文档库 最新最全的文档下载
当前位置:文档库 › 第一章_第五节_动力系统管路布置

第一章_第五节_动力系统管路布置

第一章_第五节_动力系统管路布置
第一章_第五节_动力系统管路布置

图1-66 注入管路阀件的安装 a 、阀件为顺流向; b 、阀件为逆流向

第五节 动力系统管路布置

动力系统管路是船舶动力装置的一个重要组成部分,它保证了各种机械的正常运转和船舶的安全航行。

船舶动力管路通常包括油、水、气(汽)三类不同工质的系统管路。在管路布置时,应以保证机舱整个动力装置可靠、方便和经济地运转为前提,且着重考虑其布置结果必须满足可靠性、操纵性和经济性的基本要求。

一、燃油系统管路的布置

燃油管在布置时,应特别考虑到安全工作,同时要顾及管路附件、阀件的布置、操作和养护的方便。

燃油管路在布置时,一般都应尽可能远离电气设备及高温装置(如排气管、消声器、辅助锅炉)。若管路在这些装置的上方敷设,即使有足够的距离,管路也不应设有可拆接头。

凡输送加热过的燃油的压力管路,应以焊接接头连接为宜。若欲增强管路的可拆性,则可拆接头必须能至少承受1.4Mpa 的压力。

燃油系统的阀件及旋塞在管路布置时,一般均考

虑布置在花钢板以上,并尽可能考虑操作方便。阀件

应严格按管路流向布置,但有些阀件,如日用油柜注

入管路的截止阀,其注入口因某种原因而设置在油柜

最高液位以下较大距离时,为避免阀的压盖受液位静

压产生渗漏的弊病,可将此阀按注入管路流向倒置,

如图1-66所示。

此外,凡布置在双层底以上的贮油舱柜、沉淀舱和日用燃油柜的供油及平衡管路,阀件均应直接布置在舱柜壁上,并采用铸钢件。

燃油滤器是需要经常打开清洁的装置,因此,除按规定必须在其下面设油盘外,还应将其布置在不妨碍拆装的适当位置上。

燃油系统设置吸入口的处所一般为双层底油舱、沉淀油舱(柜)。不同用途舱柜的吸口布置有其相应的要求:

1、双层底油舱大多底部为曲面,因此,吸口应布置在最深部位,这有利于扫舱、清洁。

2、沉淀油柜的作用是沉淀燃油中的水和杂质,然后再运至储存油柜或直接驳进日用油柜。若吸口太低,吸出的首先将是沉淀物,失去沉淀意义;若吸口较高,清除沉淀物又会出现困难。故燃油的驳运、输送、净化管路在沉淀油柜中,一般都设高、低位吸口,其中高位吸口一般比低位吸口高出400~1000mm 。

二、滑油系统管路的布置

(一)吸入管路布置原则

独立的滑油循环泵的形式有立式和卧式两种。齿轮油泵,一般允许吸入高程为3m 水

柱;螺杆式油泵,允许吸高程较大些,一般为4~5m水柱。因此,吸入管路的长度应尽可能布置得短些;吸入管在进入循环油舱时,其吸入口应与回油口成相反方向且有足够距离,以免吸入污油;吸入口距油舱底部不小于100mm;若吸入管末端设置滤网或止回装置时,则应考虑不进入油舱而能对它进行清洁或排除故障的要求。

(二)回油管路的布置

为避免滑油回进循环油舱时引起泡沫飞溅而夹带空气,故回油管管端应布置在循环油舱的最低工作液位以下,并与油泵吸油管口间设置隔离板。

(三)压力管路的布置

在滑油循环泵出口滑油滤器间的管段,为压力波动区域,且越靠近泵排出口的压力波动越剧烈。如在齿轮油泵出口管上,最大振幅处的压力可达到油泵平均压力的三倍以上。离油泵越远,振幅就越小,一直到滤器以后压力才趋于稳定。因此,在布置滑油循环泵排出口至滤器的管路时,管子弯曲形状应尽量简单且弯头越少越好。弯头设置过多,尤其是小于或等于90°的成形弯头,不仅增加管内流体阻力,还能导致管路振动。

三、冷却水系统管路布置

冷却水系统的作用在于间接或直接带走机械做功时产生的热量。冷却水系统的管路布置应根据冷却方式,以最合理、最有效的热交换接管方式达到最佳冷却效果。

(一)海水冷却管路的布置

海水冷却系统为开式冷却系统,其管路一般可分为海水吸入管路与压力管路两个部分。

1、海水总管的布置

海水总管为吸入部分的主要管路,它是整个系统中口径最大的管路。对于大、中型船舶,海水总管连通左、右海水门和高位海水门,并将舷外水引进管内,供给各需用机械。其布置形式均为横跨机舱。为保证船舶在横倾3°~5°的情况下,海水泵的吸水性能不受影响,同时还应考虑避免管内沉积泥砂,故海水总管应按舱底设置的自然高进行水平布置,不能有局部低凹或凸起。图1-67 (a)所示的弯曲形状布置显然是不适当的。若考虑整个机舱管路的布置协调,海水总管下部要求纵向通过舱底水等管路,且净空间高H大于所通过管路最大管径的法兰外径,即如图1-67(b)所示。若海底阀的自然高度不能满足这一要求时,则可采取提高该阀的自然高度予以解决,但绝不能用加设短管的方法。应该采取加厚座板法兰的方法来提高阀的布置高度。

(a) (b)

图1-67 海水总管布置

(a)不正确曲形的海水总管(b)正确曲形的海水总管

图1-68柴油发电机滑油与淡水冷却器的布置形式

2、主海水管路布置

海水管路布置时,不能全部直线布置,必须有水平的曲线,以防热胀冷缩和船体的变形。主海水管路的主要供水对象为柴油机的空气冷却器、滑油冷却器和淡水冷却器,还附带制淡装置。根据主海水冷却系统原理和冷却器的形式,正确选择主海水管路的进、出口是很重要。

3、辅海水管路的布置

大型船舶的辅海水管路主要向发电机组的柴油机作间接冷却供水。除功能性单元机组外,一般中、小型柴油机的滑油和淡水冷却器都应配套布置。冷却器的布置形式通常如图1-68所示:重叠布置、纵向并列布置、直角布置、直列布置。不管是哪一种形式,海水均应首先进入滑油冷却器。

(二)淡水冷却管路的布置

淡水冷却系统一般有两种布置方式。一种是由柴油机→淡水冷却器→淡水泵→柴油机的布置,这种方式能保证进入气缸套的冷却水保持较高压力,使冷却水不易发生汽化现象。

另一种是由柴油机→淡水泵→淡水冷却器→柴油机的布置。它可保证淡水在淡水冷却器中有较高压力(高于海水压力),万一冷却器管子有渗漏,海水不易渗入而污染淡水。

不管是采用哪一种形式,在布置时,都应注意处理下列问题。

1、应尽量采用逆向循环的热交换。

2、为保证有害于系统性能的闭式循环管路内的气体能自由逸出,透气管路应从最高点引出。

3、淡水在管路循环时,温度较高,在淡水泵吸入口容易产生汽化现象。因此,为了使淡水泵吸入口维持一定的压力,防止产生汽化,以保证水泵的正常工作,膨胀水箱都应布置在柴油机上方,距水泵吸口高度应不小于3m。膨胀水箱的补充水管从底部引出,其终端接管应选择在靠近水泵吸口的管段上。

(三)冷却水管路的阀件布置

根据柴油机的功率大小及其冷却水系统配置情况,阀件的布置通常有分散和按单元集中两种布置形式。为使系统具有良好的操纵性,一般都选择按单元集中布置的形式。

四、压缩空气系统管路布置

(一)布置形式

船舶动力装置各机械设备及其它设施对压缩空气的压力参数要求不同,需采用不同形式的压缩空气系统。目前广泛采用的是集中供气形式。压缩空气系统从满足系统最高压力参数出发来设置压气机和空气瓶,对压力要求较低的供气处所则通过减压方式来逐级满足。

(二)布置要求

压缩空气管路应处于明显位置,不宜夹杂在其他管路中,更不能置于管束上方。一般主、辅柴油机的启动空气管路,均应布置在空间管路的低位置,尽量少设可拆接头。压缩空气管路的阀件,应布置在机械及其附属装置就近处,且易于接近、方便操作的部位。其中截止止回阀必须以阀盘水平正装为好。每一压力分级的减压阀,均应设截止阀及旁通管,并在减压阀后就近处设置安全阀和压力表。

五、柴油机排气管路布置

(一)布置形式

排气管路的作用是将主、辅柴油机的废气排到大气。根据船舶类型及吨位大小,排气管的布置形式通常有下列几种可供选择。

1、自由补偿型。柴油机的废气直接由排气管,经消声器排出。管路的热膨胀由管路的弯曲来自动补偿。这种形式,其适用范围为没有废气锅炉的小型船舶。

2、补偿器型。图1-69(a)所示为装有热膨胀补偿器排气管路的布置形式。它不仅广泛应用于辅柴油机的排气管路,而且对于没有废气锅炉的主柴油机排气管也是常见的布置形式。

3、旁通型。大、中型船舶一般都设有废气锅炉。这种类型的排气管路大都是先经废气

锅炉再排至大气,或经旁通管路直接排至大气。根据柴油机性能不同,它们可以设消声器和不设消声器两种布置形式。如图1-69 (b)所示是带消声器的旁通形式。因为废气锅炉能在一定程度上降低排气噪声,故排气管路上不再设置消声器。为了能在清理锅炉或不需要蒸汽时将废气导至大气,在旁通管路上装有消声器。图1-69 (c)所示是不设消声器的旁通形式。这种排气管路适用所有废气涡轮增压的柴油机,因为经废气涡轮排出的废气,其压力脉动已得到缓和,排气噪声得到一定程度的降低,故在旁通管路上可不设消声器。

4、串联型。如果图1-69 (d)所示是装有废气、燃油混合式锅炉,并利用废气调节阀控制锅炉蒸汽产量的串联式排气管路布置形式。

(二)管路布置要求

排气管路布置要着重考虑柴油机排气背压、管路在热态工况下的膨胀和管路自身的负荷等问题。

从排气管路的布置型式中,现代大、中型船舶大都设有废气锅炉。这对柴油机的排气已经形成一定背压,若管路布置不当(弯曲形状复杂、弯头过多),势必大大增加排气阻力,加大排气背压,影响柴油机功率。因此,管路布置应以最小的弯头,尤其要少用小于或等于90°弯头来完成。

柴油机排气温度一般为300~400℃。排气管路在热态工况下,必然要产生膨胀。因此,给热膨胀以补偿,这是排气管布置必须认真考虑的问题。对于排气管路,一般采用波纹形膨胀接头最为合适。波纹形膨胀接头的布置可根据排气管的直线长度来决定。一般在柴油机排气口或废气涡轮排气口先设置一只,然后再按照排气管长度每隔5~7m设置一只。

由于排气管路的管径较大,再加上管子外壁的隔热材料及金属护皮,因此,管子重量很大。所以,用于排气管路的固定支架必须要有足够的结构强度,并须考虑支架的型式。

(a) (b)

(c)

(d)

图1-69 排气系统布置形式

完整word版,压缩空气管路系统设计与安装

压缩空气管路系统设计与安装 苏州卓锐机械空气压缩机的应用范围是广泛的,正确安装是重要的关键,注意任何应用类型所共有的安装基本原则,将可确保空压机发挥最高效率和性能。 压缩空气作为动力源泉已经有一个多世纪的历史,随着科学技术的发展,特别是人类对其生存空间环境要求的提高,推动了压缩技术的发展。现在人们不再只是满足于“动力源”了,而是对空气品质以及机器对环境的影响有了更高的要求,即对压缩机有了更高的要求:----机器对环境的影响最小; ----使机器最大程度地满足于各种环境的要求; ----人机间有良好的关系。 就空压站而言,其设计与安装,对能源消耗、生产工艺要求、空气品质、用气量满足等生产成本均有直接的因素。常见有: ----选用的压缩机规格过大。其后果:停机与空转时间长; ----选用的压缩机设备规格过小。其后果:用气终端压力过小,降低工效; ----空气压缩机通风不足。其后果:压缩机流量下降; ----管道及其配件的安装不符合要求。其后果:空气泄漏或压力降过大,气量不足或空气品质下降; ----压缩空气罐尺寸错误。其后果:设备磨损加快; ----管路、干燥器、过滤以及输入/输出气道尺寸过小。其后果:压力损失增加。 我们从事压缩空气工作者,必须清楚认识到压缩空气设备的选型、配置、供给实施设计正确具有重要的意义。 安装场所之选定 压缩机安装场所之选定最为工作人员所疏忽。往往空压机购置后就随便找个位置,配管后立即使用,根本没有事前的规划。殊不知如此草率的结果,却形成日后空压机故障、维修困难及压缩空气品质不良等后果。所以适当的安装场所乃是正确使用空压系统的先决条件。 1、须宽阔采光良好的场所,以利操作和检修。 2、空气之相对湿度宜低、灰尘少、空气清净且通风良好。 3、环境温度宜低于40℃,因环境温度越高,则空压机之输出空气量越少。 4、如果工厂环境较差,灰尘多,须加装前置过滤设备以维持空压机系统零件之使用寿命。

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

汽车转向系统布置指南

整车技术部设计指南16 第2章转向系统布置 2.1 简述 汽车转向系是用来保持或者改变汽车行使方向的机构,在汽车转向行使时,还要保 证各转向轮之间有协调的转角关系。驾驶员通过操纵转向系统,使汽车保持在直线或转 弯运动状态,或者使上述两种运动状态相互转换。 2.2 汽车转向系统的基本形式和特征 2.2.1 转向系的基本形式 可根据转向轮、转向器、转向杆系布置以及动力转向能源进行分类。 表 2.1 2.2.2 电动转向系统 电动转向系统直接利用电动机完成转向助力功能,它由转矩传感器、车速传感器、 控制器、电动机、电磁离合器和减速机构等组成。

整车技术部设计指南17 根据电动机布置的位置分为转向轴助力式、齿轮助力式、单独助力式及齿条助力式 四种形式。 a)转向轴助力式 该电动转向系统的电动机固定在转向轴一侧,由离合器与转向轴相连接,直接驱动 转向轴助力转向。如下图中所示。 b)齿轮助力式 该电动转向系统的电动机和离合器与小齿轮相连,直接驱动齿轮助力转向。

整车技术部设计指南18 c)单独助力式 该电动转向系统的电动机和离合器固定在齿轮齿条转向器的小齿轮相对另一侧,单 独驱动齿条助力实现转向动作。 d)齿条助力式 该电动转向系统的电动机和与齿条为一体,电动机转动带动循环球螺母转动,使齿 条螺杆产生轴向位移,直接起助力转向作用。

整车技术部设计指南19 2.2.3 液压式助力转向系统的结构组成 液压式助力转向系统由:转向机、转向管柱、动力转向储液罐、转向泵、以及转向 管路等几部分组成。 储液罐转向泵 转向管柱 转向机 转向管路 图 2.1 2.3、布置设计应满足的基本要求 1)应满足整车最小转弯半径要求。 2)传动效率高,力矩波动小。 3)在发生碰撞的过程中能尽量保护乘员安全。 2.4、布置设计过程 2.4.1 转向梯形的确定 一般而言,在平台沿用的基础上,转向机构转向直拉杆内点B、C的位置,直拉杆 外点A、D的位置,优先考虑的是沿用原有平台车型的相关数据。如下图 2.2中所示。

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

管路系统详述

轮机模拟器 管路系统详述 目录 010000主海水系统(Sea Water Cooling System.)(绿色) (3) 020000低温淡水系统(L.T F.W. Cooling System.)(淡蓝色) (4) 030000高温淡水系统(H.T.F.W. Cooling System)(深蓝色) (6) 040000主机滑油系统(M.E.L.O. SYS.)(黄色) (8) 050000主机凸轮轴滑油系统(Camshaft L.O. System.)(黄色) (10) 060000主机燃油系统(M/E F.O.System)(深红色) (12) 070000主机增压系统(M/ETurbocharger System)(淡蓝色) (15) 080000主机本体(Marine Engine Set) (17) 090000副机诸管系(Aux. Eng. Systems.) (19) 100000舵机系统(Steering Gear System) (21) 110000主机喷油器冷却水系统(M.E.F.V Cooling Water System.)(浅蓝色) (24) 120000压缩空气系统(Compressed Air System)(蓝紫色) (25) 130000滑油净油机系统(L.O. Pulifier System)(黄色) (27) 140000燃油分离器系统(深红色)(F.O Pulifier System) (29) 150000柴油分离器系统(D. O. Pulifier System)(浅红色) (31) 160000柴油系统(Diesel Oil System)(浅红色) (33) 170000燃料油驳运系统(F.O Transfeer System.) (34) 180000柴油驳运系统(D.O Transfeer System) (35) 190000燃油装油系统(Fuel Oil Bunkering System) (36) 200000压舱水系统(Ballast Water System) (37) 210000通用泵系统(包括消防系统)(General Service Pump System) (38) 220000空调冷却水系统(Air Condition Cooling Water System) (39) 230000卫生水系统(Sanitary Water System) (40) 240000辅/排气锅炉系统(Aux./Exh. Gas Boiler System) (41) 250000造水机系统(F.W. Generator) (43)

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

电力机车通风系统和空气管路系统.

第三章电力机车通风系统和空气管路系统 通风系统采取的是强制性通风:目的是保证这些设备的正常工作。 第一节通风系统 设计要求:进风速度低,减少尘埃侵入,同时要求风道短,弯道少,圆滑过渡,减少风压损失。 一、通风机的类型和特点 (一)离心式通风机 作用原理:当叶轮在蜗壳内作高速旋转时,叶片间的空气也被迫作高速旋转,在离心力的作用下,沿叶轮甩出来,以一定的速度速度沿蜗壳经出风口进入风道,由于叶轮间形成真空,外界空气不断从叶轮轴向进风口被吸入,把空气的流速转变为压强,使风道的风压得到升高。 (二)轴流式通风机:又称电风扇(电风扇叶片有一定的斜度)。 作用原理:叶轮在电动机驱动下高速旋转,由于叶片有一定的斜度,形成空气的轴向流动,叶轮背面形成真空,外界空气不断补入。 二、通风机在电力机车上的应用 根据通风机的特点,牵引电机用离心式通风机;制动电阻柜用轴流式通风机。 三、SS4改进型电力机车通风系统 采用传统的车体通风系统,每节车分为三大通风系统,五条通风支路,两台离心式通风机,三台轴流式通风机。 (一)车体侧墙百叶窗和滤尘器 双侧走廊侧墙大面积双层V形百叶窗进风,过滤器为无仿合成棉。脏以后可冲洗,耐冲洗度强。 (二)三大通风系统 1.牵引通风系统: 每节车的牵引通风系统有两个独立、且完全相同的通风支路; 2.主变压器油散热器通风系统 主变压器油散热器通风系统仅有一条通风支路,采用轴流式通风机。 3.制动电阻柜通风系统 每节车的制动通风系统有两个独立、且完全相同的通风支路。 四、SS9型电力机车通风系统 SS9改型电力机车常用独立通风系统,即车外空气不直接进入车体,而是通过各自独立的风道对各部件进行冷却。按照被冷却对象分为3大通风系统:牵引通风系统、制动通风系统和主变压器通风系统。全车采用4台离心式通风机、5台轴流式的通风机。

城镇燃气管道布置设计要素分析

城镇燃气管道布置设计要素 城镇燃气管道布线的依据 城镇燃气管道布线时,必须考虑到下列基本情况: ( l )城镇燃气门站、储配站的位置; ( 2 )管道中燃气的压力。高压燃气管道不宜进入城镇四级地区; ( 3 )城镇燃气各级调压站的位置; ( 4 )街道其他地下管道的密集程度与布置情况; ( 5 )街道交通量和路面结构情况,以及运输干线的分布情况; ( 6 )所输送燃气的含湿量,必要的管道坡度,街道地形变化情况; ( 7 )与该管道相连接的用户数量及用气量情况,该管道是主要管道还是次要管道; ( 8 )线路上所遇到的障碍物情况; ( 9 )土壤性质、腐蚀性能和冰冻线深度; ( 10 )该管道在施工、运行和万一发生故障时,对城镇交通和人民生活的影响。城镇燃气管道平面布置时需考虑因素 城镇燃气管道平面布置时,要考虑下列各点: ( l )要使主要燃气管道工作可靠,燃气应从管道的两个方向得到供应,为此,管道应尽可能逐步连成环形; ( 2 )次高压、中压管道最好不要沿车辆来往频繁的城镇主要交通干线敷设,否则对管道施工和检修造成困难,来往车辆也将使管道承受较大的动荷载。对于低压管道,有时在不可避免的情况下,征得有关方面同意后,可沿交通干线敷设;( 3 )燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面通过。燃气管道不宜与给水管、热力管、雨水管、污水管、电力电缆、电信电缆等同沟敷设。在特殊情况下,当地沟内通风良好,且电缆系置于套管内时,可允许同沟敷设; ( 4 )燃气管道可以沿街道的一侧敷设,也可以双侧敷设。在有有轨电车通行的街道上,当街道宽度大于20m 或管道单位长度内所连接的用户分支管较多等情况下,经过技术经济比较,可以采用双侧敷设; ( 5 )燃气管道布线时,应与街道轴线或建筑物的前沿相平行,管道宜敷设在人行道或绿化地带内,并尽可能避免在高级路面的街道下敷设; ( 6 )燃气管道布线时应在门站、储配站、调压站进出口、分支管起点、主要河流、主要道路、铁路两侧设置阀门,次高压、中压管道上每2km 左右设分段阀门。高压燃气干管上,分段阀门最大间距为:以四级地区为主的管段不应大于8km ;以三级地区为主的管段不应大于13km ,以二级地区为主的管段不应大于24km;以一级地区为主的管段不应大于32km ( 7 )在空旷地带敷设燃气管道时,应考虑到城镇发展规划和未来的建筑物布置的情况; ( 8 )为了保证在施工和检修时互不影响,也为了避免由于漏出的燃气影响相邻管道的正常运行,甚至逸入建筑物内,地下各级压力燃气管道与建筑物、构筑构基础以及其他各种管道之间应保持的最小水平净距分别列于表 4.1-15-1 、表

客车动力转向系统的设计布置及常见问题分析模板

客车动力转向系统的设计布置及常见 问题分析

上世纪80年代初期, 国内大部分客车都是在货车底盘上加装车身而来。由于货车底盘的前悬较短而且发动机前置, 造成车内空间利用率不高, 车内噪声较大。随着国民经济的发展, 中国高速公路也在飞速发展, 人们对出行及旅行的舒适性、安全性要求越来越高, 交通密度的增加和车速的提高对客车的转向性能都提出了更高的要求。客车转向系统设计的好坏直接影响着客车的驾驶稳定性、安全性和操纵灵活性。下面简要介绍客车动力转向系统的设计布置及常见问题的分析。 1、客车动力转向系统的设计要点 1.1 客车动力转向的设计要求 (1)转向轮转角和驾驶员转动方向盘的转角应保持一定的比例关系。 (2)动力转向系统失灵时, 仍能用机械系统操纵车轮转向。 (3)减轻驾驶员作用在转向盘上的手力, 同时还应有路感, 并随转向阻力的增加而增大。 (4)方向盘应能平稳回位, 保证汽车的直线行驶能力。 (5)转向系统应能在车辆转弯时灵活平稳地将扭力传到前轮。 (6)不允许路面不平引起的振动造成方向盘回跳或方向失控。

1.2 动力转向器的选择 动力转向系统由于具有转向操纵灵活、轻便, 能吸收路面对前轮产生的冲击, 设计时转向器结构形式的选择也灵活多样等优点, 因此, 已在各国的汽车制造中普遍采用。中国大客车一般采用的是整体式-液压动力转向器, 其工作原理如图1所示。液压式动力转向以液体的压力作动力来完成转向加力。其特点是油液工作压力可达6-10MPa, 甚至更高, 因此结构紧凑, 动力缸尺寸小、重量轻; 因油液具有不可压缩性, 故灵敏度高; 油液的阻尼作用能够用来吸收路面冲击; 动力装置无需润滑。其缺点是结构复杂, 对加工精度和密封要求高等。动力转向器型号的选择须根据前桥负荷、整车的布置等因素来综合考虑。转向器选择的合适与否对整个转向系统起着至关重要的作用。 1.3 转向器及中间过渡臂的布置 转向器及中间过度臂的合理布置对于整车的行驶稳定性有非常重要的作用。每一种转向器对其安装都有要求, 在满足转向器安装要求的情况下, 应根据整车的前转向桥和前悬挂的特点, 保证转向拉杆和前悬挂的运动干涉在允许的范围内。这需要作运动校核图, 以确保不影响整车行驶稳定性的运动干涉。另外, 需根据前轮允许

DF11G机车空气管路系统

第六章空气管路系统 第一节空气压缩机 一、结构与原理 TSA-330A型螺杆式空气压缩机组由空气滤清器、进气阀、油气筒、油细分离器、安全阀、压力维持阀、压力开关、油冷却器、油过滤器、油细分离器、离心风扇、蜗壳、温控阀、后部冷却器、电机(株所电机:ZD319A;西安电机:ZTP-180D)及共用底座等组成,如图6—1所示。 图6-1 螺杆压缩机组 1—温控阀;2—油细分离器;3—进气阀;4—压力开关;5—空气滤清器;6—空-油冷却器;7-电机;8-共用底坐;9-减震器;10-分歧块;11-中托架;12-蜗壳;13-风机后盖;14-油过滤器;15-螺杆机体;16卸油阀;17-油气筒;18-温度开关;19-安全阀。 二、主要技术参数 容积流量(m3/min) 2.4 进气压力(kPa) 100

最大排气压力(kPa) 900 电机转速(r/min) 1500 空压机机转速(r/min) 3000 轴功率(kW) 18.5 旋转方向逆时针(从电机轴伸出端看) 境温度上限(℃) 50 环境温度下限(℃) -25 停机温度(℃) 105(油气筒内温度) 润滑油储量(kg) 10 冷却方式风冷 三、主要工装设备与工具 拔销器、拉轮器、感应加热器、克丝钳、拔轴器、皮带扳手、螺丝刀、链条扳手各种开口扳手及内六角扳手。 四、检修工艺 (一)解体 ⒈电机叶轮组成 ⑴拆下中托架与蜗壳之间的8个M10X30螺栓、电机与电机底座之间的4个M16X70螺栓后向后平移电机叶轮组成,把电机叶轮组成与空压机分开。 ⑵拆下联轴器盖,把联轴器叶轮组成取下。 ⑶拆下中托架与电机之间的8个M12X30的螺栓,取下中托架。 ⑷将电机送专业组检修。 ⒉叶轮联轴器(电机端) ⑴如换弹性元件,就可以从联轴器上拿下弹性元件并更换新的。 ⑵如更换电机端联轴器,则需拆下压盖螺栓和压盖,并用拔轴器从轴上拔下此联轴器。 ⒊蜗壳冷却器 ⑴取下空气滤清器。 ⑵拆下油路、气路上的管子及接头。 ⑶拆下风机后盖与蜗壳连接的8个M10×30螺栓,把蜗壳冷却器组成移开。 ⑷拆下冷却器与扩压器之间的6个M8X30螺栓,把冷却器与扩压器分开。 ⑸用皮带扳手拆下油过滤器。 ⑹拆下扩压器与蜗壳之间的6个M8X20螺栓,把扩压器与蜗壳分开。 ⒋叶轮联轴器(机头端) ⑴拆下压盖螺栓和压盖。 ⑵用拔轴器取下机头端联轴器。

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

转向系统设计

标题 转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。 概述 汽车在行使过程中,需要经常改变行驶方向,即所谓的转向。这就需要有一套能够按照司机意志来改变或恢复汽车行驶方向的专设机构,它将司机转动方向盘的动作转变为车轮的偏转动作,这就是所谓的转向系统。转向系统是用来改变汽车的行使方向和保持汽车直线行使的机构,既要保持车辆沿直线

压缩空气管道规范

压缩空气管道规范 Prepared on 24 November 2020

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 本条是原规范第条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 本条是原规范第条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 本条为新增条文。

管道布置设计的要求示范文本

管道布置设计的要求示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

管道布置设计的要求示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、管道布置设计的一般要求有; 1)管道布置设计应符合工艺管道及仪表流程图的要 求; 2)管道布置应统筹规划,做到安全可靠、经济合 理、满足施工、操作、维修等方的要求,并力求整齐美观; 3)在确走进出装置(单元)的管道的方位与敷设方式 时,应做到内外协调; 4)厂区内的全厂性管道的敷设,应与厂区内的装置 (单元)、道路、建筑物。构筑物等协调,避免管道包围装置(单元厂减少管道与铁路、道路的交叉; 5)管道应架空或地上缴设;如确有需要,可埋地或敷

设在管沟内; 6)管道宜集中成排布置。地上的管道应敷设在管架或管墩上; 7)在管架、管墩上布置管道时,宜使管架或管墩所受的垂直荷载、水平荷载均衡; 8)全厂性管架或管墩上(包括穿越涵洞)应留有 1O %?30%的裕量,并考虑其荷重。装置主管廊管架宜 留有10% - 20%的裕量,并考虑其荷重; 9)输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布置,应符合设备布置设计的要求; 10)管道布置不应妨碍设备、机泵及其内部构件的安装、检修和消防车辆的通行; 11)管道布置应使管道系统具有必要的柔性。在保证 管道柔性及管道对设备、机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少;

压缩空气系统设计手册

压缩空气中水分的含量及影响 ( ) 一般大气中的水份皆呈气态,不易觉察其存在,若经空气压缩机压缩及管路冷却后,则会凝结成水滴。[例如]在大气温度30℃,相对温度75℃状况下,一台空气压缩机,吐出量为3m3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含有100升的水份。 压缩空气系统中水分的影响: 一、压缩空气管路快速腐蚀,压降增加; 设定压力提高1kgf/cm2G,动力输出增加5%-7%,或减少排气量6%-8%。 二、设备严重故障,增加维修保养费用; 1.腐蚀零件。 2.阻塞气控仪器。 3.降低气动工具的效率。 三、破坏产品品质,产品不良率提高; 1.应用产品清洁时,造成湿气污染。 2.应用喷漆涂装时,影响产品品质。 四、影响生产流程,生产能量降低; 1.粉体输送时,易阻塞管线。 2.气动设备故障,而停工。 ----冲刷掉气动工具,电机和气缸中的润滑油,增加磨损并缩短寿命,提高维护成本----使气动阀门和控制仪器失灵,影响可靠操作,效率降低 ----影响油漆和整饰作业质量 ----引起系统中的金属装置腐蚀生锈,影响其寿命,并可导致过度压降 ----气流分配成本提高(需倾斜管道,设置U形管和滴水管) ----在冰冻季节,水气凝结后会使管道及附件冻结而损害,或增加气流阻力,产生误动 压缩空气中油的危害: 在一些要求比较严格的地方,比如气动控制系统中,一滴油能改变气孔的状况,使原本正常的自动运行的生产线瘫痪。有时,油还会将气动阀门的密封圈和柱要胀大,造成操作迟缓,严重的甚至堵塞,在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源 由于大部分压缩空气系统都使用油润滑式压缩机,该机在工作中将油汽化成油滴。它们以两种方式形成:一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”,其直径在1-50um。另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。 * 无油压缩机是否含油污 在最理想的工作状态下,此类压缩机也会产生不少于0.5ppm W/W的碳氢化合物,即按100scfm气量计,每月产生的汽化冷凝液也超过15ml. 氧化铝和分子筛的比较 ( )

(完整版)东风轻型货车转向系统设计

毕业设计(论文)开题报告 学生姓名 郑蕊 系部 汽车工程系 专业、班级 车辆07—6班 指导教师姓名 姚佳岩 职称 副教授 从事 专业 车辆工程 是否外聘 □是■否 题目名称 东风轻型货车转向系统设计 一、课题研究现状、选题目的和意义 作为汽车的一个重要组成部分, 汽车转向系统是决定汽车主动安全性的关键总成, 如何设计汽车的转向特性, 使汽车具有良好的操纵性能, 始终是各汽车生产厂家和科研机构的重要研究课题。特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天, 针对更多不同水平的驾驶人群, 汽车的操纵设计显得尤为重要。汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动助力转向系统3 个基本发展阶段。1)纯机械式转向系统,由于采用纯粹的机械解决方案, 为了产生足够大的转向扭矩需要使用大直径的转向盘, 这样一来, 占用驾驶室的空间很大, 整个机构显得比较笨拙, 驾驶员负担较重, 特别是重型汽车由于转向阻力较大,单纯靠驾驶员的转向力很难实现转向, 这就大大限制了其使用范围。但因结构简单、工作可靠、造价低廉, 目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用。2)液压助力转向系统,1953 年通用汽车公司首次使用了液压助力转向系统, 此后该技术迅速发展, 使得动力转向系统在体积、功率消耗和价格等方面都取得了很大的进步。80 年代后期, 又出现了变减速比的液压动力转向系统。在接下来的数年内, 动力转向系统的技术革新差不多都是基于液压转向系统, 比较有代表性的是变流量泵液压动力转向系统( Variable Displacement Power Steering Pump) 和电动液压助力转向( Electric Hydraulic PowerSteering, 简称EHPS) 系统。变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下, 泵的流量会相应地减少, 从而有利于减少不必要的功耗。电动液压转向需要全套设计请联系Q Q1537693694系统采用电动机驱动转向泵, 由于电机的转速可调, 可以即时关闭, 所以也能够起到降低功耗的功效。液压助力转向系统使驾驶室变得宽敞, 布置更方便, 降低了转向操纵力, 也使转向系统更为灵敏。由于该类转向系统技术成熟、能提供大的转向操纵助力, 目前在部分乘用车、大部分商用车特别是重型车辆上广泛应用。但是液压助力转向系统在系统布置、安装、密封性、操纵灵敏度、能量消耗、磨损与噪声等方面存在不足。3)汽车电动助力转向系统(EPS),EPS 在日本最先获得实际应用, 1988 年日本铃木公司首次开发出一种全新的电子控制式电动助力转向系统, 并装在其生产的Cervo 车上, 随后又配备在Alto 上。此后, 电动助力转向技术得到迅速发展, 其应用范围已经从微型轿车向大型轿车和客车方向发展。日本的大发汽车公司、三菱汽车公司、本田汽车公司, 美国的Delphi 公司, 英国的Lucas 公司, 德国的ZF 公司, 都研制出了各自的EPS 。EPS 的助

石油化工管道布置设计规范

石油化工管道布置设计规范 一石油化工管道布置设计一般规定 1.管道布置设计应符合管道及仪表流程图的要求; 2.管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维修等 方面的要求,并力求整齐美观; 3.对于需要分期施工的工程,其管道的布置设计应统一规划,力求做到施工、 生产、维修互不影响; 4.永久性的工艺、热力管道不得穿越工厂的发展用地; 5.在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 6.厂区内的全厂性管道的敷设,应与厂区的装置(单元)、道路、建筑物、构筑 物等协调,避免管道包围装置(单元),减少管道与铁路、道路的交叉; 7.管道应架空或地上敷设;如确有需要,可埋地或敷设在管沟内; 8.管道宜集中成排布置,地上管道应敷设在管架或者管墩上; 9.在管架或者管墩上(包含穿越涵洞)应留有10%~30%的空位,并考虑其荷重; 装置主管廊架宜留有10%~20%的空位,并考虑其荷重; 10.全厂性管架或者管墩上(包含穿越涵洞)应留有10%~30%的空位,并考虑其 荷重;装置主管廊架宜留有10%~20%的空位,并考虑其荷重; 11.输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布置, 应符合设备布置设计的要求; 12.管道布置设计应满足现行《石油化工企业非埋地管道抗震设计通则》SHJ39 的要求; 13.管道布置不应妨碍设备、机泵及其内部结构的安装、检修和消防车辆的通行; 14.管道布置应使管道系统具有必要的柔性;在保证管道柔性及管道对设备、机 泵管口作用力和力矩不超出过允许值的情况下,应使管道最短,组成件最少;

15.应在管道规划的同时考虑其支撑点设置;宜利用管道的自然形状达到自行补 偿; 16.管道系统应有正确和可靠地支撑,不应发生管道与其支撑件脱离、管道扭曲、 下垂或立管不垂直的现象; 17.管道布置宜做到“步步高”或“步步低”,减少气袋或液袋;否则应根据操 作、检修要求设置放空、放净;管道布置应减少“盲肠”; 18.气液两相流的管道由一路分为两路或多路时,管道布置应考虑对称性或满足 管道及仪表流出图要求; 19.管道除与阀门、仪表、设备等要用法兰或螺纹连接者外,应采用焊接连接; 下列情况应考虑法兰、螺纹或者其他可拆卸的场合; 1)因检修、清洗、吹哨需拆卸的场合; 2)衬里管道或者夹套管道; 3)管道由两段异种材料组成且不宜用焊接连接者; 4)焊缝现场热处理有困难的管道连接点; 5)公称直径小于或等于100的镀锌管道; 6)设置盲板或“8”字盲板的位置。 20.管道布置时管道焊缝位置的设置,应符合下列要求; 1)管道对接焊口的中心与弯管起弯点的距离不应小于管子外径,且不小于 100mm; 2)管道上两相邻对接焊口的中心间距: A.对于公称直径小于150mm的管道,不应小于外径,且不得小于50mm; B.对于公称直径等于或大于150mm的管道,不应小于150mm。

相关文档
相关文档 最新文档