文档库 最新最全的文档下载
当前位置:文档库 › 根霉与米曲霉原生质体一次基因改组后代酶活力和发酵产物特性研究【文献综述】

根霉与米曲霉原生质体一次基因改组后代酶活力和发酵产物特性研究【文献综述】

根霉与米曲霉原生质体一次基因改组后代酶活力和发酵产物特性研究【文献综述】
根霉与米曲霉原生质体一次基因改组后代酶活力和发酵产物特性研究【文献综述】

毕业论文文献综述

生物工程

根霉与米曲霉原生质体一次基因改组后代酶活力和发酵产物特性

研究

摘要:基因组改组是通过一种或多种传统诱变方法处理菌株, 从中得到若干性状微量提升的变异子( 即出发菌株) , 再对这些变异子进行多次的“递归式原生质体融合”即每次将具有性状提升的后代继续进行随机原生质体融合, 使其基因组充分重排。最后利用高通量筛选技术得到同时具有多种出发菌种有利性状, 且生产水平大幅度提升的变异菌株。这项技术实质上是利用了新的原生质体融合策略对出发菌株进行了基因组水平的改造, 从而达到定向进化的目的。原生质体广泛的应用于食品、制药、农业等领域,本文简略介绍了原生质体的制备、融合、再生及筛选的过程中的方法和影响因素,以及后代中关于发酵酒酿特性方面相关研究所需的方法简介。

关键词:基因改组、原生质体、融合、发酵酒酿

酒酿是中国的传统食品,其富含糖类、蛋白质等,是一种滋补性营养食品,经常食用酒酿不仅能促进摄取营养,而且还能促进血液循环,增进食欲,增强体质,其功效为活血行经,散结消肿,发痘疹,托疮毒,性善窜透。可用于月经不调,乳汁不畅,麻疹未透,肾虚腰痛,阳萎早泄,是深受大众喜爱的食品之一。近年来,随着生物技术的发展,传统食品的研究也在不断的深入中。利用新的技术去改良和鉴定旧的生产工艺,使之不断的完善和精确,以达到使产品的产量增加,使产品的口味、色泽、香气等多方面的提高,也能使产品中的有害物质尽可能的降低。除此之外,新的技术还能更精确的控制产品的生产过程,从而达到生产者的目的。微生物原生质体融合可以使后代继承两个亲本的特性,而经过培养后,不同代数的后代也会产生相应的区别,通过后代的变化规律可以更好进行产品生产工艺的调整。

米曲和根霉是发酵酒酿中主要的微生物。米曲霉(Aspergillus oryzae)是酿造业中的重要微生物,其生长过程中分泌的蛋白酶和谷氨酰胺酶等对酱油、豆瓣、米酒等的产率和风味起着非常重要的作用。然而在生产实践中,蛋白酶活性高的米曲霉菌株通常生长速度很慢;而生长速度快的米曲霉菌株蛋白酶活性很低[1]。根霉是霉菌中一种具有多酶系特征的霉菌,它能分泌淀粉酶、酸性蛋白酶、酒化酶及乳酸、琥珀酸等多种有机酸和乙醇等,可以在整个发酵过程中始终边糖化边发酵连锁进行。食品酿造工业中所用的主要原料,多数含有较多的淀粉,根霉能产生丰富的淀粉酶,使淀粉变为糖分,具有

很好的糖化性能,是酿酒工业上常用的糖化菌[2]。米曲霉和根霉基因改组融合可克服单米曲发酵的蛋白酶活性低生长快而蛋白酶活性高的生长快的缺陷,使酒酿等发酵产物风味独特,产率高,营养价值高。

1 原生质体融合技术

基因组改组是通过一种或多种传统诱变方法处理菌株, 从中得到若干性状微量提升的变异子( 即出发菌株) , 再对这些变异子进行多次的“递归式原生质体融合”即每次将具有性状提升的后代继续进行随机原生质体融合, 使其基因组充分重排。最后利用高通量筛选技术得到同时具有多种出发菌种有利性状, 且生产水平大幅度提升的变异菌株。这项技术实质上是利用了新的原生质体融合策略对出发菌株进行了基因组水平的改造, 从而达到定向进化的目的[3]。原生质体融合技术(Protoplast Fusion)是将遗传性状不同的两个细胞融合为一个新细胞,使两亲株的整套基因相互重新组合的一种技术,是现代生化技术的一个分支。原生质体融合技术起源于20世纪50年代,自Weibull利用溶菌酶首次得到巨大芽孢杆菌的原生质体后,Eddy等利用蜗牛酶获得酵母菌原生质体的报道也相继出现。随着原生质体融合技术不断的发展,相继出现了聚乙二醇(PEG)法、电诱导法、电磁融合法、激光融合法等新技术,在提高了融合率的同时,也渐渐形成了一套系统的实验体系,亦成为微生物遗传育种的新工具[4]。

在众多新技术中,灭活原生质体融合是原生质体融合技术的重大发展。根据“致死损伤互补”的机理,双亲灭活的原生质体如果发生融合,将能在再生培养基上生长形成融合新株。双亲灭活原生质体融合法不但可以省去亲株细胞的遗传标记,避免重组体失去亲本的优良性状,而且可以用不含例如抗生素等抑制细胞生长的遗传标记物的培养基作为融合子选择培养基,从而可提高筛选效率[5]。

1.1原生质体的制备

制备原生质体,是进行原生质体融合的前提和基础,不同菌种细胞壁组成各不相同,所以制备原生质体最佳条件也存在着很大差异。在制备菌种原生质体时,曾采用过机械法脱壁,但原生质体制备数量有限而且容易使原生质体受到损伤,不利于再生[6]。目前主要使用酶法脱壁,绝大多数使用溶菌酶和蜗牛酶作为工具酶[7]。不过由于不同菌株的原生质体制备条件差异较大,不同因素对相同菌株原生质体形成与再生的影响也各不相同,因此菌株原生质体制备能够获得较高的原生质体形成率和再生率,是保证融合育种效率的首要条件[8]。

1.2原生质体灭活处理

原生质体灭活处理将所制备的原生质体分两组( A、B) , 分别用热和紫外灭活, 然后

再将其融合[9]。

1.3 原生质体的融合

原生质体融合有两种情况:一种为自发融合,另一种为诱导融合。后一种通过人工诱导方法促使原生质体发生融合,其方法又可分为四种:(1)生物法是利用紫外线灭活的病毒膜片使细胞间产生凝聚和融合的方法,但考虑存在安全性及融合效率等因素,只适用于动物细胞融合;(2)化学法始于20世纪70年代,用化学融合剂促进原生质体融合,目前最常用的是聚乙二醇(PEG)法;(3)常使用的物理法是电融合法,利用直流或交流电场的作用,迫使两亲本原生质体融合。(4)混合法起源于物理融合法,包括细胞物理聚集电融合法、细胞化学聚集电融合法、特异性电融合法等。例如激光诱导融合法利用激光束对相邻两个细胞接触区的原生质膜进行穿孔, 使两个细胞的基因进行交换重组。它具有融合效率高、专一性强和对原生质体损伤小等优点,但存在方法和设备复杂等缺点[4]。

1.4 原生质体的再生

随着酶解时间的延长,菌体去壁程度愈发完全,当达到一定时间后,绝大多数的细胞已形成原生质体,再进行酶解会使原生质体的质膜受到损伤,造成原生质体的失活,使再生率下降,因此必须选择合适的酶解时间。尽管原生质体具有生物活性,但它不是正常的细胞,在普通培养基平板上不能正常的生长、繁殖,必须加入渗透压稳定剂。影响原生质体再生的因素主要有菌种本身的再生特性、原生质体的制备条件和再生条件等。原生质体的形成率与再生率是反映原生质体制备质量的两个重要指标,在进行融合前首先要对原生质体的形成率和再生率进行测定,一般的计算方法为:形成率=(未经酶处理的总菌数—经酶处理后的剩余菌数)/未经酶处理的总菌数×100%;再生率=(再生完全培养基平板上的总菌数—低渗处理后的剩余菌数)/(未经酶处理的总菌数—低渗处理后的剩余菌数)×100%[4]。

1.5 原生质体的筛选

原生质体融合过程中,可能发生亲株内或亲株间的原生质体融合,及产生所谓的同源或异源融合子,这些都可能在基本培养基平板上形成菌落。检出融合子的方法有多种,我们可根据实验目的和微生物不同加以选择,将介绍以下几种常用方法:(1)利用营养缺陷型标记筛选融合子,这是一种常见而有效的传统的选择标记方法,其检出设计的原则是将亲本菌株诱变处理后产生对某些营养物质合成途径受阻的突变株,在分离的培养基上只有融合子生长而不能让突变的双亲本原生质体形成菌落;(2)利用抗药性标记筛选融合子微生物的抗药性是菌种的重要特性,是由遗传物质决定的,不同种的微生物对

某一种药物的抗性存在差异,利用这种差异即可对融合子进行选择;(3)利用荧光染色法筛选融合子荧光染色法是事先使双亲染色而携带不同荧光色素(如DAPI,FTTC)标记,然后在显微操作器和荧光显微镜下,挑取同时带有双亲原生质体荧光标记的融合子,直接分离到再生培养基上再生,最后得到融合子[10]。(4)明胶琼脂平板测定预备试验过程中发现,相同的菌株在不同的明胶厚度,不同的培养时间中其透明圈与菌落直径的比值有明显差异,所以在初筛前探索了菌株在不同明胶厚度,不同培养时间中其透明圈与菌落直径的比值进行筛选[11]。(5)挑出融合菌株,接种到综合马铃薯培养基上。将融合菌落的孢子稀释后接种到酪素平板上,28℃培养72h,测定其透明圈直径与菌落直径的比值(Hc),以Hc 值比较蛋白酶活力的高低进行筛选[1]。

2 曲种的制备与酒酿的制作

2.1 制曲

曲种在酒酿发酵发挥着至关重要的作用,以此好的曲种是酿造出好酒酿的关键。麸皮是生产曲种的主要原料之一,一般来说,实验室制取曲种,是以麸皮∶水=1∶0.8[12]的比例混合后来培养菌种(部分菌种需加面粉),以制得所需的曲种。在制备曲种时,麸皮培养基的杀菌工作显就得十分重要。目前,使用较多的传统杀菌方法,是用高压蒸汽杀菌法,此方法的缺点是杀菌时间长、能耗高、劳动强度大、不能实现连续作业等[13]。

在制曲过程中,扣瓶也是重要的环节之一,待菌丝生长完全,麸皮连结成一曲饼,即可进行扣瓶。扣瓶若不及时,则会造成曲饼较硬不易粉碎,菌种也会生长不良。扣瓶时要轻扣轻放,以防曲饼破碎,如果一旦曲饼破碎,则菌种会因为呼吸不畅而导致生长繁殖不良,此时只能应丢弃此曲饼。麸曲制备过程中进行扣瓶主要是为了给菌种提供更多的空气,以利其生长繁殖,产生更多的孢子[12]。

2.2 曲种的测定

曲种的主要作用有3个方面:一是为酒母和发酵醪提供酶源,使饭粒中的淀粉、蛋白质和脂肪等溶出和分解;二是在曲菌繁殖和产酶的同时,产生葡萄糖、氨基酸和维生素等成分,这是酵母的营养来源,并生成有机酸、高级醇及酯类等成分;三是酒曲香及酒曲的其它成分(如丙三醇等)作为前体物质赋予酒酿以独特的风味。糖化酶活力和蛋白酶活力是曲种质量的重要指标,也是造成上述三方面的主要因素[12,14]。糖化酶活力的高低,是α-1,4葡萄糖苷酶。这类酶作用于淀粉分子末端,从淀粉非还原性末端顺次切开α-1,4糖苷键,生成葡萄糖。蛋白酶活力是指能催化分解蛋白质肽键的一群酶活力的总称,这些酶的共同特点:使蛋白质降解成为小分子的蛋白胨、小分子肽或氨基酸等物质[15]。

曲种中蛋白水解酶的活力比较低,但如果缺乏蛋白水解酶,则酒质明显降低。曲种中蛋白水解酶的存在为高级醇的生成提供了先决条件。糟醅中的芽孢杆菌,虽然在蒸馏时被杀灭,但其孢子仍存在于糟醅中,经堆积培养后,芽孢杆菌总数可达相当大的数量。所以曲种中蛋白水解酶的存在,使糟醅中游离氨基酸增加,为芽孢杆菌(己酸菌、丁酸菌)提供足量的氮源,而使其增殖、产酸,有利于酒质的提高。生产试验证明,曲种中的蛋白水解酶活力不同,对酒质产生较大的影响[15]。

2.3 酒酿的制作

酒酿的制作所涉及的因素很多,例如(一)米粒的浸泡不能过长,否则米粒太酥,制出的酒酿不但烂而且也容易发酸,要及时再次用清水淘洗干净,然后将水沥干。(二)蒸煮时,要用旺火,沸水进行蒸煮,使之在较短的时间内蒸熟。(三)要保证酒酿的卫生(四)发酵时要盖紧,防止透风,影响发酵效果。

制作:工艺糯米—浸泡—淘洗沥干—蒸煮—拌药—发酵—食用酒酿

3发酵后的测定

通过对发酵后产品中酒精度、糖度、酸度等的测定,可以得出融合后代的发酵酒酿特性和稳定性等遗传特性和变化规律。

4. 基因组改组技术

基因组改组技术能优化大多数工业产物的代谢途径和表型, 操作直接, 时间短, 非常适合于工业应用。由于重组得到的菌株和基因修饰的有机体是不同的, 可以直接用于食品工业[9] 。自然选育、诱变育种和杂交育种属于传统的诱变育种方法。尽管传统的诱变育种方法曾经发挥着巨大的作用,但具有周期长、操作繁冗的缺点, 且经连续多次诱变后, 易出现产量无法提升的“疲劳效应”。基因工程育种虽有目标明确、定向性好的优点, 但需要对目的菌株的遗传背景有着比较深刻的了解, 故相当耗时、费力。基因组改组技术则可有效地解决上述方法的缺点, 为微生物育种提供了新的手段。

4.1 基因组改组原理

基因组改组是通过一种或多种传统诱变方法处理菌株, 从中得到若干性状微量提升的变异子( 即出发菌株) , 再对这些变异子进行多次的“递归式原生质体融合”即每次将具有性状提升的后代继续进行随机原生质体融合, 使其基因组充分重排。最后利用高通量筛选技术得到同时具有多种出发菌种有利性状, 且生产水平大幅度提升的变异菌株。这项技术实质上是利用了新的原生质体融合策略对出发菌株进行了基因组水平的改造, 从而达到定向进化的目的。patnaik认为, 基因组改组技术实现菌种生长能力的大幅改善的原因, 可能是( l) 改变了代谢网络调控机制, 导致代谢流重新平衡, 提高了产率;

人类基因组计划研究的进展及其意义

人类基因组计划研究的进展及其意义 摘要:文章综述了人类基因组计划研究和进展的情况 关键词: 正文: 定义 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约4万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。命人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生科学的"登月计划"。 人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。 背景 20世纪是物理学和化学的世纪,21世纪是生物学的世纪。生命科学将取代物理学和化学成为带头学科,从而为其他学科的研究和发展提供新的思路和方法,生物工程产业将成为支柱产业。早在上世纪中叶,生物技术就被称作是21世纪的关键技术。许多科学家预言,生物技术将与信息技术、材料技术以及能源技术共同构成新的技术革命的基础,生物技术将重塑医学、农业以及生命科学研究本身,进而改造社会,改变人类的生活方式。一些重大的研究项目如人类基因组计划、体细胞克隆技术、转基因技术等的影响已超出了学科的范围,引起了公众的广泛关注。在生命科学领域随着分子生物学研究的不断深入,80年代末出现了一个新的研究领域———基因组学(Genomics)。基因组研究被称作是20世纪末21世纪初最重大的全球性的科研项目,其中以人类基因组计划(HGP)最为重要 人类基因组计划研究的目的,是获得人类染色体的物理图谱和基因图谱以及测定核苷酸的全序列 进展 人类基因组计划是由美国国立研究院和能源都1990年发起,后来有德、日、英、法、中等国科学家加入,有至少16个实验室及1100名生物学家、计算机专家和技术人员参与,预计耗资30亿美元,在15年内完成。人类基因组计划正式启动以来,受到人类各界的极大关心,经过全球科学家的努力,各阶段进展一再提前,已提前完成绘制出基因的遗传图谱和物理图谱的草图,现在已进入大规模的测序阶段。目前已完成了人类基因组约50%的测序,预期在2005年将能

米曲霉培养及蛋白酶分析

米曲霉培养及蛋白酶的分析 ?实验目的及要求:通过固态三角瓶培养米曲霉,掌握固态培养微生物原理和技术,并掌握蛋白酶活性的分析方法。 ?实验原理: 固态培养方法( solid state cultivation ):主要有散曲法和块曲法。部分黄酒用曲,红酒及酱油米曲霉培养属散曲法,而黄酒用曲及白酒用曲一般采用块曲法。 固态制曲设备:实验室主要采用三角瓶或茄子瓶培养;种子扩大培养可将蒸热的物料置于竹匾中,接种后在温度和湿度都有控制的培养室进行培养;工业上目前主要是厚层通风池制曲;转式圆盘式固态培养装置正在试验推广之中。 固态培养微生物,主要用于霉菌的培养,但细菌和酵母也可采用此法。其主要优点是节能,无废水污染。单位体积的生产效率教高。 米曲霉( Aspergillus oryzae )属于曲霉菌( Aspergillus )。菌落初为白色,黄色,既而变为黄褐色至淡绿褐色,反面无色。 ?实验过程: ?米曲霉菌种的纯化,制成斜面,将斜面菌种接入 250ml 三角瓶培养成种曲,再将种曲扩大培养( 500ml )三角瓶。培养物经过水溶液萃取,制得粗酶制剂,取粗酶制剂进行蛋白酶活性测定。 ?米曲霉培养:本实验分为斜面培养和三角瓶培养两个阶段。三角瓶培养物在工厂中作为一级种子。试管斜面培养基:豆饼浸出汁: 100 克豆饼,加水 500ml ,浸泡 4 小时,煮沸 3-4 小时,纱布自然过滤,取液,调整至 5 波美度。没 100ml 豆汁加入可溶性淀粉 2 克,磷酸二氢钾 0.1 克,硫酸镁 0.05 克,硫酸铵 0.05 克,琼脂 2 克,自然 pH 。 或采用马铃薯培养基:马铃薯 200 克,葡萄糖 20 克,琼脂 15-20 克,加水至 1000ml ,自然 pH 。 三角瓶培养基制备: 米曲霉的培养基: 1 :麸皮 40 克,面粉(或小麦) 10 克,水 40ml 。 2 :豆粕粉 40 克,麸皮 36 克,水 44ml 。 装料厚度: 1cm 左右; 灭菌:120 ℃,30min; 接种及米曲霉的培养条件:米曲霉固态培养主要控制条件:温度,湿度,装料量,基质水分含量。固态培养前,原料的蒸熟及灭菌是同时进行的,实验室一般是在高压灭菌锅中进行;但在工厂中则是原料的煮熟和灭菌与发酵分别在不同的设备中进行。这点与液态发酵是不同的。 28-30℃,培养20小时后,菌丝应布满培养基,第一次摇瓶,使培养基松散;每隔8小时检查一次,并摇瓶。培养时间一般为72小时。 3. 实验仪器、设备很材料 恒温培养箱或者固态培养室,负压式超净工作台,显微镜,水浴锅,分光光度计,试管,茄子瓶,平板和 500ml 三角瓶等。 4. 实验分析项目和方法 米曲霉蛋白酶活力的测定方法 ( 1 )称取充分研细的成曲 5g ,加入 100ml 蒸馏水,40 ℃水浴不间断搅拌20分钟,使其充分溶解。然后用干纱布过滤。吸取滤液1ml,用适当的缓冲液(0.02mol/LpH7.5磷酸缓冲液)稀释一定的倍数(如10、20、或者30倍)。 ( 2)绘制标准曲线 A、取试管7支,编号,按照下表加入试剂。单位:ml

人类基因组计划及其意义

人类基因组计划及其意义 摘要:人类基因组计划意义深远,对人类健康、中医药、当代科学研究方法、甚至是商 业等都有影响。 关键词:人类基因组计划意义 人类从古至今都想揭开生命的奥秘,都想了解人类自身,探究人的生老病死是怎么一回事。于是人人心中都有一个疑问:到底什么是生命?但是由于当时知识与技术的限制,人类的疑问得不到科学合理的解释。美国东部时间2000年6月26日,国际人类基因组计划(Human Genome Project ,HGP)的美、英、法、德、日、中6国协作组向世界联合宣布:人类生命蓝图人类基因组“工作框架图”已经完成。它的问世标志着人类在研究自身规律的过程中迈出了至关重要的一步,也预示着人类在探索生命奥秘的历史进程中翻开了新的篇章。 什么是人类基因组计划? 生物学的原理告诉我们,基因是染色体上的DNA双螺旋链的一段,它由四种碱基通过不同的排列组合而成,并在特定的条件下表达遗传信息和表现特定功能,是生物性状遗传的基本功能单位。基因组指合成具有生物功能的蛋白质多肽链或RNA所必须的全部DNA序列。1985年美国科学家诺贝尔奖获得者杜伯克首先提出了人类基因组计划,目的在于通过国际间的合作,识别人类DNA中所有的十万个以上的基因,测定人类DNA的30亿个碱基对顺序,以建立详细的人类基因组遗传图和物理图,解读人类基因组中所有的基因,最终解读人类生、老、病、死的遗传信息,使得人类第一次在分子水平上全面认识自我。 人类基因组计划的意义 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。 人类基因组计划带来的革命 1.基因治疗 人类基因组计划将为基因治疗技术的发展提供基础性的支持,对特异致病基因的研究,无疑会给基因治疗技术针对性地指明方向,加速这一技术的发展。基因治疗就是利用基因工程的手段,通过向人体导入功能基因,修补、改变相应的缺陷基因,以对相关疾病进行治疗和预防。对基因治疗的临床研究早在十年前就开始了,90年美国研究人员对一个4岁的小女孩施行了基因治疗,使她的病情大大好转。十年来,基因治疗技术在实验过程中取得了不少的成果,载体的改进和靶细胞的选择使基因治疗技术的效果也不断提高。 2.基因工程药物研究

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

SARS文献综述

抗SARS病毒药物研究及进展 摘要 2002年冬到2003年春有一种冠状病毒肆虐全球,这种严重急性呼吸综合征(Severe Acute Respiratory Syndrome,SARS,传染性非典型肺炎)的元凶就是SARS病毒。严重急性呼吸综合征(SARS)的爆发是对人类健康的严重威胁。在抗SARS冠状病毒(SARS-CoV)的小分子化合物和疫苗尚未面市之前,在已经注册上市的抗病毒药物中寻找对SARS-CoV有效的药物不失为一条捷径。近年来随着对SARS病毒的研究和在动物免疫中的实验,抗SARS病毒药物层出不穷,本文主要对SARS病毒和抗SARS病毒药物状况做一个综述。 关键词 SARS;抗病毒药物;冠状病毒;传染病; 前言 2002年底,中国广东等地出现了多例原因不明的、危机生命的呼吸系统疾病。随后,越南,加拿大和香港等地也先后报道了类似病例。世界卫生组织将此类疾病命名为“严重急性呼吸道综合症”(SARS)。随后世界各国的实验室都致力于发现这种疾病的病原体。曾经有人在对SARS的前期研究中,猜测其为细菌性病原体,最终香港大学于2003年3月22日宣布分离出一种未知的冠状病毒,到此为止才确定了其本质。研究与开发防治SARS的有效药物毫无疑问是对医药界提出的挑战。经过科研工作者的不懈努力,最终合成了若干种抗SARS病毒药物。在临床上此类药物的治疗效果突出,最后,人类宣布战胜SARS病毒。虽然目前此种冠状病毒已经被控制,但是对好多人来说仍然心有余悸。这需要对该病毒不断研究,彻底了解其感染机制,以便研究出更适合此类病毒的药物。相信在不久的将来,会有更多的研究人员会加入到此抗病毒药物研制的行列中,使冠状 病毒不在成为人类的威胁。 正文 冠状病毒粒子呈不规则 形状,直径约60-220nm。病毒 粒子外包着脂肪膜,膜表面有 三种糖蛋白:刺突糖蛋白(S,

人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测 序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

生物技术专业综述

生物技术专业综述 作为生物技术专业的一名学生,我认为我们应该知道以下内容,以方便我们更好的了解我们所学的内容,这将对我们以后的学习以及就业都有帮助。 我们所学的主要课程:微生物学、细胞生物学、生物化学、遗传学、学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等。 生物技术的定义:应用生命科学研究成果,以人们意志设计,对生物或生物的成分进行改造和利用的技术。现代生物技术综合分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、化学、物理学、信息学、计算机等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。 生物技术的发展:生物技术是全球发展最快的高技术之一。70年代发明了重组DNA技术和杂交瘤技术。80年代建立了细胞大规模培养转基因技术,现代生物技术(基因工程)制药开始于八十年代初,特别是发明了pcr技术,使现代生物技术的发展突飞猛进,90年代,随着人类基因组计划以及重要农作物和微生物基因组计划的是害死和信息技术的渗透,相继发展起了功能基因组学,生物信息学,组合化学,生物芯片技术以及一系列的自动化分析测试和药物筛选技术和装备。目前,各种新兴的生物技术已被广泛地应用于医疗,农业,生物加工,资源开发利用,环境保护,并对制药业等产业的发展产生了深刻的影响。近些年来,以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术发展迅猛,并日益影响和改变着人们的生产和生活方式。所谓生物技术(Biotechnology)是指“用活的生物体(或生物体的物质)来改进产品、改良植物和动物,或为特殊用途而培养微生物的技术”。生物工程则是生物技术的统称,是指运用生物化学、分子生物学、微生物学、遗传学等原理与生化工程相结合,来改造或重新创造设计细胞的遗传物质、培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品。简言之,就是将活的生物体、生命体系或生命过程产业化的过程。生物工程包括基因工程、细胞工程、酶工程、发酵工程、生物电子工程、生物反应器、灭菌技术以及新兴的蛋白质工程等,其中,基因工程是现代生物工程的核心。基因工程(或称遗传工程、基因重组技术)就是将不同生物的基因在体外剪切组合,并和载体(质粒、噬菌体、病毒)的DNA连接,然后转入微生物或细胞内,进行克隆,并使转入的基因在细胞或微生物内表达,产生所需要的蛋白质。 目前,有60%以上的生物技术成果集中应用于医药产业,用以开发特色新药或对传统医药进行改良,由此引起了医药产业的重大变革,生物制药也得以迅速发展。生物制药就是把生物工程技术应用到药物制造领域的过程,其中最为主要的是基因工程方法。即利用克隆技术和组织培养技术,

米曲霉的制备

毕 业 论 文 课题名称 米曲霉的制备 姓 名 学 号 所在系 制药与生物工程系 专业年级P09生物制药 指导教师 职 称 讲师 指导教师 职 称 二O 一二年六月八日

摘要 微生物在酱油生产制曲工艺和发酵过程中起着至关重要的作用,在高盐稀态发酵工艺过程中,培养良好的米曲霉菌种不仅可以提高酱油中总氮、氨基酸态氮含量和酱油风味,而且还可以提高原料利用率。因此米曲霉种曲培养是生产优质酱油的有效保证。本论文主要介绍米曲霉在不同阶段的扩大培养方法,包括试管菌种、锥形瓶菌种、种曲罐菌种、种曲等方面的培养方法及注意事项。米曲霉培养温度为28~32℃,培养时间为72h,米曲霉生长最旺盛作用,此时,曲料的曲酶孢子数大于8×109个/g,蛋白酶活力可达1000mg/100g以上。 关键词米曲霉;温度;时间;试管菌种;三角瓶菌种;扩大培养

目录 引言 (1) 1 菌种的种类 (1) 1.1 米曲霉 (1) 1.2 黑曲霉 (1) 2 菌种的选择条件 (1) 2.1 不产生黄曲霉毒素及其他真菌毒素 (1) 2.2 酶系全、酶活力高 (2) 2.3 对环境适应能力强,生长繁殖快 (2) 2.4 酿制的酱油风味好 (2) 3试管实验 (2) 3.1 灭菌 (2) 3.2 培养基的制备 (2) 3.3 培养基的鉴别 (2) 3.4 接种培养 (3) 3.5 菌种的留选 (3) 4 锥形瓶培养 (3) 4.1 原料配比 (3) 4.2 接种培养 (3) 5种曲制备 (3) 5.1 种曲原料要求 (3) 5.2 做料前检查事项 (4) 5.3 做料 (4) 5.4 蒸料 (4) 5.5 抽真空 (4) 5.6 降温 (4) 5.7 接种 (5) 5.8 自动培养 (5)

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

间充质干细胞在医学中的应用文献综述

间充质干细胞在医学中的应用文献综述 学院:生命科学学院 年级:2011 姓名:张胜男

前言:干细胞是具有增殖分化潜能的一种细胞,人体200多种细胞均起源于一个全能干细 胞---受精卵,出生后的机体生存也依赖于不同组织中的干细胞,进行自我更新和损伤修复.追溯到1895年人类第一次临床应用骨髓移植治疗肿瘤疾病,干细胞在临床上的应用已有100多年的历史,间充质干细胞是干细胞家族的重要成员.随着人类技术的发展,人类具备了从成体组织中提取间充质干细胞的能力,并可以在体外进行大量的细胞扩增培养,但是间充质干细胞临床试验研究所面临的基础理论、实验技术、行业法规,法律伦理等问题,使其在真正走向临床应用的道路还很艰难,这条路上还有多少障碍?还有多远?需要的不仅仅是生命科学领域研究人员的努力,也需要相关管理部门同行! 正文: 1间充质干细胞 间充质干细胞英文缩写MSC,存在于多种组织中。 1.1间充质干细胞的发现过程 间充质干细胞最早在骨髓中发现,随后还发现存在于人体发生、发育过程的许多种组织中。目前, 我们能够从骨髓、脂肪、滑膜、骨骼、肌肉、肺、肝、胰腺等组织以及羊水、脐带血中分离和制备间充质干细胞,使用得最多的是骨髓来源的间充质干细胞。 2006年,我国在胎盘和脐带组织中分离出间充质干细胞,这种胎盘和脐带来源的间充质干细胞有可能成为骨髓间充质干细胞的理想替代物,并具有更大的应用潜能。 鉴于间充质干细胞具有多向分化潜能、能支持造血和促进造血干细胞植入、调节免疫以及分离培养操作简便等特点,正日益受到人们的关注。随着间充质干细胞及其相关技术的日益成熟,临床研究已经在许多国家开展。作为种子细胞, 临床上主要用于治疗机体无法自然修复的组织细胞和器官损伤的多种难治性疾病;作为免疫调节细胞,治疗免疫排斥和自身免疫性疾病。 最初的临床研究是1995年由Lazarus等人进行的,他们收集缓解期血液肿瘤患者的自体MSC,在体外扩增培养4~7周,然后再静脉注射入患者体内,患者被分为3组,分别给予不同剂量的MSC,注射后没有观察到毒副作用,提示MSC 用于移植治疗安全可靠。随后自体MSC的临床报道逐渐增多,病种涉及放疗及化疗后造血重建、移植物抗宿主病(GVHD)、心脏系统疾病等,在这些报道中均证明临床经静脉输注安全可靠。 然而自体间充质干细胞的应用过程中逐渐暴露了不便之处:例如扩增能力个体差异很大;潜在的肿瘤细胞污染风险;培养需要一定的时间,不能及时适应病情的需要等。这些制约了自体间充质干细胞的使用。间充质干细胞给未来的再生医学带来了新希望, 对间充质干细胞更深入的研究和临床应用必将在不远的将来造福人类。其中,胎盘和脐带来源的间充质干细胞具有分化潜力大、增殖能力强、免疫原性低、取材方便、无道德伦理问题的限制、易于工业化制备等特征,有可能成为最具临床应用前景的多能干细胞。 1.2 间充质干细胞的生物学特性 间充质干细胞具有其独特的生物学特性

米曲霉的介绍

1.菌种特点: 米曲霉( 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。 米曲霉 米曲霉是一类产的,除产蛋白酶外,还可产淀粉酶、、、等。在淀粉酶的作用下,将原料中的直链、支链降解为糊精及各种低分子糖类,如、等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为、及各种,而且可以使辅料中、等难吸收的物质,提高营养价值、保健功效和消化率,广泛应用于、、生产曲酸、等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产不能表达的真核生物活性蛋白的。米曲霉所包含的信息可以用来寻找最适合米曲霉发酵的条件,这将有助于提高食品酿造业的生产效率和产品质量。米曲霉基因组的破译,也为研究由曲霉属真菌引起的曲霉病

人类基因组计划

人类基因组计划 一、什么是基因和基因组 1、基因:DNA分子上具有特定遗传效应的一段特定的核苷酸序列。遗传效应:有蛋白质产物或RNA产物或对其它基因起调节效应的功能。 2、基因组:是一个单倍体染色体组中所包含的全部遗传物质。有核基因组和线拉体基因组之分。 二、人类基因组结构 人类基因组结构庞大、复杂:基因组DNA总长度为3×109bp,3-4万个基因分布在24条染色体上,非编码区远远多于编码区,占90%以上,结构基因占3%,以单拷贝形式存在。 1、DNA序列中的组成结构可分为3种类型: (1)单一序列(非重复序列、单拷贝序列)占60-65%,绝大多数为蛋白质编码的结构基因 (2)中度重复序列:占20-30%,拷贝数为104-105 ,包括组蛋白基因、免疫球蛋白基因及RNA基因,绝大多数中度重复序列为不编码序列,成为间隔区,如人类Alu序列家族由300bp的短序列构成,重复达30万-50万拷贝,占基因组3-6%。 (3)高度重复序列:又称为卫星DNA 通常是小于10bp的短小序列组成基本单元,重复达105以上,占基因组的10%,不能转录,组成异染色质。 2、结构基因 (1)概念:为蛋白质编码的基因叫-。其DNA序列大多数是不连续的,编码序列之中往往还插入有非编码序列。 (2)结构: 内含子:非编码的序列叫—。 外显子:编码序列的片段叫—。 一个结构基因常常是由多个内含子和多个外显子相间排列组成的。图4-2,n个内含子嵌合排列在n+1外显子之间,故有内外之分。 (3)功能:内含子的长度比外显子的大好几倍,一起转录成RNA以后,必须经过剪接加工过程,将内含子部分切除,使外显子连接起来,才能形成成熟的mRNA,成为翻译蛋白质的模板。内含子,含而不显的片段对基因的表达有重要的调控作用。图4-3。 3、多基因家族和基因簇: (1)多基因家族:真核生物的基因组中有许多来源相同、结构相似、功能相关的基因,这样的一组基因称为基因家族 如血红蛋白基因家族。(指进化过程中由某一个祖先基因经过多次重复和变异所产生的一大类群序列相似、功能相似的基因群。) a、有的集中在一条染色体上共同发挥作用,合成某些蛋白质,如组蛋白基因家族中的5种组蛋白基因集中在7号染色体的长臂上的。 b、有的多基因家族成员是分散存在于几条染色体上,如人的rRNA基因家族成员分别位于13、14、15、 21、22,5条染色体的短臂的核仁组织区中。 每个区中包含几十个rRNA基因单位,大量转录18S rRNA、 28S rRNA、 5.8S rRNA。 假基因:是基因组中因突变而失活的基因,它和同一家族中的活跃基因在结构上和DNA序列上有相似性,但是没有蛋白质产物。(在多基因家族中,有少数成员不产生有功能的蛋白质,这样的基因叫—。假基因与正常基因从序列上看是同源的,但是在进化过程中发生突变丧失了功能活性。) (2)基因簇或超基因:同一基因家族中,一些结构和功能更为相似的基因彼此靠近成串地排列在一起,形成一个基因簇。如人类类α珠蛋白基因族、类β珠蛋白基因族。 在人类基因组中,有中等重复序列构成的大的基因群,包含有几百个功能相关的基因,紧密成簇状排列,称为超基因。如人类组织相容性抗原复合体HLA,及免疫球蛋白的重链和轻链基因。

基因工程论文撰写规范

论文撰写规范(暂行) 学位论文(设计说明书)是学生在教师的指导下经过调查研究、科学实验或工程设计,对所取得成果的科学表述,是学生毕业及学位资格认定的重要依据。其撰写在参照国家、各专业部门制订的有关标准及语法规范的同时,应遵照如下规范: 1.论文结构及写作要求 论文(设计说明书)应包括封面、目录、题目、中文摘要与关键词、英文题目、英文摘要与关键词、正文、参考文献、致谢和附录等部分。 1.1 目录 目录独立成页,包括论文中全部章、节的标题及页码。 1.2 题目 题目应该简短、明确、有概括性。论文题目一般中文字数不超过25个字,外文题目不超过15个实词,不使用标点符号,中外文题名应一致。标题中尽量不用英文缩写词,必须采用时,应使用本行业通用缩写词。 1.3 摘要与关键词 1.3.1 摘要 摘要是对论文(设计说明书)内容不加注释和评论的简短陈述,要求扼要说明研究工作的目的、主要材料和方法、研究结果、结论、科学意义或应用价值等,是一篇具有独立性和完整性的短文。摘要中不宜使用公式、图表以及非公知公用的符号和术语,不标注引用文献编号。中文摘要一般为300字左右。 1.3.2 关键词 关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准),一般列3~8个,按词条的外延层次从大到小排列,应在摘要中出现。中英文关键词应一一对应。 1.4 论文正文 论文正文包括前言、论文主体及结论等部分。 1.4.1 前言 前言应综合评述前人工作,说明论文工作的选题目的、背景和意义、国内外文献综述以及论文所要研究的主要内容。对所研究问题的认识,以及提出问题。 1.4.2 论文主体 论文主体是论文的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。 1.4.3 结论(结果与分析) 结论是对整个论文主要成果的归纳,应突出论文(设计)的创新点,以简练的文字对论文的主要工作进行评价。若不可能作出应有的结论,则进行必要的讨论。可以在结论或讨论中提出建议、研究设想及尚待解决的问题等等。结论作为单独一章排列,不加章号。 1.5 参考文献 参考文献反映论文的取材来源、材料的广博程度。论文中引用的文献应以近期发表的与论文工作直接有关的学术期刊类文献为主。应是作者亲自阅读或引用过的,不应转录他人文后的文献。 1.6 致谢 向给予指导、合作、支持及协助完成研究工作的单位、组织或个人致谢,内容应简洁明了、实事求是,避免俗套。

基因工程与生物药物

基因工程与生物药物 姓名:李华龙 班级:生物制药1301 学号:1302150003

摘要 自1972 年DNA重组技术诞生以来,生命科学进入了一个崭新的发展时期。以基因工程为核心的现代生物技术已应用到农业、医药、轻工、化工、环境等各个领域。它与微电子技术、新材料和新能源技术一起,并列为影响未来国计民生的四大科学技术支柱, 而利用基因工程技术开发新型生物药物更是当前最活跃和发展迅猛的领域[ 1]。从1982年美国Lilly 公司首先将重组人胰岛素投放市场,标志着世界第一个基因工程药物的诞生。基因工程制药作为一个新兴行业得到各国政府的大力支持, 各国都积极研究和开发各种基因工程药物,并取得了丰硕成果。本文通过对基因工程药物的开发、应用和研究方法等研究进展进行综述。Abstract Since 1972, DNA recombinant technology was born, life science has entered a new period of development.Gene engineering as the core of modern biotechnology has been applied to agriculture, medicine, light industry, chemical industry, environment and other fields . It and microelectronic technology, new materials and new energy technologies together, tied for the four future beneficial to the people's livelihood the big pillar of science and technology, and using genetic engineering technology to develop new biological drugs is the most active and rapidly developing field. From the United States in 1982 Lilly's first recombinant human insulin on the market, marking the birth of the world's first gene engineering medicine. Genetic engineering pharmaceutical as an emerging industry has received great support from governments the countries are actively research and development of various genetic engineering drugs, and achieved fruitful results. In this paper, through the development of gene engineering medicine, research and Application Research progress is reviewed in this paper. 关键词 基因工程、生物药物、研究进展、应用 Genetic engineering、biological medicine、research progress,、application

米曲霉

1.菌种特点: 米曲霉( Asp.oryzae) 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般4.5μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。米曲霉 米曲霉 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵

(整理)人类基因组计划.

人类基因组计划 HGP(Human Genome Projects) 1、HGP简介 ?人类基因组计划是由美国科学家于1985年率先提出、于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。 ?诺贝尔奖获得者Renato Dulbecco于1986年发表短文 《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。 ?文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome) ?基因组就是一个物种中所有基因的整体组成 ?人类基因组有两层意义: ——遗传信息 ——遗传物质 ?从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类染色体 HGP的诞生 ?1984年12月Utah州的Alta,White R受美国能源部的委托,主持召开了一个小型会议,讨论DNA重组技术的发展及测定人类整个基因组的DNA序列的意义。 ?1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划”的初步草案。?1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。?1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。 ?1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者J.Waston出任第一任主任。?1990年,历经5年辩论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。 HGP诞生过程中的质疑 ?计划的必要性问题 ?计划的现实性问题 ?科学研究领域的选择问题 ?为什么不选择基因组小的或有经济意义的生物 ?认为?°制图?±是在沙漠里建公路,?°测序?±是把?°垃圾?±分类,选择?°模式动物?±是拼凑?°诺亚方舟?±。

酸性蛋白酶提交

酸性蛋白酶的研究进展 姓名:石宏志班级学号:090432215 中文摘要:提起酶不了解的人都会觉得很神奇,为什么人类、动物、植物体内都会有酶,酶究竟是什么东西。此文就对酸性蛋白酶从菌种培养、工艺流程、在生产生活中的应用、产过程中的注意事项及最后酶的提纯做了简单的陈述。酸性蛋白酶,酶的一种,它的研究进展从这里我们就可以窥一斑而见全身了。 Abstract:Mentions enzyme don't understand people would think very magical, why do humans, animals, plants body will have enzymes, enzyme what exactly. The article from strains of acid protease training, processes and the application in production and life, and production process the matters needing attention and finally enzyme makes simple the purification of statement. Acid protease, one of the enzymes, the research progress of it from here we can peep one spot and see whole body. 中文关键字:酸性蛋白酶,扩培,发酵,盐析,结晶 Key words:Acid protease, enlarge cultivates, fermentation, salting-out, crystallization 前言 21世纪科技领头羊可以说是非生物工程莫数,从DNA双螺旋结构的推出,到多利克隆羊的出世;从原来对污染海洋的石油用燃烧方法,到现在的微生物处理;从原始的青草喂牲畜,到现在的蛋白饲料等等,这诸多变化之中无一脱离了生物催化剂——酶。高效、绿色环保、投入小收获大众多优秀辞藻被冠在酶身上。 蛋白酶做为一种重要的工业酶制剂,作为一种较早被人们了解的酶类现在正在人类的生活中发挥巨大的作用,特别是酸性蛋白酶以其作用的广泛性、高效率越来越多的受到了人们的关注。 酸性蛋白酶(acidic protease)是指在酸性(pH 2~5)环境下催化蛋白质肽键水解的一类酶的总称,广泛存在于动物、植物和微生物中。其在食品、酿造、饲料、毛皮与皮革、胶原纤维和医药等工业领域中的应用很广。近年来,酸性蛋白酶作为高效率酒精发酵的优选促进剂和新型饲料添加剂的应用得到人们的重视。下面就对酸性蛋白酶的生产做简单的介绍。 1.酸性蛋白酶的概述 酸性蛋白酶(acidic protease)在1954年首先由吉田在黑曲酶中发现。该酶广泛存在于霉菌、和担子菌中,细菌中极少发现,其最适pH3~4,相对分子质量30000~40000,等电点(pH3~5)。酸性蛋白酶主要是一种羧基蛋白酶,大多数在

相关文档