在熔合区产生马氏体组织,因此在焊接时要控制焊接参数等,减小熔合比的影响。 2.3熔合区碳的迁移,异种钢焊接在焊后热处理后往往会在低合金钢侧母材上形成脱碳层,高合金钢侧形成增碳层,导致熔合区接头的塑性下降,硬度增加,可能在熔合区产生破坏,所以在异种钢焊接时,采用隔离层堆焊,防止碳迁移现象。 2.4熔合区应力的形成,由于异种钢焊接两种金属的线膨胀系数不一样,焊接时可产生较大的残余应力,这种应力即使通过消应力热处理也无法消除,而熔合区这个薄弱地带往往受到这个应力的影响,极易在此附近造成焊接接头的破坏,所以我们要控制这种异种钢的焊接接头,可采用隔离层堆焊后用同种钢焊条焊接则接头的性能可大为改善。 二、异种钢焊接工艺要点 1.焊材选择 正确地选用焊材是焊接异种钢的关键,焊接接头的质量和使用性能与所选用的焊材密切相关。异种钢接头的焊缝和熔合区,由于合金元素被稀释及碳的迁移等原因存在一个过渡区,过渡区中不但化学成分、金相组织不均匀,而且物理性能、力学性能等通常也有很大差异,可能会引起焊接缺陷(如裂纹等)或严重降低性能。为此必须按照母材的成分、性能、接头形式和使用要求等来正确选用焊材。其焊材选用的基本原则有以下几点: 1.1在焊接接头不产生裂纹等缺陷的前提下,若焊缝金属的强度和塑性不能兼顾时,则应选用塑性和韧性较好的焊材。

异种钢的焊接要点

异种钢的焊接 第一节焊接接头的特点、成分、和组织的控制 一,焊接接头的特点 异种钢焊接接头和同种钢焊接接头有本质差异,主要是熔敷金属与两侧焊接热影响区和母材存在的不均匀性,主要有: 1.化学成分不均匀。这是因为在焊接加热过程中,两侧母材的熔化量,熔敷金属和母材熔化区的成分因“稀释”作用会发生变化。接头区的成分不均匀程度不仅取决于母材、填充金属各自的原始成分,也受焊接工艺的影响,易采用小电流、浅熔深。 2.组织的不均匀性。在焊接热循环的影响下,接头内的各区域组织是不同的,而且在个别区域内还会出现复杂的组织结构。 参见舍夫勒图Nieq-- 镍当量;Creq—铬当量 (学会看舍夫勒图) 熔合比(稀释率)θ-在焊缝金属中局部熔化的母材所占的比例称为熔合比。用实验测得的。 θ=A/A+B=A1+A2/A1+A2+B θ取决于焊接方法、规范、接头形式、坡口角度、药皮(焊剂)的性质以及焊条(焊丝)的倾角等因素 3.性能的不均匀性。由于组织、成分的变化,代来了性能上的不同,各种变化会呈倍数关系变化,特别是焊缝两侧的热影响区冲击值变化更大,同样高温性能如持久强度、蠕变强度变化也很大。

4.应力场分布不均匀。由于组织、成分的不同,接头的热膨胀系数和导热系数也不同,热膨胀系数不同引起塑性区域不同,残余应力不同;导热系数不同会引起热应力不同。在组织应力和热应力的共同作用下发生叠加后会产生应力峰值,导致接头发生断裂。 总之,对于异种钢焊接接头,其成分、组织、性能和应力场的不均匀是主要特点。 二,异种钢焊缝金属的成分、组织的控制 1.焊缝成分与舍夫勒组织图的关系。异种钢焊接时由于选择的焊材与母材不同,要推算焊缝金属的成分、组织及性能。舍夫勒组织图就有这个功能。(图2-3) 奥氏体形成元素的镍当量计算公式: Nieq=wNi+30wC+0.5wMn 铁素体形成元素的铬当量计算公式: Creq=wCr+wMo+1.5wSi+0.5wNb 也可以由母材、填充金属的成分和稀释率求出焊缝金属的成分。 2.影响稀释率的因素。 2.1预热的影响.预热温度高,稀释率大,因为熔深增加了;反之就小。要适中。 2.2焊接参数.电流大,稀释率大;焊接速度小,稀释率小。由于母材熔化的单位面积的大小的影响。见(图2-4) 2.3焊接方法.见(图2-5) 2.4接头形式.坡口大,稀释率小;坡口窄,稀释率变化不大。见

异种金属材料焊接接头常识

异种金属材料焊接接头常识 一、异种金属材料焊接接头的特点 异种金属材料焊接接头和同种金属材料焊接接头的本质差异和特点,在于熔敷金属两侧焊接热影响区和母材有如下诸方面的不均匀性。 1、化学成分的不均匀性 异种金属焊接时,由于焊缝两侧的金属和焊缝的合金成分有明显的差别。随着焊缝形状、母材厚度、焊条药皮或焊剂、保护气体种类的不同,焊接熔池的行为也不一样。因而,母材的熔化量也将随之而不同。熔敷金属与母材熔化区的化学成分由于相互稀释也将发生变化。由此可见,异种金属焊接接头各区域化学成分的不均匀程度,不仅取决于母材和填充材料各自的原始成分,同时也随焊接工艺而变化。例如异种金属施焊时所用的焊接电流要尽量小,熔深要浅则受稀释的影响就小。 2、组织的不均匀性 由于焊接热循环的作用,焊接接头各区域的组织也不同,而且,往往在局部的地方出现相当复杂的组织结构。根据舍夫勒组织图(见图1)和稀释率(见图2)可以确定异种金属焊接接头中焊缝区的组织结构。组织的不均匀性,决定于母材和填充材料的化学成分,同时也与焊接方法、焊道层次、焊接工艺以及焊后热处理过程有关。若能在工艺上适当调整,可以使焊接接头的组织不均匀程度得到一定的改善。

其中,θ按下式计算: 式中,B——填充材料的熔入量(用焊缝中填充材料熔化的截面面积表示);A——母材的熔入量,同样用焊缝中母材熔化的截面面积表示,A=A1+A2;A1、A2——分别为母材1、2熔入的截面面积。 3、性能的不均匀性 焊接接头各区域化学成分和组织的差异,带来了焊接接头力学性能的不同,沿接头各区域的室温强度、硬度、塑性、韧性都有很大的差别。有时在3~5个晶粒的范围内,显微硬度出现成倍的变化;在焊缝两侧的热影响区,其冲击值甚至有几倍之差。高温下的蠕变极限和持久强度也会因成分和组织的不同,相差极为悬殊。 物理性能对焊接接头影响最大的因素有热膨胀系数和热导率,它们的差异很大程度上决定着焊接接头在高温下的使用性能。 4、应力场分布的不均匀性

异种金属和镀层金属的焊接

采用机器人M IG焊工艺对多构件高强度铝合金型材组成的座椅底架焊接进行了探索和研究,经过多次实践和优化,得到了较佳的焊接工艺参数,保证了产品的焊接质量,减小了产品的变形,并应用于生产实践。图2表1参2 20094224 铝合金2A16的激光焊接工艺研究/李建莉 //热加工工艺. 2009,38(1):139~140,143以1.2mm厚2A16铝合金薄板为对象,研究了工作电流、焊接速度、离焦量、保护气体流量对焊缝成形的影响。焊后进行金相观察、显微硬度测定以及对焊缝组织中出现的弯曲状形貌进行研究和分析。结果表明:离焦量是影响是否焊透的主要参数。焊缝组织的弯曲状形貌是由于受到焊接热循环影响所得到的等温面与晶粒成长方向正交形成。焊缝为细晶组织,焊缝窄,热影响区小。图3参4 20094225 7A52超硬铝合金焊接参数与人工时效参数的优化/何 静 //热加工工艺. 2009,38(3):91~92采用自动双丝M IG焊焊接7A52超硬铝合金,保护气体为纯氩气,焊后进行人工时效。通过正交试验分析,得出最优的工艺参数为时效温度120 、时效时间20h、摆动频率40t imes/min、焊接电流240A,在此工艺条件下所得焊接接头的冲击韧度为21.3J/ cm2,拉伸强度为269.2M Pa。图2表3参2 20094226 铝合金搅拌摩擦焊与熔化极氩弧焊接头组织性能比较/刘雪梅 //热加工工艺. 2009,38 (3):93~94 搅拌摩擦焊和熔化极氩弧焊是航空航天领域两种常用的铝合金焊接工艺方法。以70mm厚5A06铝合金作为试验材料,研究比较了用这两种方法得到的焊接接头的微观组织和性能。结果表明,搅拌摩擦焊接头晶粒细化,合金元素烧损减少,具有较高的力学性能和抗腐蚀性能。比较结果有利于根据要求选择合适的焊接方法。图1表2参3 20094227 人工时效后2816铝合金电子束焊接接头的组织与性能/黄 锐 //金属热处理. 2009,34 (1):43~45 通过金相分析、室温拉伸试验对人工时效2816铝合金电子束焊接接头组织和性能进行了研究.结果表明,电子束焊接2816铝合金薄板和厚板接头分别呈"漏斗形"及"典型钉形";焊缝区及热影响区由基体 (Al)相及 (Al) (CuAl2)等共晶相组成;人工时效后21 mm厚2816铝合金电子束焊接接头室温强度系数达到母材的77.8%.图3表2参7 20094228 脉冲固体激光器焊接铝合金工艺研究/徐 劼 //新技术新工艺. 2009(2):23~24 利用平均功率400W的脉冲固体激光器,对材料为6A02铝合金的一种焊接结构件护套进行了激光焊接工艺研究。结果表明:N d:YAG激光器可以用于铝合金护套的焊接,但应采用自动焊,要配备自动变心转动夹具或机械手及自动送丝系统。还应充气压保护,以提高焊接质量及稳定性。图1表2参1 20094229 含Nd钛合金中富Nd第二相颗粒在电子束焊接过程中的演化及其对拉伸断裂行为的影响/蔡建明 //航空材料学报. 2009,29(1):27~31采用光学金相显微镜(O M)和扫描电子显微镜(SEM)等手段,研究了一种含稀土元素N d的T i60钛合金在电子束焊接过程中富,N d第二相颗粒的演化及室温拉伸时的断裂特征。经过电子束焊接过程的快速熔化和凝固,T i60钛合金中富N d第二相颗粒经历了回溶和重新形核析出的过程,由原来的分散分布变为与凝固方向平行的断续串状分布,尺寸由原来的约10 m细化至约0.3 m。电子束焊接的焊缝及焊缝与母材的连接部位在室温拉伸时表现出了明显的沿晶脆性断裂特征。图8表2参12 20094230 TA15钛合金电子束焊平行焊缝的获得方法/赵明书 //新技术新工艺. 2009(2):105~107截面平行的焊缝是保证中大厚度焊接结构熔合区组织均匀性及力学性能连续性的重要条件,在工程中有着重要应用。在对焊缝形貌进行观察及分析的基础上,研究获得平行焊缝的工艺方法。结果表明,对焊接速度、电子束流及聚焦电流等焊接参数进行综合调节,可以有效改变焊缝形貌,使焊缝逐步趋于平行。增加偏摆扫描并控制扫描的频率和幅度,可以获得一系列具有不同熔宽的平行焊缝。图7表3参6 异种金属和镀层金属的焊接 20094231 异种金属的钎焊/庄鸿寿//焊接. 2009 (2):22~25 34

异种材料的焊接

第8章异种材料的焊接 本章教学目的: 1.了解异种材料焊接存在的问题和特点 2.掌握异种钢的焊接 本章课时安排:2H 本章重点难点:异种钢的焊接 现代工程结构中不仅需要对大量的同种材料进行焊接,也需要对相当数量的异种材料进行焊接。采用异种材料制造的焊接结构,不仅能满足不同工作条件对材质提出的不同要求,而且可节约大量的优质贵重材料,降低成本,充分发挥不同材料的性能优势。近年来,异种材料焊接结构在机械、化工、电力及核工业等行业得到广泛应用,对异种材料的焊接也越来越受到重视。异种材料焊接的种类很多,本章主要阐述异种钢和典型的异种有色金属焊接的基本概念。 第1节异种材料的分类、组合及焊接性特点 一、异种材料的分类、组合 材料种类繁多,性能各异,按工程实际需要,异种材料的分类和组合在工程中是多种多样的。从材料角度看,异种材料焊接的分类和组合主要包括三大类: 1. 不同金属材料之间的组合 (1)异种钢铁材料的组合,又称为异种黑色金属的组合,如珠光体钢与奥氏体钢的焊接等。 (2)钢铁材料与有色金属的组合。如钢与铝的焊接等。 (3)异种有色金属的组合。如铜与铝的焊接等。 (4)金属材料与非金属材料的组合。如钢与石墨、金属与陶瓷。 2. 不同组织或合金系的异种钢焊接构件 各种类型的钢铁材料是现代工业中应用最广泛的金属材料,工程结构中应用较多的是不同金相组织的异种钢焊接,这类结构件主要分以下两种情况:(1)母材金相组织相同,但焊缝金属与母材基体合金系及组织性能不同的异种

钢焊接构件,例如1Cr18Ni9Ti与高镍奥氏体钢之间的焊接结构件。 (2)母材金相组织不同的异种钢组合。最常见的有珠光体钢与铬镍奥氏体钢、珠光体钢与高铬铁素体钢的焊接结构件等。 3. 不同用途的异种材料焊接构件 (1)用于耐磨的异种金属组合。如高碳钢、各种合金钢、超合金、碳化钨等硬质合金,这些材料主要用于制造建筑机械、发动机、炼钢机械、刀具等。 (2)用于耐热的异种金属组合。如铬钼钢、不锈钢、耐热钢、镍基合金等各种耐热超合金、复合材料、金属间化合物等。这些材料主要用于制造锅炉、发动机、炼钢、各种机械、汽轮机、核电站等。 (3)用于耐腐蚀的异种金属组合。如各种不锈钢、镍基合金、铝等。这些材料主要用于制造石油化工、轻工、原子能、海洋工程装备及医疗器械等。 (4)用于减轻装备重量的异种金属组合。如钛、铝、镁及其合金等,主要用于航空航天、运载火箭、导弹、运输设备等。 (5)提高电磁性能的异种金属组合。如银、铜、铍及其合金等,主要用于制造电器、计算机、电子工业零件等。 二、异种材料的焊接性特点 异种材料的焊接性取决于两种材料的组织结构、物理化学性能等,两种材料的这些性能差异越大,焊接性越差。 1. 异种材料焊接存在的问题 异种材料的焊接与同种材料焊接相比,有很大的不同,前者一般要比同种材料焊接困难。异种材料焊接时,因为材料的物理、化学性能及化学成分等有显著差异,从焊接性和操作技术上都比同种材料难焊。异种材料焊接时,存在如下主要问题:(1)异种材料之间不能形成合金。如焊接铁与铅时,不仅两种材料在固态时不能相互溶解,而且在液态时彼此之间也不能相互溶解,液态金属呈层状分布,冷却后各自单独进行结晶。在这类异种材料的结合部位,不能形成任何中间相结构。 (2)异种材料的热膨胀系数不同,容易引起热应力,而且这种热应力不易消除,结果会产生很大的焊接变形。 (3)异种材料焊接过程中,由于金相组织的变化或新生成的组织,都可使焊接

异种金属焊接

异种金属焊接技术 何康生、曹雄夫编著机械工业出版社1986年10月第一版 随着现代工业的发展,对结构和材料的要求越来越高,如造船和海洋工程要求解决大面积拼板、大型立体框架结构自动焊及各种低合金高强钢的焊接问题;石油化学工业要求解决各种耐低温及耐各种腐蚀性介质压力容器的焊接问题;航空航天工业中要求解决铝、钛等轻合金结构的焊接问题;重型机械工业中要求解决大截面构件的拼接问题;电子及精密仪表制造工业要求解决微精密焊件的焊接问题。工业产品的结构调整及技术进步对焊接技术提出了更高的要求,同时也促进了传统焊接工艺的变革与新型焊接技术的开发与应用。优质、高效、节能的现代焊接技术正逐步取代能耗大、效率低和工作环境差的传统焊条电弧焊焊接工艺,焊接技术结构性的转变必将对装备制造业技术水平与生产能力的提升发挥更加重要的作用。 现代化动力机械、化工和石油加工设备以及多种食品的许多零部件,都要在高温、巨大的载荷、强烈浸蚀性介质、电磁场或放射性环境中长期工作。因此,用来制造这些零部件的材料,必须是满足上述要求的特殊材料,如高合金钢、有色金属以及专用合金等。 显然,如果整个设备和仪器都采用贵重材料制造,不但会使生产工艺过程大为复杂化、显著提高设备和仪器的造价、更重要的是满足不了使用要求。此外,运载火箭、航天器、超音速飞机、现代化的潜艇等部门的发展更与材料性能紧密相关,这些部门要求使用的材料在低温和高温下有很高的比强度,以及在振动和高速运行时,具有足够的强度和寿命,以保证长期工作的可靠性。目前对所有材料的性能分析表明,单独使用任何一种材料都不能同时满足上述的全部要求。 通常,任何一种构件在使用过程中,其各部分所承受的载荷并不一致,一部分零件的工作条件较差,可能接近许用应力的极限值,而另一部分零件的工作条件可能只承受很小的应力。显然,在这种场合下,应用异种金属焊接结构就比较合理。 把异种金属零件连接成一个整体部件,焊接常常是最好的方法。有时也可以采用钎焊,但接头的强度和耐腐蚀等性能往往受到钎料性能的限制,不容易满足较高的使用要求。现有的机械连接法不但连接工艺复杂,而且在使用过程中多半不能满足可靠性要求。

异种钢的焊接要点

异种钢的焊接第一节焊接接头的特点、成分、和组织的控制 一,焊接接头的特点 异种钢焊接接头和同种钢焊接接头有本质差异,主要是熔敷金属与两侧焊接热影响区和母材存在的不均匀性,主要有: 1.化学成分不均匀。这是因为在焊接加热过程中,两侧母材的熔化量,熔敷金属和母材熔化区的成分因“稀释”作用会发生变化。接头区的成分不均匀程度不仅取决于母材、填充金属各自的原始成分,也受焊接工艺的影响,易采用小电流、浅熔深。 2.组织的不均匀性。在焊接热循环的影响下,接头内的各区域组织是不同的,而且在个别区域内还会出现复杂的组织结构。 参见舍夫勒图Nieq -- 镍当量;Creq—铬当量 (学会看舍夫勒图) 熔合比(稀释率)θ-在焊缝金属中局部熔化的母材所占的比例称为熔合比。用实验测得的。 θ=A/A+B=A1+A2/A1+A2+B θ取决于焊接方法、规范、接头形式、坡口角度、药皮(焊剂)的性质以及焊条(焊丝)的倾角等因素 3.性能的不均匀性。由于组织、成分的变化,代来了性能上的不同,各种变化会呈倍数关系变化,特别是焊缝两侧的热影响区冲击值变化更大,同样高温性能如持久强度、蠕变强度变化也很大。

4.应力场分布不均匀。由于组织、成分的不同,接头的热膨胀系数和导热系数也不同,热膨胀系数不同引起塑性区域不同,残余应力不同;导热系数不同会引起热应力不同。在组织应力和热应力的共同作用下发生叠加后会产生应力峰值,导致接头发生断裂。 总之,对于异种钢焊接接头,其成分、组织、性能和应力场的不均匀是主要特点。 二,异种钢焊缝金属的成分、组织的控制 1.焊缝成分与舍夫勒组织图的关系。异种钢焊接时由于选择的焊材与母材不同,要推算焊缝金属的成分、组织及性能。舍夫勒组织图就有这个功能。(图2-3)奥氏体形成元素的镍当量计算公式: Nieq=wNi+30wC+0.5wMn 铁素体形成元素的铬当量计算公式: Creq=wCr+wMo+1.5wSi+0.5wNb 也可以由母材、填充金属的成分和稀释率求出焊缝金属的成分。 2.影响稀释率的因素。 2.1预热的影响.预热温度高,稀释率大,因为熔深增加了;反之就小。要适中。 2.2焊接参数.电流大,稀释率大;焊接速度小,稀释率小。由于母材熔化的单位面积的大小的影响。见(图2-4) 2.3焊接方法.见(图2-5) 2.4接头形式.坡口大,稀释率小;坡口窄,稀释率变化不大。见(图2-6)(从母材熔化大小的角度理解) 三,不同焊接方法焊接异种金属的特点(优缺点)

异种金属焊接的应用和存在的问题

异种金属焊接的应用和存在的问题 摘要:现代工程结构中不仅需要对同种材料进行焊接,也需要对异种材料进行焊接。在工程及制造中采用异种材料焊接结构,不仅能满足不同工作条件对材质的不同要求,而且还能节约贵重金属,降低结构整体成本,充分发挥不同材料的性能优势。 关键词:异种金属焊接应用问题 早期的焊接主要是同种材料的焊接,随着科学技术的不断发展,新结构、新设备层出不穷;新材料、新工艺的应用日益广泛,对各类工程构件的性能提出了更高的要求,如硬度、耐磨性、耐蚀性、低温韧性、高温持久强度等等,在有些情况下,任何一种金属材料都不可能完全满足使用要求,或者即使是某种金属材料比较理想,但往往由于十分稀贵,不能在工业中普遍应用,因此,采用焊接方法制造异种金属复合零部件日益受到了人们的广泛重视,出现了一门新的科学技术——异种金属的焊接。 如在大型电站锅炉对流管束中,高温段一般采用耐热性和耐蚀性更强的铬镍奥氏体不锈钢,而从经济角度出发。低温段一般采用价格低,耐热性和耐蚀性稍差的珠光体耐热钢。这样,由于在机组中的各部位的工作温度的不同,相应地需要使用各种不同化学成分和组织性能的钢材,因此必然会遇到异种金属的焊接问题。异种金属焊接构件可以最大限度地利用材料各自的优点,达到物尽其用的效果。异种金属的焊接是一门新的学科技术,它除了要研究焊接的一般规律以外,还要研究许多特殊的规律,如异种金属的物理、化学性能和组织结构变化、金属间化合物的形成机理,冶金扩散过程,接头性能的检测等等,涉及面很广。近年来,异种金属焊接的试验研究和生产应用日益受到广大焊接科技工作者的重视,并已取得了许多丰富的理论知识和实践经验,相信在不久的将来异种金属焊接构件会在工程上得到越来越广泛的应用。异种金属焊接由于不同金属的化学成分、组织结构、机械性能及物理性能的差异,因此要比同种金属复杂得多,焊接的可靠性问题也显得更加突出。 一、异种金属焊接的必要性 1.在不同运行温度、腐蚀和氧化环境可以采用不同的材料。 2.为提高化工压力容器使用寿命,在低合金耐热钢容器内侧,熔敷一层耐强腐蚀和高温的高合金奥氏体不锈钢。 3.为提高表面强度和耐磨性,在普通钢表面堆焊一层高强耐磨合金。 4.为免除焊后热处理工艺,选择高合金的奥氏体不锈钢作焊接填充金属。 5.许多低合金钢、碳钢和铸铁,用同种材料补焊,会产生开裂,一般选用高

相关文档