文档库 最新最全的文档下载
当前位置:文档库 › 大学物理第三章总结

大学物理第三章总结

大学物理第三章总结
大学物理第三章总结

第三章热力学的基本规律

热学是从系统的物理性质及其状态的变化是与冷热状态相联系这一客观事实出发,来研究系统的物理性质及其状态变化的一门学科,它是物理学的重要分支之一。

热学研究对象就是由大量(微观)粒子组成的宏观物体。

§ 3.1 热力学系统的平衡态

一、几个基本的定义:

系统:体积具有有限的宏观物质体系。外界或环境——与系统内部具有一定联系

孤立系:与外界没有任何相互作用的热力学系统。

封闭系:与外界没有实物交换但有能量(如热能)交换的系统。

开放系:与外界既有实物交换又有能量交换的系统。

平衡态:孤立系经过足够长的时间一定会达到一个宏观性质不随时间变化的状态。宏观性质不随时间变化的状态叫做平衡态(是动态平衡)

状态参量:描述系统平衡态性质的物理量称状态参量。不同情况时选用不同的状态参量来描述状态。

§ 3.2 温度状态方程

热力学第零定律:若两个系统分别和处于确定状态的第三个系统达到热平衡,则这两个系统彼此也将处于热平衡。

温度的定义:热平衡的概念总是和物体的冷热程度联系在一起的,而描述冷热程度的物理量就是温度。一切处于相互热平衡的物体,都有相同的温度。(科学定义)

温标的定义种类:

理想气体状态方程:确定系统状态的一组独立参量与温度的函数关系式

pV=νRT

§ 3.3过程功

1、过程

热力学过程:热力学系统的状态随时间而变化时,表现为一系列连续变化的状态叫做热力学过程。

准静态过程(如果过程进行得十分缓慢,以至系统连续地经历着一系列的平衡态,这样的过程称为准静态过程)和非静态过程 准静态过程的P-V 图像

2、功

准静态过程当中的功: 当系统的体积由V 1变为V 2时,外界对系统

所做

的功为

§ 3.4内能 热力学第一定律

焦耳实验证明:借助机械生热法和电的热效应使物体温度升高了与传递给它1cal 热量,相同的温度上升量时,都必须对物体做4.18J 的功。 1、内能

绝热过程的定义:

内能定义:任何一个热力学系统都存在一个被称为内能的态函数,当这个系统从平衡态1经过任一绝热过程到另一平衡态2,它的内能的增加等于过程中外界对它所做的功W

S 。 2、热力学第一定律:若外界对系统传递的热量为Q ,外界对系统做

功为W ,并此过程中内能变化为 U 2

-U 1 。 以上公式中一定要注意外界对系统做工的符号。

第一类永动机不可造成。 § 3.5 热容量

一、热容量:在一个无限小过程中系统从外界吸收的热量 与系统温

度的升高d T C ,即 在定容过程中,系统体积不变,所以 W =0

d W p V

δ=-2

1

s

U U W

-=21U U W Q -=+d U Q W =δ+δ

()

21V U C T T ν?=-U W Q ?=δ+δd W p V

δ=-()

21Q C T T νδ=

-定压热熔C p 在定压过程中,外界对系统所作的功为 A p =-P (V 2-V 1) 引入了焓这个状态函数

H=U+PV

在有限的过程当中热熔C

才是常数。 § 3.6

内能变化各功的计算。(非常重要) (1

)等容过程 (2)等压过程 (3)等温过程 (4)绝热过程 也要注意其物理图像。

3、循环过程 系统经过一系列状态变化过程以

后, 又回到原来状态的过程。

(其中Q1Q2取绝对值)

卡诺热机以及卡诺循环:两个等温和两个绝热过

程组成

)

(12T T C Q -=

1—2

3—4 等温压缩过程

4-1和2-3是绝热过程:

4

1.利用热力学第一定律讨论理想气体在各准静态过程中的能量转换,求内能增量、功和热量。

2.已知初状态和在给定过程中的能量转换,求终态的状态参量。 3.计算准静态循环过程的效率和制冷系数 § 3.7热力学第二定律

热力学第二定律就是关于自然过程方向的规律,它决定了实际过程是否能够发生以及沿什么方向进行,所以也是自然界的一条基本规律,它和热力学第一定律构成了热力学的主要理论基础。 1、

热力学第二定律两种表述:

开尔文表述: 克劳修斯表述: 2、 两种表述的等价性证明

3、

可逆过程以及不可逆过程、热力学第二定律的实质

§ 3.8卡诺定律 热力学温标

1、 卡诺定律以及证明方法(反证法):

① 在相同的高温热源和相同的低温热源之间工作的一切可逆机,其效率都相等,与工作物质无关。

② 在相同的高温热源和相同的低温热源之间工作的一切不可逆机,其效率都不可能大于可逆机的效率。

2、热力学温标: 卡诺定理指出,一切可逆卡诺热机的效率只与两个热源的温度有关,与工作物质无关,即两热源交换热量之比仅与两热源的温度有关。由此可以引进一个新的温标—热力学温标

这样的温标与工作物质没有关系的是理论温标。可以通过卡诺定律取得实际意义。

§ 3.9 熵 热力学基本你微分方程

1、熵 ——是状态函数,由克劳休斯不等式给出。

当系统的平衡态确定后,熵就完全确定了,与通过什么路径到达这一平衡态无关。熵是描述平衡态参量的函数。

热力学系统在任意给定的两平衡态之间熵的差,等于连接这两个平衡态的任一可逆过程(即P —V 图中的曲线)中T

Q

δ的线积分。 2、热力学基本微分方程

3、理想气体的熵计算 § 3.10 熵增加原理

1、熵增加原理 :当系统经历绝热过程由态1到态2后,系统的熵值永不减小,经历可逆绝热过程后熵不变,经历不可逆绝热过程后熵增加。这个结论称为熵增加原理

2、熵增加原理的应用:孤立系统所发生的过程必然是绝热过程。可知,孤立系统的熵永不减少,所发生的不可逆过程总是朝着熵增加的方向进行的。熵增加到最大值时过程就停止了。因此,孤立系统平衡态的熵有极大值。

d d d U T S p V =-210≥S -S ??≥012S +S

第四章 统计物理学基础

统计物理学的方法是依据大量微观粒子所遵循的力学规律,用统计的方法研究物体的宏观性质及其变化规律。

微观粒子:指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述。

如果一个系统,其粒子间的相互作用能量很弱,可忽略不计,以致系统的总能量等于各个粒子能量之和,这样的系统称为近独立粒子系统。

§ 4.1 系统的微观运动状态 1、粒子运动状态的经典描述:

(1)单原子分子用三个位置坐标 x , y , z 及三个动量坐标 Px , Py ,

Pz 为直角坐标组成的六维空间中的一个点表示 自由度为3

(2)线性谐振子 自由度为2

(,,,,,)

x y z x y z P P P εε=C

x x x U P P P m +++=)(212

22ε0[0(,,)]

[(,,)0,(,,)]

C x y z L U x y z x y z L ∞

≤≤?=?<>?(,,)

q P V εε=222

2

12x

m m P x ωε+=

(3)刚性双原子分子转动

自由度为r

的一个粒子的运动状态可用r 个广义坐标(q 1,q 2,…,

qr )及r 个广义动量(P 1,P 2,…,Pr )来表示,则

用r 个广义坐标(q 1,q 2,…,q r )及r 个广义动量(P 1,P 2,…,P r )为直角坐标组成的2r 维空间,中的一个点表示粒子的力学运动状态。

以f 个广义坐标及f 个广义动量为直角坐标组成的2f 维空间中的一个代表点表示;该空间称为Γ空间。每一个代表点是系统的一个微观运动状态。N 个全同粒子组成的系统在某一时刻的微观运动状态,可用μ空间中的N 个代表点表示。 2、分布N 个粒子的代表点按相格的分布

设有N 1个点在相格Δω1内, N 2个点在相格Δω2内,┅, Nl 个点在相格Δωl 内

1212(,,,;,,,)

r r q q q P P P εε=

计算分布{ Nl } 对应于Γ空间的体积,即系统微观运动状态的范围。

W 称为热力学概率

§ 4.2 等概率原理

1、随机事件的定义:

2、系统微观运动状态s

3等概率原理:

1) 对平衡态问题,概率密度ρ不能是时间t 的显函数; 2) 一定的宏观条件下,系统处在同样大小的微观运动状态范围或Γ空间体积元中的概率相等。

等概率原理:孤立系统在平衡态时的概率密度是常数。 意味着孤立系统在平衡态时处于相等的微观运动状态范围或Γ空间相等的体积元的概率相等。等概率原理不能直接用实验来验证,它的正确性是由

能量 ε1 , ε2 ,┄,εl ,┄ 粒子数 N 1 , N 2 ,┄, N l ,┄

分布(N 1 , N 2 ,┄, N l ,┄)简写作{ N l }。

相格 Δω1,Δω2,┄,Δωl ,┄ ()

l

N l l

ω?Ω?=∏∑=s

s

P

1

它的推论与实验相符合而得到肯定的。

§ 4.3 玻耳兹曼分布

在孤立系统中满足的条件:

玻耳兹曼分布

2.玻耳兹曼分布与实际分布的关系

由于分布的概率与其在Γ空间占有的体积或对应的微观态范围成正比,偏离了最概然分布的分布出现的概率与最概然分布的相比就几乎为零。因此,我们就能够忽略其他分布而认为平衡态下粒子实际上就处在玻耳兹曼分布。

§ 4.4 宏观物理量的统计表达式

1、配分函数

2

要掌握推导过程

l

l

N N

=∑

l l

l

E Nε

=∑

l

l l

N eαβε

ω

?--

=

根据等概率原理,系统处于Γ空间相等

体积元的概率相等,因而分布{Nl }出现

的概率与所对应的Γ空间体积或微观

运动状态范围WΔΩ成正比,则最概

然分布就是使WΔΩ为极大的分布。

l

l l

l l

N N eαβε

ω

?--

==

∑∑l

e

e

N

l

l

βε

αω-

-∑?

=

N e Zα-=

3、压强的统计表达式:要掌握推导过程

4

5、玻耳兹曼关系式:

熵的真正物理意义:微观运动状态范围大,意味着粒子的热运动“混乱”和

“分散”;微观运动状态小,意味着粒子热运动“整齐”和“集中”。有序、无序度的一个量度。

玻耳兹曼关系表明,热力学概率W 越大,熵S 也越大,系统的微观运动状态范围也越大,即系统热运动无序程度越大。因此,熵是系统热运动无序程度的量度。

熵增加原理:系统熵增加的过程,总是伴随分子运动无序程度的增加,熵越大,意味着系统热运动无序程度越大

ln()

S k W ?Ω=

§ 4.5理想气体的热力学函数

1、单原子分子理想气体的配分函数:

2、可以获得气体的压强 : 从而就可以获得玻耳兹曼常

K

3

气体分子的平均平动动能只与温度有关,并与热力学温度T 成正比。温度是大量分子热运动的集体表现,对单个分子来说温度是没有意义的。

4、单原子分子理想气体的热熔

5、单原子分子理想气体的熵 § 4.6 麦克斯韦速度分布规律 1、麦克斯韦速度分布规律

pV NkT

=232

1.38110J K --=??

2、应用

§ 4.7

能均分定理:

在温度为T 的平衡态下,物质(气体液体和固体)分子经典能量表达式中的每个平方项的平均值都相同,都等于

双原子分子理想气体的内能和热容量

刚性双原子分子,其运动可以看作分子质心的平动、绕质心的转动。 平均速率 :是大量分子的速率的算术平均值

v

v v N

=

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

大学物理第三章题目答案(精品资料).doc

【最新整理,下载后即可编辑】 第三章 3.10 平板中央开一小孔,质量为m的小球用细线系住,细线穿过小孔后挂一质量为 1 M的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在 1 M的下方再挂一质量为2M的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度ω'和半径r'为多少? 题3.10图 解: 在只挂重物时 1 M,小球作圆周运动的向心力为g M 1 ,即 2 1 ω mr g M= ① 挂上 2 M后,则有 2 2 1 ) (ω' ' = +r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即v m r mv r' ' = ω ω' ' = ?2 2 r r ③ 联立①、②、③得 1 2 1123 01 1 1213 2 12 () () M g mr M g M M mr M M M M r g r m M M ω ω ω = + '= + '==? '+ 3.13 计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M,半径为r,在绳与轮缘的摩擦力作

用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1 (212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002-?=+ +?= + += M m m g m a 题3.13(a)图 题3.13(b)图 3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 ~ 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = : (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即

1 2r r r -=? 位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= ( 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === " 在直角坐标系中

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理第三章

班级: 姓名: 学号: ★说明:作业模板必须使用单张A4纸(21x29.7cm)正反面打印、复印或手抄;手写作答;若手抄题目请注意题目排版布局。 评 分 大学物理作业 第3章 刚体的定轴转动 一、计算题 1. 如图,一半径为R 质量为m 的定滑轮(可视为圆盘)挂在天花板上,可绕其轴自由转动。质量为1m 和2m (21m m >)的两个物体通过一轻绳挂在定滑轮两侧,由静止开始运动,假设绳与圆盘无相对滑动,试求: (1) 两物体的加速度;(2) 轻绳的张力。 2. 刚体由长为l 、 质量为m 的匀质细杆和一质量同为m 的小球牢固地连接在杆的一端而成,可绕过杆的另一端O 的水平轴转动,在忽略摩擦的情况下,使杆由水平位置自静止状态开始自由转下,试求: (1) 当杆与水平线成θ 角时,刚体的角加速度; (2) 当杆转到竖直线位置时,刚体的角速度。 θ O

Ver 1.0 二、填空题 1. 一长为l 质量为m 的均匀细杆的一端,牢固的粘在另一条同样规格的细杆中点,构成一T 字形结构的刚体。则该刚体 对过其结合处且与两杆所在平面垂直的转轴的转动惯量 =J 。 2. 如图所示,一轻绳绕于半径为r 的飞轮边缘,质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动 惯量为I ,若不计摩擦力,飞轮的角加速度=α 。 3. 花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω;然后她将两臂收回,使转动惯量减少为30J ,这时她转动的角速度=ω 。 4. 设飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程,阻力矩M 的大小与角速度ω的平方成正比,比例系数为正的常数k 。当0ωω=时,经历的时间=t ,此时飞轮的角加速度=α 。 5. 一飞轮以0ω的角速度转动,转动惯量为J ,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小=M 。 6. 如图所示,A 和B 两飞轮的轴杆 在同一中心线上,设两轮的转动惯量分别为A J 和B J 。开始时A 轮转速为0ω,B 轮静止。C 为摩擦合器,其转动惯量可 以忽略不计,A 、B 分别与C 的左右两个 组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转 速相等为止,设轴光滑,那么两轮啮合后共同的转速=ω 。 三、单项选择题 1. 有AB 两个半径相同、质量也相同的细圆环。其中A 环的质量分布均匀,而B 环的质量分布不均匀。若两环对过环心且与环面垂直轴的转动惯量分别记为为A J 和B J ,则有( ) (A) B A J J > (B) B A J J < (C)B A J J = (D)不能确定 2. 一圆盘正绕垂直于盘面的水平光滑轴O 转动,如图所示,射来两个质量相同、速度大小相同、方向相反并 在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子 弹射入后的瞬间,圆盘的角速度ω将( ) (A) 变大 (B) 变小 (C) 不变 (D) 不能确定 m O r C A B

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

大学物理公式总结

一、质点力学基础: (一)基本概念: 1、参照系,质点 2、矢径:k z j y i x r ???++= 3、位移:()()()k z z j y y i x x k z j y i x r r r ??????12121 212-+-+-=++=-=???? 4、速度:k dt dz j dt dy i dt dx k j i dt r d t r z y x t ??????lim ++=++===→υυυ??υ? 5、加速度:k dt d j dt d i dt d k a j a i a dt r d dt d t a z y x z y x t ??????lim υυυυ?υ??++=++====→220 6、路程,速率 7、轨迹方程:0=),,(z y x f 8、运动方程:)(t r r =, 或 )(t x x =, )(t y y =, )(t z z = 9、圆周运动的加速度:t n a a a +=; 牛顿定律:a m dt p d F ==; 法向加速度:R a n 2 υ= ; 切向加速度:dt d a t υ= 10、角速度:dt d θω= 11、加速度:22dt d dt d θ ωα== 二、质点力学中的守恒定律: (一)基本概念: 1、功:?? =?= b a b a dl F l d F A θcos 2、机械能:p k E E E += 3、动能: 22 1 υm E k = 4、势能:重力势能:mgh E p =; 弹性势能:221kx E p = ; 万有引力势能:r Mm G E p -= 5、动量: υ m p =; 6、冲量 :??=t dt F I 0 7、角动量:p r L ?=; 8、力矩:F r M ?= (二)基本定律和基本公式: 1、动能定理:2 0202 121υυm m E E A k k -= -=外力 (对质点) ∑∑-=-=+i i i k i k k k E E E E A A 00内力外力 (对质点系)

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理公式大全

大学物理公式大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相 同a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦ R dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速 直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与

北京理工大学珠海学院大学物理第三章 答案

一、判断题 1. 刚体是质点与质点之间的相对位置保持不变的质点系。 ………………………………[×] 2. 刚体中任意质点都遵循质点力学规律。 …………………………………………………[√] 3. 定轴转动的刚体上的每一个质点都在作圆周运动,都具有相同的角速度。 …………[√] 4. 刚体对轴的转动惯量越大,改变其对轴的运动状态就越困难。 ………………………[√] 5. 刚体质量一定,其转动惯量也就一定。 …………………………………………………[×] 6. 当作用在刚体上的两个力合力矩为零时,则它们的合力也一定为零。 ………………[×] 7. 当作用在刚体上的两个力合力为零时,则它们的合力矩也一定为零。 ………………[×] 8. 平行于转轴的力对刚体定轴转动没有贡献。 ……………………………………………[√] 9. 刚体所受合外力矩为零时,刚体总角动量守恒。 ………………………………………[√] 10. 刚体对某一轴的角动量守恒,刚体的所受合外力矩为零。 ……………………………[×] 二、填空题 11. 质量为m 的质点沿半径为r 的圆周以速率v 运动,质点对过圆心的中心轴转动惯量J = 2 mr ,角动量L =mrv ;质量为m 的质点沿着直线以速率v 运动,它相对于直线外距离为d 的一点的角动量为L =m dv 。 12. 长度为l 的均匀细棒放在Oxy 平面内,其一端固定在坐标原点O 位置,另一端可在平面内 自由转动,当其转动到与x 轴正方向重合时,在细棒的自由端受到了一个34F i j =+ 牛顿 的力,则此力对转轴的力矩M =4l 。 13. 在Oxy 平面内有一个由3个质点组成的质点系,其质量分别为1m 、2m 、3m ,坐标分别为 ()11,x y 、()22,x y 、()33,x y ,则此质点系对 z 轴的转动惯量 J =()()()222222 111222333m x y m x y m x y +++++。 14. 质量为m 半径为r 的均匀圆盘绕垂直于盘面的中心轴转动,转动惯量J =2 1 2 m r ; 质量为m 长度为l 的细棒,对于经过细棒一端且垂直于棒的轴的转动惯量J = 2 13 m l ; 质量为m 长度为l 的细棒,对于与细棒中心轴平行、相距为4l 的轴的转动惯量J =2 748 m l ; 15. 如图1,一长为l 的轻质细杆,两端分别固定质量为m 和2m 的 小球,此系统在竖直平面内可绕过其中心点O 且与杆垂直的水平固定轴转动。开始时,杆与水平成60 角,处于静止状态,无初速度地释放,杆球系统绕O 转动,杆与两小球为一刚体,绕O 轴转动惯量J = 2 34 m l 。释放后当杆转到水平位置时,刚体受到

大学物理(上)知识总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即: t r v ?? = 速度,是质点位矢对时间的变化率: dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率: dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ =2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t =,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ= ω 角加速度 dt d ω= β 而R v ω=,22n R R v a ω==,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 'kk 'pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题 二 功 和 能 知识点: 1. 功的定义 质点在力F 的作用下有微小的位移d r (或写为ds ),则力作的功定义为力和位移的标积即 θθcos cos Fds r d F r d F dA ==?= 对质点在力作用下的有限运动,力作的功为 ? ?=b a r d F A 在直角坐标系中,此功可写为

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

大学物理公式大全下册

电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+ ?=l d E U 电动势:? + - ?= l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:???=S d B B φ磁通链: ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I = dt dq ; *位移电流:I D =ε 0dt d e φ 单位:安培(A ) ⑦*能流密度: B E S ?= μ 1 2.实验定律 ①库仑定律:0 204r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:?+ -??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:?? =?0 εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

大学物理知识点总结

o x B r ? A r B r y A r ? s ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 22r r x y ==+ 运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,22r x y =?+?△ 路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

大学物理公式大全

第一章 质点运动学与牛顿运动定律 1、1平均速度 v = t △△r 1、2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1、6 平均加速度a = △t △v 1、7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1、8瞬时加速度a=dt dv =2 2dt r d 1、11匀速直线运动质点坐标x=x 0+vt 1、12变速运动速度 v=v 0+at 1、13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1、14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1、15自由落体运动 1、16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 02200 1、17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1、18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1、19射程 X=g a v 2sin 2 1、20射高Y= g a v 22sin 20 1、21飞行时间y=xtga —g gx 2 1、22轨迹方程y=xtga —a v gx 2 202 cos 2 1、23向心加速度 a=R v 2 1、24圆周运动加速度等于切向加速度与法向加速度矢量与a=a t +a n 1、25 加速度数值 a=2 2 n t a a + 1、26 法向加速度与匀速圆周运动的向心加速度相同 a n =R v 2 1、27切向加速度只改变速度的大小a t = dt dv 1、28 ωΦR dt d R dt ds v === 1、29角速度 dt φ ωd = 1、30角加速度 22dt dt d d φ ωα== 1、31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1、39 F=G 2 2 1r m m G 为万有引力称量=6、67×10-11 N ?m 2 /kg 2 1、40 重力 P=mg (g 重力加速度) 1、41 重力 P=G 2 r Mm 1、42有上两式重力加速度g=G 2 r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

大学物理第三章题目答案

1 第三章 3.10 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少? 题3.10图 解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即 2 001ωmr g M =① 挂上2M 后,则有 221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即v m r mv r ''=00 ωω''=?2020r r ③ 联立①、②、③得 100 2 1123 01 1121 30 212 ()()M g mr M g M M mr M M M M r g r m M M ωωω= +'=+'==?'+ 3.13计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M , 半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200kg,M =15kg, r =0.1m

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有 a m T g m 222=-① a m T 11=② 对滑轮运用转动定律,有 β) 2 1 (212Mr r T r T =-③ 又,βr a =④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 题3.13(a)图题3.13(b)图 3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量? 题3.15图 解: (1)设小球的初速度为0v , 棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所 以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式: mvl I l mv +=ω0① 2 2202 12121mv I mv +=ω②

大学物理下公式方法归纳

大学物理下公式方法归纳 Modified by JEEP on December 26th, 2020.

大 学物理下归纳总结 电学 基本要求: 1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。 2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。 3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。 主要公式: 一、 电场强度 1 计算场强的方法(3种) 1、点电荷场的场强及叠加原理 点电荷系场强:∑=i i i r r Q E 304πε 连续带电体场强:?=Q r dQ r E 3 04πε (五步走积分法)(建立坐标系、取电荷元、写E d 、分解、积分) 2、静电场高斯定理: 物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

3、利用电场和电势关系: 二、电势 电势及定义: 1.电场力做功:??=?=2100l l l d E q U q A 2. 静电场安培环路定理:静电场的保守性质 物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。 3.电势:)0(00 =?=?p p a a U l d E U ;电势差:??=?B A AB l d E U 电势的计算: 1.点电荷场的电势及叠加原理 点电荷系电势:∑=i i i r Q U 04πε (四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法 三、静电场中的导体及电介质 1. 弄清静电平衡条件及静电平衡下导体的性质 2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定 理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度 σ。 3. 会按电容的定义式计算电容。 典型带电体系的电势

大学物理 上册(第五版)重点总结归纳及试题详解第三章 刚体的转动

第三章 刚体的转动 一、 基本要求 1. 了解转动惯量概念,掌握刚体定轴转动的转动定律。 2. 理解角动量和刚体绕定轴转动情况下的角动量守恒定律。 3. 了解刚体定轴转动的功和能及能量守恒。 二、 基本内容 1.角速度矢量 角速度矢量 d dt = θω 在刚体定轴转动中,ω方向沿轴由右手螺旋法则确定,可用正、负表示。刚体上任一点的线速度v 与ω之间关系为=?r v ω。 2.角加速度矢量 角加速度矢量 d dt = ωβ 在刚体定轴转动中,β方向也沿轴,可用正、负表示。β与ω同向时转动 加快,β与ω反向时转动减慢。在刚体上任一点有 t n =???=??a r a v βω 3.力矩 力矩 =?M r F sin Fr ?=M ,?为r 与F 正向间夹角。M 的方向由右手螺旋法则确定。在定轴转动情况下,当规定了转动正方向后,可用正、负表示力矩的方向。 显然平行于转轴的力和作用线通过转动轴的力对该轴产生的力矩为零。在定轴转动情况下计算力矩时,只考虑力在转动平面内的分力对转轴的力矩。 4.转动惯量 ∑=?=n i i i m r J 12——定义式。 对于质量连续分布的刚体 dm r J ?=2 转动惯量是刚体转动惯性大小的量度。转动惯量的大小与刚体的质量有关,

又与刚体质量的分布有关,还与转轴的位置有关。 关于转动惯量的计算:①转动惯量是可加的,应能用转动惯量的定义式求质点组、刚体组对某一转轴的转动惯量。②能计算质量均匀分布,几何形状简单的几种刚体的转动惯量。③会用平行轴定理求刚体或刚体组合对一任意(与质心轴平行的轴)轴的转动惯量。平行轴定理为2mh J J c +=。 5.刚体的转动定律 J =M β 或 d dt = L M 式中M 为作用于刚体上的合外力矩。i =∑M M ,i M 为作用刚体上任一外力对轴的力矩。对定轴转动,在规定了转动正方向后,∑=i M M ,可求合外力矩的代数和。定律中J 、、M β应对同一轴而言。转动定律在描述刚体定轴转动中与描述质点平动中牛顿第二定律地位相当。应用转动定律时应选定刚体转动的正方向,把转动定律变为标量式βJ M =。 6.角动量(动量矩)L 质点的角动量 m =?L r v sin rm ?=L v ,?为r 与m v 间夹角。 刚体绕定轴转动的角动量 J =L ω 7.角动量定理和角动量守恒定律 角动量定理 2 1 21t t dt J J =-? M ωω 2 1 t t dt ? M 表示在21t t →时间内的冲量矩之和。 式中12J 、、、M ωω均对同一轴而言。应用角动量定理求解问题、应选定转动正方向,把矢量式变为标量式。 角动量守恒定律,当0, 0,d dt ===常量L M L 。对于绕定轴转动的刚体,如果对固定轴的合外力矩为零,则对于该固定轴的角动量保持不变。 应用此定律应注意:①守恒条件为对固定轴的合外力矩为零(而不是合外力为零)。刚体受合外力为零时,受合外力矩不一定为零。②角动量守恒时,对绕固定轴转动的刚体,J 不变,ω不变,此时刚体作匀角速转动。若系统对某轴的转动惯量发生变化,则其转动角速度也随之变化,但ωJ 不变。 8.转动动能 转动动能 22 1 ωJ E k = 注意ω、J 应对同一轴而言。单位,焦耳。

相关文档