文档库 最新最全的文档下载
当前位置:文档库 › 古典概型之掷骰子问题

古典概型之掷骰子问题

古典概型之掷骰子问题
古典概型之掷骰子问题

古典概型之掷骰子问题

教师寄语:问题是数学的心脏,学数学要学会找问题.如"是什么?为什么?还有什

么?",它分别表示你"学懂了,领悟了,会用了"三个不同的层次.

学习目标:巩固事件的概念;古典概型的概念;古典概型的概率的求法。

学习重点:熟悉求古典概型概率的步骤。

学习难点:基本事件总数和事件A所包含的结果总数。

学习过程:

基础自测

1将一枚均匀的硬币先后抛掷两次,恰好出现一次正面的概率为。

2.有数学、物理、化学、历史、政治五本课本,从中任取一本,取到理科课本的概率

3用两元钱购买一注6+1体育彩票,中特等奖的概率是。

4在50瓶饮料中,有3瓶已过期了,从中任取一瓶,取得已过期的饮料的概率为。

请由以上题目请总结求古典概型的概率的步骤:

例1将一枚均匀的骰子先后抛掷2次,观察向上的点数,问:

(1)共有多少种不同的结果?

(2)点数的和有多少种不同的结果?

(3)点数之和为5的概率多大?7呢?

(4)点数之和为多少时概率最大?最大值是多少?

(5)课本115面的“探究”你弄清楚了吗?如何设计才公平呢?

(6)点数之和在[5,8]内的概率是多少?

(7)点数之和不小于10或能被4整除的概率是多少?

(8)点数之和不小于3的概率是多少?

(9)点数之和为奇数的概率是多少?

练习题:

1若将两次抛掷得到的点数分别记为m,n;求

(1)m=n的概率。

(2)m+n为偶数的概率。

2有质地均匀的两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的实验:用(x,y)表示结果,其中x表示第一颗正四面体的玩具出现的点数(看不见的点数),,其中y表示第二颗正四面体的玩具出现的点数(看不见的点数)。

(1)试写出实验的基本事件;

(2)求事件“出现点数之和大于4”的概率;

(3)求事件“出现点数相同”的概率;

3请总结本节课你学到了什么?

课后提高:

1设集合A={-2,-1,0,1,2},点(x,y)的坐标x∈A,y∈A但x≠y,计算:

(1)点(x,y)不在x轴上的概率;

(2)点(x,y)正好在第二象限的概率;

2有五张卡片分别标有1,2,3,4,5,从中任取一张读数记为x,放回后再取一张读数记为y。

(1)求x+y是5的概率。

(2)点(x,y)正在以原点为圆心,4为半径的圆内的概率

3如果抛掷骰子3次,问3次的点数都是偶数的概率,以及抛掷3次得到的点数之和等于9的概率分别是多少?

最新古典概型练习题

古典概型练习题 2.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为( ) A .31 B .21 C .32 D .4 3 3.“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是( ) A . 1 B . 2 C .4 3 D .54 个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取 ) 6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队则需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 ( ) A 7.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于9的概率为 A . 31 B .185 C .92 D .3611 8.将一根绳子对折,然后用剪刀在对折过的绳子上任意一处剪断,则得到的三条绳子的长度可以作为三角形的三边形的概率为( ) A .16 B .14 C .13 D .12 9.把一枚硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则()|P B A =( ) A .12 B .14 C .16 D .18 10.4张卡片上分别有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .1 3 B .12 C .23 D .34 11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( ) A .1 B .116 C .14 D .12 12.据人口普查统计,育龄妇女生男女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是( )

古典概型教案(绝对经典)

第5节 古典概型 【最新考纲】 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率. 【高考会这样考 】1.考查古典概型概率公式的应用;2.考查古典概型与事件关系及运算的综合 题;3.与统计知识相结合,考查解决综合问题的能力. 要 点 梳 理 1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1 n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n . 4.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数. [友情提示] 1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法. 2.概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =?,即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0. 基 础 自 测 1.思考辨析(在括号内打“√”或“×”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与

不发芽”.( ) (2)掷一枚硬币两次,出现“两个正面”、“一正一反”、“两个反面”,这三个事件是等可能事件.( ) (3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( ) (4)利用古典概型可求:“从长度为1的线段AB 上任取一点C ,求满足|AC |≤1 3的概率”是古典概型.( ) 答案 (1)× (2)× (3)√ (4)× 2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B.415 C.35 D.非以上答案 解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为P =615=25. 答案 A 3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.815 B.18 C.115 D.130 解析 ∵Ω={(M ,1),(M ,2),(M ,3),(M ,4),(M ,5),(I ,1),(I ,2),(I ,3),(I ,4),(I ,5),(N ,1),(N ,2),(N ,3),(N ,4),(N ,5)}, ∴事件总数有15种. ∵正确的开机密码只有1种,∴P =1 15. 答案 C 4.在装有相等数量的白球和黑球的口袋中放进一个白球,此时由这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大1 22,则口袋中原有小球的个数为( ) A.5 B.6 C.10 D.11 解析 设原来口袋中白球、黑球的个数分别为n 个,依题意n +12n +1-n 2n =122,解得n =5. 所以原来口袋中小球共有2n =10个. 答案 C

(完整word版)高中数学必修三 古典概型与几何概型

古典概型与几何概型 1.1基本事件的特点 ①任何两个基本事件都是互斥的; ②任何事件(除不可能事件)都可以表示成基本事件的和. 1.2古典概型 1.2.1古典概型的概念 我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型. 1.2.2古典概型的概率公式: 如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 n 1 ,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()n m A P = . 1.3几何概型 1.3.1几何概型的概率公式: 在几何概型中,事件A 的概率的计算公式如下: ()积) 的区域长度(面积或体实验的全部结果所构成积) 的区域长度(面积或体构成事件A = A P 1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A . 2 1 B . 10 3 C . 5 1 D . 5 2 2.甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A . 12 B .13 C . 14 D .16 3.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( ) A . 11 1 B . 33 2 C . 33 4 D . 33 5 4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子 朝上的面的点数分别为X ,Y ,则1log 2=Y X 的概率为( ) A . 6 1 B . 36 5 C . 121 D .2 1

古典概型和几何概型练习题

1 古典概型和几何概型 一选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是 A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的 2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是 A .0.42 B .0.28 C .0.3 D .0.7 3.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是 A .4030 B .4012 C .30 12 D .以上都不对 5.先后抛掷硬币三次,则至少一次正面朝上的概率是 A .81 B . 83 C . 85 D . 8 7 6.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ? D. A 不包含B 7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于 A.21 B. 32 C.53 D.5 2 8. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为 A.157 B.158 C.5 3 D.1 9. 从全体3位数的正整数中任取一数,则此数以2为底的对数也是正整数的概率为 A.2251 B.3001 C.450 1 D.以上全不对 10. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是. A.21 B.31 C.4 1 D.不确定 11. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是 A. 101 B.91 C.111 D.8 1 12. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是. A.251 1 B.2491 C.2501 D.2521

人教版高中数学必修三 习题:第三章3.3几何概型

第三章 3.3 几何概型 3.3.1 几何概型 3.3.2 均匀随机数的产生 A 级 基础巩固 一、选择题 1.下列关于几何概型的说法中,错误的是( ) A .几何概型是古典概型的一种,基本事件都具有等可能性 B .几何概型中事件发生的概率与它的位置或形状无关 C .几何概型在一次试验中可能出现的结果有无限多个 D .几何概型中每个结果的发生都具有等可能性 解析:几何概型和古典概型是两种不同的概率模型. 答案:A 2.有下列四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 解析:A 中奖概率为38,B 中奖概率为14,C 中奖概率为13,D 中奖概率为1 3. 答案:A 3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为( ) A .0.008 B .0.004 C .0.002 D .0.005 答案:D 4.在2016年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( ) A.110 B.19 C.111 D.9 10 解析:记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110 . 答案:A

5.在腰长为2的等腰直角三角形内任取一点,则该点到此三角形的直角顶点的距离小于1的概率为( ) A.π16 B.π8 C.π4 D. π2 解析:该点到此三角形的直角顶点的距离小于1,则此点落在以直角顶点为圆心、1为半径的14圆内.所以所求的概率为14 π12 ×2×2=π8 . 答案:B 二、填空题 6.在正方体ABCD -A 1B 1C 1D 1内随机抽取一点,则该点在三棱锥A 1-ABC 内的概率是________. 解析:P =VA 1-ABC VABCD -A 1B 1C 1D 1=1 6 . 答案:1 6 7.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为 9 10 ,那么该台每小时约有________分钟的广告. 解析:60×??? ?1-910=6(分钟). 答案:6 8.有一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1 m 的概率是________. 解析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点. 如上图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的1 3,于是事件A 发生的概率 P (A )=13 . 答案:1 3 三、解答题 9.一海豚在水池中自由游弋,水池为长30 m 、宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.

古典概型,几何概型深刻复习知识点和综合知识题

知识点一:变量间的相关系数 1.两变量之间的关系 (1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧ ∧ ∧ +=a x b y ?? ??????? -=--=---=∧∧====∧∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1 2 21 121 例题分析 例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系: x (百万元) 2 4 5 6 8 y (百万元) 30 40 6 50 70 (1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。 针对练习 1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+ 知识点二:概率 一、随机事件概率: 事件:随机事件:可能发生也可能不发生的事件。 确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

2015届高考数学一轮总复习 10-5古典概型与几何概型

2015届高考数学一轮总复习 10-5古典概型与几何概型 基础巩固强化 一、选择题 1.已知α、β、γ是不重合平面,a 、b 是不重合的直线,下列说法正确的是( ) A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件 B .“若a ∥b ,a ?α,则b ∥α”是必然事件 C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件 D .“若a ⊥α,a ∩b =P ,则b ⊥α”是不可能事件 [答案] D [解析] ???? ?a ∥b a ⊥α?b ⊥α,故A 错; ? ??? ?a ∥b a ?α?b ∥α或b ?α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题. 2.(文)4张卡片上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.1 2 C.2 3 D.3 4 [答案] C [解析] 取出两张卡片的基本事件构成集合Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}共6个基本事件. 其中数字之和为奇数包含(1,2),(1,4),(2,3),(3,4)共4个基本事件, ∴所求概率为P =46=23 . (理)(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( ) A.112 B.1 18 C.136 D.7108 [答案] A [解析] 连续抛掷三次共有63=216(种)情况,记三次点数分别为a 、b 、c ,则a +c =2b ,所以a +c 为偶数,则a 、c 的奇偶性相同,且a 、c 允许重复,一旦a 、c 确定,b 也唯一确定,故a ,c 共有2×32=18(种),所以所求概率为18216=1 12 ,故选A. 3.(文)(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

古典概型与几何概型

古典概型与几何概型 基础训练: 1.甲乙两人从{0,1,2,3,4,5}中各取一个数a,b,则“恰有a+b 3”的概率等于______________ 2.箱子中有形状、大小都相同的3只红球和2只白球,先摸出1只球,记下颜色后放回箱子,然后再摸出1只球,则摸到两只不同颜色的球的概率为_____ 3.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 4.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 5.已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的 概率为_________ 6.一只口袋装有形状大小都相同的6只球,其中有2只白球,2只红球,2只黄球,从中一次随机摸出2只球,则2只球都是红色的概率为_______,2只球同色的概率为________,恰有一只球是白球的概率为_________ 典型例题: 袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球,(I)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123, ,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率. 9.当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45?的概率是 . 检测与反馈: 1.已知集合{}21503x A x |x ,B x |x -??=-<<=>??-?? ,在集合A 任取一个元素x ,则事件“x A B ∈?”的概率是 ________ . 2.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未被击毁的概率为_______ 3.已知米粒等可能地落入如图所示的四边形内,如果通过 大量的实验发现米粒落入△BCD 内的频率稳定在 附近,那么点和点到直线的距离之比约为 . 4.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的 空白部分都是以正方形的顶点为圆心,半径为2a 的圆弧,某人向此 板投镖,假设每次都能击中木板,且击中木板上每个点的可能性 都一样,则他击中阴影部分的概率是__ ___. 5.分别在区间[1,6]和[2,4]内任取一实数,依次记为m 和n ,则m n >的概率为 ABCD 49A C BD D

古典概型解题技巧

古典概型解题技巧 摘要 概率论是数学学科中从数量的侧面来研究部分随机现象的规律性方面,其理论和方法渗透到了自然科学的各个领域,而古典概型是古典概率论的主要研究内容之一,也是概率论的研究中的一个经典的研究概型。古典概型的主要研究对象是等可能事件,深入研究古典概型有助于我们更好地理解概率论中一些基本的概念,掌握概率论中的基本规律,有助于我们提高分析问题和解决问题的能力。本文主要研究古典概型中的摸球问题,分球入盒问题,随机取数问题等几种模型,分析其解题思路,总结解题技巧以及思考其应用范围。 关键词:古典概型;分球入盒;摸球问题 Title Abstract Keywords:

1 古典概型简介 随机现象,是现实生活中非常常见,非常普遍的一种现象。事件的发生或者是其走向,都是由随机决定的。而这些随机性的事件都可以用概率模型来进行一定的分析,以求得相对准确的期望值。随机性虽然容易给人们生活带来一定的烦恼,但同时也是最公平的象征。在模拟计算,统计运筹中都有运用概率论的思想以及方法,所以,概率论有着明显的现实意义以及数学应用范畴。 在概率论的发展过程中,数学家们根据不同的问题,从各个不同的角度,给与了概率不同的定义和计算的方法。但是这些定义或者计算的方法往往针对的是非常具体类型的事件和情况,所以多数都有一定的缺点,常常只是经验公式。而经过长期的发展,概率论先后给出了古典概率,几何概率,统计概率,最后才给出了概率的数学定义。 在所有的随机事件中,有一类随机事件有两个明显的特点:第一,只有有限个可能的结果;第二,每个结果发生的可能性相同。这类随机事件是概率论初期的研究对象,我们也把这类事件叫做古典概型。 2 古典概型的计算 我们可以根据古典概型的等可能性和有限性的特点,得出模型下的概率。古典概型的概率计算过程可以分解为三个步骤:第一,确定所研究的对象为古典概型;第二,计算样本点数;第三,利用公式计算概率。 如果本次随机事件只有有限个可能的结果,并且每一个可能的结果出现的可能性相同,则可以确定该事件为古典概型问题。假设Ω是一个古典概型的样本空间,则对事件A:P(A)=A中的样本点数/Ω中的样本点数=m/n。在计算m 和n时,经常使用排列与组合计算公式。在确定一个实验的每个基本事件发生的可能性相同的时候,往往依据问题本身所具有的某种对称性,即利用人们长期积累的关于对称性的实际经验,认为某些基本事件发生的可能性没有理由偏大或者偏小。【1】曾宏伟古典概型的概率计算方法与应用 3.1 分球问题 分球问题一般为将n个球分别放到N个盒子中去,这需要考虑各种不同的情况,比如,这n个球是否可辨,每个盒子是否有储存球的上线。而根据这些情况的不同,解题的方法与技巧也有所不同,得到的结论更是相差巨大。所以计算时需要仔细理解该题目的各项条件。例题如下: 四个可分辨的球,随机的投入到三个不同的盒子中,试求三个盒子都不空的概率。【2】安永红古典概型问题的推广 这一类题目可以从2种不同的角度去思考: 第一种从多余球的角度,有四个不同的球,而有三个盒子,那么基本

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

概率论及数理统计 练习题及答案

练习 1.写出下列随机试验的样本空间 (1)把一枚硬币连续抛掷两次.观察正、反面出现的情况; (2)盒子中有5个白球,2个红球,从中随机取出2个,观察取出两球的颜色; (3)设10件同一种产品中有3件次品,每次从中任意抽取1件,取后不放回,一直到3件次品都被取出为止,记录可能抽取的次数;(4)在一批同型号的灯泡中,任意抽取1只,测试它的使用寿命. 解:(1)U={正正正反反正反反} (2)U={白白白红红白红红} (3)U={1,4,5,6,7,8,9,10} (4)U={t>0} 2.判断下列事件是不是随机事件 (1)一批产品有正品,有次品,从中任意抽出1件是正品; (2)明天降雨; (3)十字路口汽车的流量; (4)在北京地区,将水加热列100℃,变成蒸汽; (5y掷一枚均匀的骰子,出现1点. 解:(1)(2)(3)(5)都是随机事件,(4)不是随机事件。 3.设A,B为2个事件,试用文字表示下列各个事件的含义 (1)A+B;(2)AB;(3)A-B;(4)A-AB;(5)AB; (6)AB AB .

解:(1)A ,B 至少有一个发生;(2) A ,B 都发生;(3) A 发生而B 不发生;(4) A 发生而B 不发生;(5)A ,B 都不发生;(6)A ,B 中恰有一个发生(或只有一个发生)。 4.设A,B,C 为3个事件,试用A,B,C 分别表示下列各事件 (1)A ,B ,C 中至少有1个发生; (2)A ,B ,C 中只有1个发生; (3)A ,B ,C 中至多有1个发生; (4)A ,B ,C 中至少有2个发生; (5)A ,B ,C 中不多于2个发生; (6)A ,B ,C 中只有C 发生. 解: (1)A B C, (2)AB C A B C A B C, (3)AB C ABC A B C A B C, (4)ABC ABC ABC ABC AB BC AC, (5)ABC A B C, (6)A B C ++?+??+???++??+??+++++++??或或 练习 1.下表是某地区10年来新生婴儿性别统计情况: 出生年份 1990 1991 1992 1993 1094 1995 1996 1997 1998 1999 总计 男 3 011 2 531 3 031 2 989 2 848 2 939 3 066 2 955 2 967 2 97 4 29 311 女 2 989 2 352 2 944 2 837 2 784 2 854 2 909 2 832 2 878 2 888 28

高中数学几何概型

第6讲几何概型 一、选择题 1.在区间[-2,3]上随机选取一个数x,即x≤1,故所求的概率为() A.4 5 B. 3 5 C. 2 5 D. 1 5 解析在区间[-2,3]上随机选取一个数x,且x≤1,即-2≤x≤1,故所求的 概率为P=3 5. 答案 B 2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆 中随机扔一粒豆子,它落在阴影区域内的概率是1 3,则阴影部分的 面积是() A.π 3 B.π C.2π D.3π 解析设阴影部分的面积为S,且圆的面积S′=π·32=9π.由几何概型的概率, 得S S′= 1 3,则S=3π. 答案 D 3.(2015·山东卷)在区间[0,2]上随机地取一个数x,则事件“-1≤log1 2? ? ? ? ?x+ 1 2 ≤1”发生的概率为() A.3 4 B. 2 3 C. 1 3 D. 1 4 解析由-1≤log1 2? ? ? ? ? x+ 1 2≤1, 得1 2≤x+ 1 2≤2, 解得0≤x≤3 2,所以事件“-1≤log1 2 ? ? ? ? ? x+ 1 2≤1”发生的 概率为3 2 2= 3 4,故选A. 答案 A

4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ) A.π2 B.π4 C.π6 D.π8 解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积 = 12π×121×2=π 4. 答案 B 5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B.1-π12 C.π6 D.1-π6 解析 设“点P 到点O 的距离大于1”为事件A . 则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=2 3π.∴P (A )=23-23π2 3 =1-π12. 答案 B 6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4 时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角

高考数学答题模板:第8讲统计和古典概型的综合问题(含解析)

第8讲统计和古典概型的综合问题 例10某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计,得到如下频率分布表: (1)求分布表中s,t的值; (2)王老师为完成一项研究,按学习时间用分层抽样的方法从这40名学生中抽取20名进行研究,问应抽取多少名第一组的学生? (3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少? 审题破题根据频率、频数关系求s,t→ 根据分层抽样特征求第一组抽取的学生数→ 列举第一组中所有抽样的方法→利用古典概型求解 解(1)s=8 40 =0.2,t=1-0.1-s-0.3-0.25=0.15. (2)设应抽取x名第一组的学生,则x 4=20 40 ,得x=2.故应抽取2名第一组的学生. (3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为a1,a2,2名女生为b1,b2.按学习时间用分层抽样的方法抽取2名第一组的学生共有6种结果,列举如下:a1a2,a1b1,a1b2,a2b1,a2b2,b1b2.其中既有男生又有女生被抽中的有a1b1,a1b2,a2b1,a2b2这4种结果,所以既 有男生又有女生被抽中的概率为P=4 6=2 3.

构建答题模板 第一步:定模型:根据统计知识确定元素(总体、个体)以及要解决的概率模型. 第二步:列事件:将所有基本事件列举出来(可用树状图). 第三步:算概率:计算基本事件总数n ,事件A 包含的基本事件数m ,代入公式P (A )=m n . 第四步:规范答:要回到所求问题,规范作答. 对点训练10 某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下: (1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品. ①用产品编号列出所有可能的结果; ②设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率. 解 (1)计算10件产品的综合指标S ,如下表: 其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为6 10=0.6,从而可估 计该批产品的一等品率为0.6.

高考文科数学练习题古典概型与几何概型

时跟踪检测(五十九) 古典概型与几何概型 1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( ) A.25 B.35 C.13 D.23 解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率 为P =m n =610=35 .故选B. 2.(2019·合肥质检)某小组有男生8人,女生3人,从中随机抽取男生1人,女生2人,则男生甲和女生乙都被抽到的概率为( ) A.16 B.18 C.112 D.124 解析:选C 某小组有男生8人,分别记为M 甲,M 2,M 3,M 4,M 5,M 6,M 7,M 8,女生3人,分别记为W 乙,W 2,W 3.从中随机抽取男生1人,女生2人的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙,W 3),(M 甲,W 2,W 3),…,(M 8,W 乙,W 2),(M 8,W 乙,W 3),(M 8,W 2,W 3),共24个,男生甲和女生乙都被抽到的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙, W 3),共2个,所以男生甲和女生乙都被抽到的概率为224=112 .故选C. 3.(2019·广西五市联考)在{3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被5整除的概率是( ) A.12 B.13 C.14 D.16 解析:选C 在{3,5}和{2,4}两个集合中各取一个数组成的两位数有:32,34,52,54,23,25,43,45,共8个,其中能被5整除的两位数有:25,45,共2个,故所求概 率P =28=14 ,选C. 4.(2019·成都外国语学校月考)《九章算术》中有如下问题:今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A.3π10 B.3π20 C .1-3π10 D .1-3π20 解析:选D 直角三角形的斜边长为82+152=17, 设内切圆的半径为r ,则8-r +15-r =17,解得r =3. ∴内切圆的面积为πr 2=9π,

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( ) (A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A ) 365 (B )364 (C )363 (D )36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P 4.随机变量X 的概率密度为???<≥=-00 )(2x x ce x f x ,则=EX ( ) (A )21 (B )1 (C )2 (D )4 1 5.下列各函数中可以作为某随机变量的分布函数的是( ) (A )+∞<<∞-+=x x x F ,11)(2 1 (B )?????≤>+=0 001)(2 x x x x x F (C )+∞<<∞-=-x e x F x ,)(3 (D ) +∞<<∞-+=x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为( )

(A ))2(2y f X - (B ))2(y f X - (C ))2 (21y f X -- (D ))2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 61818121321,且X 与Y 相互独立,则=h ( ) (A )81 (B )8 3 (C )4 1 (D )3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( ) (A )3 (B )6 (C )10 (D )12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若 EY EX EXY ?=,则下列结论不正确的是( ) (A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)( 答案: 1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++

相关文档
相关文档 最新文档