文档库 最新最全的文档下载
当前位置:文档库 › L_异亮氨酸产生菌的选育及其发酵条件优化

L_异亮氨酸产生菌的选育及其发酵条件优化

L_异亮氨酸产生菌的选育及其发酵条件优化
L_异亮氨酸产生菌的选育及其发酵条件优化

L 2异亮氨酸产生菌的选育及其发酵条件优化

宋文军 陈 宁 魏 春 刘淑云 张克旭

(天津科技大学食品科学与生物工程学院,天津,300222)

摘 要 根据代谢控制发酵原理,经硫酸二乙酯诱变处理,定向选育出具有Met -+Eth r +α2

AB r +AEC r 遗传标记的目的突变株ISW330。采用均匀设计法考查了发酵培养基中几种主要

成分对L 2异亮氨酸发酵的影响,通过MA TLAB 软件获得最佳发酵培养基配比,并对该目的突变株的摇瓶发酵条件进行了研究。在最佳条件下该菌株可产L 2异亮氨酸2012g/L 。关键词 L 2异亮氨酸,诱变育种,均匀设计,发酵,MA TLAB 软件

第一作者:博士研究生,副研究员。

收稿时间:2002-07-01,改回时间:2002-11-12

L 2异亮氨酸属于人体8种必需氨基酸

之一,主要用于医药和食品行业[1]。本文根据代谢控制发酵原理,经硫酸二乙酯诱变处理,定向选育出具有Met -+Eth r +α2AB r +AEC r 遗传标记的目的突变株ISW330。由于L 2异亮氨酸生物合成途径的特殊性,发酵条件,尤其是培养基配比对其有较大的影响。本试验运用均匀设计方法[2~4],借助于MA TLABL 软件[5,6]研究了发酵培养基的最佳配比,并对目的突变株ISW330的最佳摇瓶发酵条件进行了优化,现将结果报道如下。

1 材料与方法

111 菌 株

黄色短杆菌B revibacteri um f lav um I1

(Met -+Eth r +α2AB r +AEC r ),天津科技大学代谢控制发酵研究室保藏菌种。112 培养基(g/L )11211 斜面培养基

葡萄糖1,酵母膏5,蛋白胨10,NaCl 215,琼脂20,p H 710~712。11212 肉汤培养基

葡萄糖1,酵母膏5,蛋白胨10,NaCl 215,p H 710~712。11213 种子培养基

蔗糖30,KH 2PO 4115,MgSO 4014,FeSO 40101,MnSO 40101,醋酸铵3,尿素2,

豆饼水解液2,V H 2mg/L ,V B 13mg/L ,p H 712。

11214 发酵培养基

葡萄糖120,(N H 4)2SO 440,FeSO 415mg ,MgSO 4500mg/L ,MnSO 415mg/L ,

KH 2PO 4115,K 2HPO 43,V H 100

μg/L ,V B 15mg/L ,Met 20mg/L ,豆饼水解液20,CaCO 330,p H 712。113 硫酸二乙酯诱变

按参考文献[7]方法稍加改变。114 培养方法11411 种子培养

接一环生长良好的斜面种子至装有25mL 的摇瓶中,置于旋转式摇床上(200r/min ),31℃振荡培养45h 。11412 发酵培养

取种子培养液以10%接种量接至含25mL 发酵培养基的500mL 三角瓶中,220r/min ,31℃振荡培养96h 。115 分析方法11511 残糖测定

采用SBA 240多功能生物传感分析仪测定。

11512 OD 值的测定

稀释一定倍数后,在波长620nm 处用722分光光度计测光密度,光程1cm 。11513 L 2异亮氨酸含量测定

4

3

采用纸上层析法、比色定量法测定[8]。

2 结果与讨论

211 目的突变株ISW330诱变谱系

目的突变株ISW330的诱变谱系如图1

所示。

黄色短杆菌I1↓DES 诱变Met - ↓DES 诱变

Met -+Eth r ↓DES 诱变Met -+Eth r +α2AB r

↓DES 诱变Met -+Eth r +α2AB r +AEC r

图1 目的突变株ISW330的诱变谱系

212 发酵培养基中氮源对产酸的影响

研究了硝酸铵、硫酸铵、醋酸铵3种常用氮源对目的突变株发酵积累L 2Ile 的影响,结果如图

2所示。

图2 氮源对异亮氨酸发酵的影响

由图2结果可以看出,采用硫酸铵作为

氮源效果最佳。213 发酵培养基中碳源对产酸的影响

碳源对发酵产量具有直接的影响[10],为此本文研究了不同碳源,蔗糖、葡萄糖和麦芽糖对目的突变株发酵积累I 2Ile 的影响,

结果如图3所示。

图3 碳源对异亮氨酸发酵的影响

由图3可以看出,葡萄糖作为碳源效果最好。214 发酵培养基优化21411 发酵培养基均匀设计采用六因素十水平10组试验的方式(U 310(108)均匀表)[2],考察了葡萄糖(X 1)、(N H 4)2SO 4(X 2)、KH 2PO 4(X 3)、V H (X 4)、V B 1(X 5)、Met (X 6)6个主要因素对产酸的影响,各因素的水平数、试验安排及结果见表1、表2。

21412 试验数据的回归分析及回归方程的

建立

表1 发酵培养基配比试验因素水平表

因 素

1234

5678910X 1(g/dl )

10111213141516171819X 2(g/dl )110115210215310315410415510515X 3(g/dl )0110011501200125013001350140014501500155X 4(μg/dl )681012141618202224X 5(mg/dl )011012013014015016017018019110X 6(mg/dl )

1

2

3

4

5

6

7

8

9

10

表2 发酵培养基均匀设计试验方案及试验结果

因 素

1

2345678910X 1(g/dl )

10111213141516171819X 2(g/dl )115215315415515110210310410510X 3(g/dl )0120013501500110012501400155011501300145X 4(μg/dl )142412221020818616X 5(mg/dl )0170131016012019015011018014X 6(mg/dl )10987654321Ile 实测/g ?L -1613361184136211821559145111641310921181145Ile 预测/g ?L -1

6140

6143

4146

2137

2163

9165

11175

13126

2126

1165

5

3

应用MA TLAB软件中的逐步回归分析可知,以葡萄糖(X1)、(N H4)2SO4(X2)、V H (X4)、V B

1

(X5)4因素作回归方程可信度最高,这2个因素的回归方程中又以纯二次模型的拟合程度最佳,因此剔除KH2PO4、Met 2个非显著性影响因素,由表2结果回归获得如下方程:

Y=-411697+61607X1+11644X2+11103X4-71532X5-01217X12-01672X22-01039X42+01514X52

方程预测值与实际值拟合较好,方程显著性强。此方程回归结果如表3所示,其相关系数R=0199,总体显著性检验值F= 7047>F8,1(0105)=239,r mse(剩余标准差)=01053,因此方程可信度高。

表3 回归结果

变量βX1X2X4X5X12X22X42X52回归系数-411761607116441110371532-01217-01672-010******* F值-0100758152301101401323401000291284010653011321

由表3中各变量影响显著性检验值F可排出各变量对产酸的影响大小顺序为:X22> X2>X5>X52>X4>X42>X1>X12,各因素对产酸的影响大小顺序为:X2>X5>X4>X1,根据MA TLAB中rstool命令的交互式画面可直接找出极值,结合实际取X1=16,X2= 1125,X3=0115,X4=14,X5=011,

X6=2,预测产L2异亮氨酸为16138g/L,如图4所示。

21413 优化结果

图4 通过MA TLAB求极值

以相同种子分别接入未优化发酵培养基(2#)和优化发酵培养基(1#)进行发酵实验,结果如表4所示。

表4 发酵比较结果

序 号X1(g/dl)X2(g/dl)X3(g/dl)X4(μg/dl)X5(mg/dl)X6(mg/dl)Ile/g?L-1(实测)Ile/g?L-1(实测) 1#1611250115140112151116138

2#1240115100152918-

从表4结果可以看出,优化培养基的实际产酸与预测值很接近,因此采用优化培养基可明显地提高L2异亮氨酸的产酸率。215 摇瓶发酵pH控制方式的影响

p H对菌体生长和产物生成具有特殊意义[9]。本文研究了不同p H控制方式对目的突变株ISW330摇瓶发酵的影响,结果如图5所示。x轴上的“1”表示只加CaCO3控制p H 值,

“2”表示只加尿素控制,“3”表示CaCO3和尿素联合控制p H值。

试验结果说明,第3种方式对产酸最为有利。

216 接种量对产酸的影响

图5 3种p H控制方式对产酸的影响

考查了种子接种量对L2异亮氨酸发酵的影响,结果如图6所示。

从图6可以看到,在接种量在10%时,产酸可达1815g/L,种量太大和太小对发酵产酸都不利。

63

图6 接种量对产酸的影响

217 供氧对产酸的影响

异亮氨酸生物合成与三羧酸循环密切相

关,属于好气性发酵,溶解氧对发酵有重要影响,为简化起见,采用固定摇床转速,在500mL

三角瓶中装入不同量发酵培养基的方法

来改变供氧状况,结果如图7所示。

图7 装液量对产酸的影响

从图7可以看出,装液量为25mL (500

mL 三角瓶)时L 2异亮氨酸产量最高,达2012g/L 。

1 张克旭1氨基酸发酵工艺学1北京:中国轻工业

出版社,19922 方开泰1均匀设计与均匀设计表1北京:科学出版社,19943 张晓菁,薛凤兰1沈阳药学院学报,1993,10(2),

116~1184 罗定军,周兴挺,王惠青1中国抗生素杂志,

2000,25(5):339~3425 王沫然1MA TLAB 51X 与科学计算1北京:清华大学出版社,20006 赵 静,但 琦1数学建模与数学实验1北京:

高等教育出版社,施普林格出版社,20007 杜连祥.工业微生物学实验技术.8 潘家秀1蛋白质化学研究技术1北京:科学出版社,19629 Lee K M ,Lee S Y ,Lee H Y.J.Bioscience Bio 2eng.,1999,88(6):646~647

10 Y ang Y K ,Park S H ,Hwang J W et al.J 1Fer 2ment 1Bioeng.,1998,85(3):312~314

Breeding of L 2isoleucine Producer and Its Conditions

Optimization on Fermentation Process Song Wenjun Chen Ning Wei Chun Liu Shuyun Zhang Kexu

(Institute of Food Science and Bioengineering ,Tianjin Science and Technology University ,Tianjin ,300222)

ABSTRACT Based on theory of metabolic control fermentation ,got a mutant ISW330which had the hereditary character (Met -+Eth r +α2AB r +AEC r )by DES directive inducing 1Uniform design was employed in this paper to test the influence of several major components in fermenta 2tion medium on the isoleucine fermentation 1Using MA TLAB software package ,the optimal fer 2mentation medium proportions were attained 1Then the conditions of shake 2flask fermentation were studied 1Under these conditions ,the mutant could produce L 2isoleucine 2012g/L 1K ey w ords L 2isoleucine ,mutation breeding ,uniform design ,fermentation ,MA TLAB software

7

3

微生物发酵工艺优化研究进展

龙源期刊网 https://www.wendangku.net/doc/ab12390525.html, 微生物发酵工艺优化研究进展 作者:张锐 来源:《海外文摘·学术》2017年第03期 摘要:近些年,在有关技术领域中微生物的发酵技术已得到了非常广泛的应用,特别在医药行业内应用此种技术十分普遍。微生物科技发展非常快,因此,人们也有不断深入的研究微生物的发酵工艺。为此,本文对影响微生物发酵的培养条件和培养基进行了分析,又对优化微生物发酵工艺的办法进行了讨论研究,为微生物工程的发展提供参考价值。 关键词:发酵工艺;微生物;培养条件;工艺优化;培养基 中图分类号:TQ920.6 文献标识码:A 文章编号:1003-2177(2017)03-0058-02 1 微生物发酵受培养基的影响 微生物在进行生长、代谢时,培养基能供给微生物发酵所需要的能量与营养物质,对合成发酵产物的效率和产品的质量保障来讲有着重要意义。在进行微生物发酵时,因其发酵条件与菌种的差异和不同的发酵阶段,需要培养基的成分也不同。一般情况下,微生物生长需要的营养要素有生长因子,碳源,无机盐和氮源四类。 1.1 选择氮源与碳源作发酵的培养基 氮源为微生物提供含氮的有机物与蛋白质,并且,还是合成含氮产物的参与者。氮源主要是有机氮源与无机氮源两种,如豆粉,氨盐,蛋白胨与硝酸盐等。碳源能够为微生物提供能量来源,形成产物和构建细胞。碳源的形式有油脂,多糖,单糖,天然复合物,双糖等,如豆油,葡萄糖,淀粉与蔗糖等。选择发酵的培养基中要有均衡的碳源与氮源比,确保其菌体能够正常生长,而且还有利于合成产物的速率。 1.2 无机盐对发酵培养基的影响 微生物的生长和生成的代谢产物都与无机盐有关重要关系。微生物在进行生长代谢时,构成的辅酶中有磷的参与,它是构成微生物生长,代谢的重要因素。有些菌种的发酵产物中包含磷酸根,因此在进行培养基发酵时,添加很多的磷酸盐,这利于产物快速合成。在微生物发酵中钙离子对细胞的生理状况起到了调节作用,例如,使细胞膜的通透性降低,维持细胞状态等。很多酶都用镁来作催化剂。微生物生长所需微量元素有很多,如,钴,铁,锌,锰等。经研究证明,枯草芽孢杆菌的生长中需要锰离子的参与,在发酵培养基中添加适量的氯化锰,可以提升枯草芽孢杆菌生成的发酵物中抑菌物质的活性。 2 微生物发酵受培养条件的影响

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

(完整版)大肠杆菌培养基配制及培养方法

大肠杆菌培养 一、菌种冻存液的制备 含有足量细菌的液体培养基离心后在沉淀中加入等量40%甘油,-80o C冻存。 二、培养基制备 LB培养基配方(胰化蛋白胨(Trypton):10 g/L;酵母提取物(Yeast Extract):5 g/L;NaCl:10 g/L;pH 7.4) 液体培养基 胰化蛋白胨 10.0g 酵母粉 5.0g 氯化钠 10.0g 水 1000ml pH 7.4 固体培养基在液体培养基的基础上再加入1.5%-2.0%的琼脂 三、平板的制备 1)称取胰化蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,加入800mL二次水溶解,并用玻璃棒搅拌均匀,用1mol/L的NaOH调pH至7.4左右,定容至1L,调pH 7.4(若溶液pH大于7.4,用1mol/L HCl回调)。 2)分装在锥形瓶中,每瓶量不宜太多,没过瓶底一指左右。如需固体培养基在分装后的液体培养基内加入约2%的琼脂(150mL液体培养基加入2.5g琼脂)。3)在锥形瓶口依次覆盖带滤纸通气小孔的塑料膜和硬质纸,用皮筋捆好。所有锥形瓶如上述操作。用记号笔注明培养基名称、配制日期。 4)高压蒸汽灭菌锅121 oC灭菌15min。 5)灭菌后的培养基取出置电热鼓风干燥器内60oC烘干,待锥形瓶的封口纸干燥后取出。液体培养基可直接保存或使用,此时加有琼脂的培养基不会凝固,可在预先紫外杀菌30min以上的无菌操作台上,将培养基倒入培养皿内,每个培养皿培养基约10-15mL(直径90mm),在培养皿中厚度大约4mm左右。将平皿叠放在无菌操作台上,放置10min左右,待琼脂基本凝固可涂平板。6)若平板不直接使用,灭菌后将培养基在锥形瓶中保存,待需制备平板时,微波炉中火加热约3min,使琼脂熔化,室温冷却20min至不烫手可制备平板。 四、接种大肠杆菌 1)取实验室储备的大肠杆菌BL21冻存液,管口用酒精灯灼烧,打开离心管。2)接种方法一:用灭菌枪头蘸取冻存液在平板边缘上划横条,每三道为一组,旋转平皿一圈,最后中间划之字;接种方法二:用移液枪吸取100uL溶液于平板上,用酒精灯灭菌厚的涂抹棒划十字,涂布平板。 3)因实验一般都要求挑取单菌落,故涂平板适应考虑冻存液内细菌数量,若菌量过大应适当稀释。一般方法一获得单菌落的可能性比较大。涂平板应在酒

发酵过程优化原理复习

发酵过程优化原理复习 1、 发酵过程优化的目标 答:①建立生物反应过程的数量化处理和动力学模型。 ②实现发酵过程优化,以更好地控制发酵过程; ③规避生物技术产业化过程的技术风险,追求其经济效益; 2、发酵过程优化主要涉及的研究内容 答:①细胞生长过程研究,了解微生物从非生物培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件下微生物的代谢产物分布; ②根据微生物代谢反应符合质量守恒定律,对微生物反应的化学计量进行研究,简化对发酵过程的质量衡算; ③研究生物反应速率及其影响因素,建立生物反应动力学,这也是是发酵过程优化研究的核心内容。 ④生物反应器工程,包括生物反应器及参数的检测与控制,它们是发酵过程优化最基本的手段。 3、Hasting (1954年)指出生化工程要解决的十大问题是哪些? 答:深层培养、通气、空气除菌、搅拌、结构材料、容器、冷却方式、设备及培养基除菌、过滤、公害。其中通气搅拌与放大是生化工程学科的核心,其中放大是生化工程的焦点。 4、Cooney 指出,要实现发酵过程的优化与控制,必须解决好哪些问题? 答:必须解决好5个问题:①生物模型;②传感器技术;③适用于生物过程的最优化技术;④系统动力学;⑤计算机-监测系统-发酵罐之间的接口技术 5、流加发酵、分批发酵、连续发酵方式的优缺点比较 答:①与传统的分批发酵相比,流加发酵可以解除底物抑制、葡萄糖效应和代谢阻遏等;与连续发酵相比,流加发酵则具有染菌可能性更小,菌种不易老化变异等优点。 ②与流加发酵和连续发酵相比,分批发酵工艺操作简单, 比较容易解决杂菌污染和菌种退化等问题, 对营养物的利用效率较高,产物浓度也比连续发酵要高。但其 人力、物力、动力消耗较大,生产周期较长,生产效率低。 ③连续发酵最大的优点是,微生物细胞的生长速度、代谢活性处于恒定状态,可达到稳定高速培养微生物或产生大量代谢产物的目的,且便于进行微生物代谢、生理生化和遗传特性的研究,在工业上可减少分批培养中每次清洗、装料、消毒、接种、放罐等操作时间,提高了生产效率和自动化程度。 6、重组生物药物生产过程的优化包括哪6个方面 答:①适宜宿主的选择;②重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;③重组基因最大表达的分子策略;④细胞生长和生产环境的优化;⑤发酵条件的优化;⑥后处理过程的优化。 7、操作细胞循环生物反应器时必须考虑哪两个因素?为什么? 答:①稀释率(流速/体积),因为稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同; ②循环速率(指通过过滤系统的培养基速率),因为高的循环速率可使组分混合均匀,但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。 因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。 8、细胞生长过程可以分为哪3个步骤,运输过程包括其中的两个步骤,在细胞膜上的运输过程是研究者普遍关心的内容,在细胞膜上可能存在哪些运输机制?各有何特点? 答:(1)细胞生长过程的3个步骤:①底物传递进入细胞;②通过胞内反应,将底物转变为细胞质和代谢产物;③代谢产物排泄进入非生物相; (2)研究表明在膜上存在3种不同的运输机制:①自由扩散;②协助扩散;③主动运输。 特点:①自由扩散和协助扩散只有存在浓度梯度时,由高浓度向低浓度的运输才可能发生,统称被动运输,在运输过程中不需要提供外部能量; 自由扩散分子扩散的质量通量遵守Fick 第一定律,通过自由扩散进行运输的化学物质主要有氧气、二氧化碳、水、有机酸和乙醇等;协助扩散是通过膜上的转运蛋白来进行物质运输的,具有选择性,其运输速率比自由扩散又快又多,运输速率遵循典型的饱和型动力学。 ③主动运输是逆着浓度梯度进行运输,需要输入一定的吉布斯自由能,以特定的膜内蛋白作为运输过程的媒介,可以逆着浓度梯度的方向进行运输,因此是一个耗能的过程,根据运输动力来源可以分为一级主动运输和次级主动运输两大类,还有一种特别的主动运输过程为基团转移。 9、发酵过程数量化处理包括哪些方面的内容?常规的参数一般包括哪些?通常如何测量这些参数? 发酵过程的数量化处理包括:①发酵过程的速度;②化学计量学和热力学;③生产率、转化率和产率; 10、比速率和速率有什么区别? 答:比速率是一个相对速度,表示细胞的个体行为,反应了细胞的生长和代谢能力,它与生物量(以细胞干重表示)或有催化活性物质的量(如酶量)有密切的关系,各种比速率的单位均为h -1,定义类似于化学反应动力学中比速率r i *的定义 速率:是绝对速率,所表示的是细胞的整体行为,不能代表系统的特征。 11、生物反应过程中有关的宏观产率系数及定义 答:宏观产率系数(或称得率系数)Y i/j (i 表示菌体或产物,j 表示底物)是常用于对C 源等底物形成菌体或产物的潜力进行评价,将消耗的量同 形成的量关联起来,定量表示细胞或产物甚至热量的产率,也能用于定量的表示不同消耗量之间或形成量之间的相互关系,最初是由Monod 以质量单位和商的形式定义的: 12、Y A TP 与其它产率系数相比有何特点? 答: ,是Bauchop 以异化代谢中ATP 的生长量作为菌体产率的基准而定义的。Y ATP 与微生物及底物种类无关,基本为一常数。 在复合培养基的厌氧培养中,不管微生物和环境的性质如何,Y ATP 总是约为10.5g/mol 。但该值对微生物生长具有普遍性。在基本培养基中无论是厌氧还是需氧培养,单一碳源中一部分作为能源通过异化代谢分解,其余部分用于同化构成菌体。假设用于同化的这部分碳源与ATP 生成无关,则对于异化代谢的碳源亦服从Y ATP ≈10g/mol 。 13、复合培养基厌氧培养过程中细胞的生物合成步骤及ATP 的生成和利用途径 P26 14、代谢产物理论产率系数和实际过程产率系数有何区别?影响实际过程产率系数的因素有哪些? 答:假设发酵过程中完全没有菌体生成,则Y P/S 可以达到最高值,即为理论代谢产物产率,可以根据化学计量关系、生物化学计量关系计算。 而在实际发酵过程中的实际产率是变化的,所以需对产率系数的概念进行修正。实际产率值取决于各种生物和物理参数。 ,式中μ为比生长速率;m 为混合度;s 为底物浓度;t 为平均停留时间;t m 为混合时间; OTR 为氧传递速度 15、微生物反应动力学模型的类型及着眼点。Monod 模型属于什么模型?其使用的条件包括哪些? 底物消耗的质量细胞形成的质量==-=≈--=??-=ds dx dt ds dt d Y r r //x s s x x s x s x t 00t s /x Y M Y A x ATP/s s x/s ?=??=TP Y ATP

脂肪酶产生菌发酵条件的优化

绵阳师范学院 本科生毕业论文(设计) 题目脂肪酶产生菌M-6-2发酵条件的优化专业生物技术 院部生命科学与技术学院 学号0811420218 姓名杜长蔓 指导教师李俊刚 答辩时间2012年5月 论文工作时间:2011 年7 月至2012 年5 月

脂肪酶产生菌M-6-2发酵条件的优化 学生:杜长蔓 指导老师:李俊刚 摘要:本文对绵阳师范学院微生物实验室筛选和鉴定的产脂肪酶细菌 M-6-2的生长动力学和产酶动力学进行了研究;通过单因素实验和正交试验,对脂肪酶产生菌M-6-2 摇床发酵产脂肪酶的培养基组成和培养条件进行优化,得出较佳的产酶培养基组成配方为:1.5%淀粉+0.5%酵母膏为碳源、4.5%豆饼粉 +1.5%硝酸铵为最佳的氮源、0.05%磷酸氢二钠和0.15%硫酸镁;最优的发酵条件为:初始pH7.5,接种量1.5 %,装液量20ml/250ml,发酵温度35℃,在转速180r/min 下,培养16h,经过优化后发酵液脂肪酶酶活力最高可达到15.60 U/ml,较优化前提高了49.57%。脂肪酶产生菌M-6-2与国内文献报道的产脂肪酶细菌相比产酶活力高。对该菌株发酵条件进行优化后,为生产性试验打下了基础。 关键词:脂肪酶产生菌M-6-2;脂肪酶;发酵条件;优化;正交试验;

Lipase to produce bacteria M-6-2 Optimization of fermentation conditions Undergraduate: Du Changman Supervisor: Li Jun Gang Abstract: In this paper, Laboratory screening and identification of lipase production by bacteria in the M-6-2 growth kinetics and enzyme production kinetics were studied; through single factor experiments and orthogonal test, the lipase to produce bacteria M-6-2 shaker fermentation lipase medium composition and culture conditions were optimized to come to a better enzyme production medium composition formula: 1.5% starch and 0.5% yeast extract as carbon source, 4.5% of the soybean powder and 1.5% ammonium nitrate for the best source of nitrogen, 0.05% disodium hydrogen phosphate and 0.15% magnesium sulfate. Optimal fermentation conditions were: initial pH 7.5, 1.5% of the inoculum size, liquid volume 20ml/250ml, fermentation temperature 35 ° C, in the speed 180r/min next, cultured 16h After optimization of the fermentation broth lipase activity can reach 49.57% to 15.60 U / ml, compared to before optimization. Lipase to produce bacteria M-6-2 and reported in China in the production of lipase bacteria compared to the high activity of enzyme production. Of the strain fermentation conditions optimized, laid the foundation for the production of test. Key words: Lipase producing strain M-6-2;lipase ;fermentation conditions; optimization ;orthogonal test

最新大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生: 比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。 3、控制葡萄糖的浓度: 葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度 大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

发酵过程及优化实验

发酵过程及优化实验 ——产淀粉酶细菌的优化实验 淀粉酶是一类能催化淀粉糖苷键水解的酶类,作用于淀粉分子产生糊精、低聚糖及葡萄糖等多种产物。而淀粉酶是应用最广的酶制剂之一,占全球酶工业市场份额的25%-33%。淀粉酶广泛分布于动物、植物和微生物有机体中。 目前,已报道的能够产生淀粉酶的微生物种属包括不动杆菌属、微球菌属、黄隐球酵母、盐单胞菌属、青霉菌属、类芽孢杆菌属、链霉素属、假单胞菌属和杆菌菌属等。 实验一培养基的配置、灭菌 一、实验目的 1. 温故配制微生物培养基的原理及配制的一般方法、操作步骤。 2. 了解鉴别性培养基的原理,并掌握配制鉴别性培养基的放到和步骤。 二、实验原理 鉴别性培养基是一类在成分中加有能与目的菌的无色代谢产物发生显色反应的指示剂,从而达到只需用肉眼辨别颜色就能方便地从近似菌落中找出目的菌菌落的培养基。如对于淀粉酶产生菌的筛选,选用的是在含有淀粉的培养基中培养微生物,滴加碘液进行染色,若出现透明圈,则表明该菌能产生胞外淀粉酶。 三、材料和器材 (1)培养基: 普通培养基:牛肉膏3g,蛋白胨10g,NaCl 5g,自来水1000mL,pH7.2~7.4。鉴别型培养基:牛肉膏3g,蛋白胨10g,可溶性淀粉10g,NaCl 5g,琼脂20g,自来水1000mL,pH7.2~7.4。另一个鉴别性培养基加可溶性淀粉15g每1000ml。(2)器皿:电子天平,烧杯,锥形瓶,量筒,培养皿,玻棒,涂布棒,移液管等。 (3)其他:药匙,记号笔,报纸等。 (4)碘原液:称取碘化钾22g,加少量蒸馏水溶解,加入碘11g,溶解后定容至500mL,贮于棕色瓶中。 稀碘液:取碘原液2mL,加碘化钾20g,用蒸馏水定容至500mL,贮于棕色瓶中。 四、方法和步骤 1.配制基本培养基,分装50mL至250mL锥形瓶,供实验菌株扩增。 2.配制鉴别培养基,检测实验菌株是否能产胞外淀粉酶。

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

发酵工艺条件的优化修订稿

发酵工艺条件的优化集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

发酵工艺条件的优化 发酵优化对于搞发酵的工作者而言是非常必需的,下面结合其他战友的一些经验之谈引出此专题,希望大家踊跃讨论,以其提高发酵水平和解决实际问题。 发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。 注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!!!谢谢大家的参与!!!!!!!!!一. 好氧发酵1. PH 工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化 二. 厌氧工艺的优化三.固体发酵的工艺优化四.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的P H,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结-CAL-FENGHAI.-(YICAI)-Company One1

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当

发酵工艺重点

第一章绪论 发酵的定义:通过微生物的生长和代谢活动,产生和积累人们所需代谢产物的一切微生物培养过程。 发酵工程:是指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系。 微生物发酵产品分为(按发酵类型):微生物菌体细胞、酶制剂和酶调节剂、微生物代谢产物(包括初级代谢产物和次级代谢产物)以及微生物转化、工程菌发酵产物等。发酵培养方法:表面培养发酵法和深层培养发酵法。 液体深层培养法的基本工艺过程:菌种选育、孢子制备、种子制备、发酵培养、发酵液预处理、提取精制、成品检验、成品包装。 第二章菌种选育工业发酵三个技术领域:菌种选育、发酵工艺(上游工程)和分离提取工艺(下游工程)。 菌种选育在发酵生产上的目的:提高发酵产量、改进菌种性能、产生新的发酵产物、去除多余的组分。 微生物突变的修复:光修复、切补修复、重组修复、SOS修复系统、DNA聚合酶的校正作用。 菌种选育的方法:自然选育、诱变育种、杂交育种、基因工程育种、原生质体育种。自然选育(natural screening ):是指利用微生物在一定条件下产生自发突变的原理,通过分离、筛选排除衰退型菌株,从中选出维持或高于原有生产菌株的过程,以达到稳定或提高生产的目的。 菌种退化:菌种在长期的传代保存过程中,由于自发突变使菌种变得不纯,生产能力下降。原因有菌种遗传特性的改变、经诱变剂处理后的退化变异、菌种生理状况的改变(培养条件)。 自然选育的一般过程:单孢子悬浮液的制备、分离出单菌落、单菌落传斜面、摇瓶初筛、菌种保藏、摇瓶复筛、放大试验。 诱变育种(mutation breeding )是利用物理或化学诱变剂处理均匀分散的微生物细胞群体,促进其突变率大幅提高,然后采用简便、高效的筛选方法,从中选出少数具有优良性状的突变菌株。主要

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代副产物-乙酸 乙酸是大肠杆菌发酵过程中的代副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施:

相关文档