文档库 最新最全的文档下载
当前位置:文档库 › 对音频采样,并进行频谱分析,画出时域和幅频特性曲线

对音频采样,并进行频谱分析,画出时域和幅频特性曲线

对音频采样,并进行频谱分析,画出时域和幅频特性曲线
对音频采样,并进行频谱分析,画出时域和幅频特性曲线

对音频采样,并进行频谱分析,画出信号的时域和幅频特性曲线。

程序如下:

Fs=8000; %语音信号采样频率为8000

x=wavread('D:\MATLAB7\work\yinyue.wav',[1000 8000]'); %读取音频信号从1000到8000点的值

sound(x); %播放原语音

t=(0: [8000-1000])/Fs; %计算从1000到8000点的时间

y=fft(x,5000); %对语音信号进行FFT运算

f=Fs*(0:2499)/5000;

figure(1);

subplot(2,1,1) %按两行一列画出图形

plot(x); %画出时域图形

title('音频信号的时域图'); %标题为原始信号的时域图

xlabel('时间'); %X轴标题为时间

ylabel('幅值'); %y轴标题为幅值

subplot(2,1,2);

plot(f,abs(y (1:2500))); %画出幅值图

title('音频信号的频谱图');

xlabel('频率');

ylabel('幅值');

结果如下

时域采样与频域采样 实验报告

实验二 时域采样与频域采样 学校:西南大学 班级:通信工程班 一、实验目的 时域采样理论与频域采样理论就是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理 时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上, 才 能使采样信号的频谱不产生频谱混叠。 频域采样定理的要点就是: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞=-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N

ASK--FSK--PSK频谱特性分析

分析ASK 、FSK 、PSK 调制信号的频谱特性 ASK(Amplitude-shift Keying):幅移键控 ASK 指的是振幅键控方式。在二进制数字调制中每个符号只能表示0和1(+1或-1)。但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点: 第一:在相同的信道码源调制中,每个符号可以携带log2M 比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。但由此付出的代价是增加信号功率和实现上的复杂性。 第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。 ASK 这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。 设S(t)频谱为S(ω),S2ASK(t)频谱为: 21 ()[()()] 2ASK c c S w s w w s w w =++- 2ASK 信号的频谱是将数字基带频谱中心搬移到载频处,带宽为基带带宽的两倍;又由 ()() n s n s t a g t nT =-∑ 可知,基带信号是由若干基本脉冲组成的, 因而基带信号的带宽完全由基本脉冲带宽决定。2ASK 信号的带宽取决于基带基本脉冲的带宽,是基本脉冲带宽的两倍。设矩形脉冲: 1,||/2()()() 20,s s t T T f t g t f t ≤?=?=-??其它 对其傅里叶变换得()f t 频谱为: sin(/2) ()/2S wT F w W =

时域抽样与频域抽样

实验三时域抽样与频域抽样 一、实验目的 1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。 2.加深对时域取样后信号频谱变化的认识。掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。 3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。 二、实验原理 1.时域抽样。 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。 2.频域抽样。 非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容 1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。 (1)当T=0.01s 时,采样得到x(n),所用程序为: %产生连续信号x (t ) t=0:0.001:1; x=sin(20*pi*t); subplot(4,1,1) plot(t,x,'r') hold on title('原信号及抽样信号') %信号最高频率fm 为10 Hz %按100 Hz 抽样得到序列 fs=100; n=0:1/fs:1; y=sin(20*pi*n); subplot(4,1,2) stem(n,y) 对应的图形为: ()sin(20),01a x t t t =π≤≤

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

实验报告:时域采样与频域采样

实验二:时域采样与频域采样1、时域采样理论的验证 (1)程序如下: Fs=1000;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:63; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,1);plot(w/pi,abs(X)); Fs=300;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:19.2; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,2);plot(w/pi,abs(X)); Fs=200; p=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:12.8; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,3);plot(w/pi,abs(X)) (2)运行结果如下: 2频域采样理论的验证(1)程序如下:

M=26;N=32;n=0:1:M; xa=0:M/2;xb=ceil(M/2)-1:-1:0; x=[xa,xb]; w=0:2*pi/1024:2*pi; X=freqz(x,1,w); subplot(321); plot(w/pi,abs(X)); subplot(322); n=0:26; stem(n,x); m=floor(length(X)/16) n1=1:16; X1=X(m*n1-63) subplot(323); n1=0:15 stem(n1,abs(X1)) x16=ifft(X1,16) subplot(324); stem(n1,x16) m=floor(length(X)/32) n2=1:32; X2=X(m*n2-31) subplot(325); n2=0:31 stem(n2,abs(X2)) x32=ifft(X2,32) subplot(326); stem(n2,x32); (2)运行结果如下:

数字信号处理实验二-时域采样和频域采样

实验二-时域采样和频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 1、时域采样定理的要点: a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓 b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 2、频域采样定理的要点: a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。 三、实验内容及步骤 1、时域采样理论的验证 程序: clear;clc A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=50/1000;F1=1000;F2=300;F3=200; T1=1/F1;T2=1/F2;T3=1/F3; n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); f1=fft(x1,length(n1)); f2=fft(x2,length(n2)); % f3=fft(x3,length(n3)); % k1=0:length(f1)-1; fk1=k1/Tp; %

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

(完整版)实验一采样率对信号频谱的影响

实验一 采样率对信号频谱的影响 1.实验目的 (1)理解采样定理; (2)掌握采样频率确定方法; (3)理解频谱的概念; (4)理解三种频率之间的关系。 2.实验原理 理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程 ∑∞ -∞=-= k s kT t t M )()(δ (7-13) )()()(?t M t x t x a a = (7-14) 式中T s 为采样间隔。因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。显然 )()()()()(?s k s a k s a a kT t kT x kT t t x t x -=-=∑∑∞-∞=∞-∞=δδ (7-15) 所以,)(?t x a 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(?s a kT x 。 对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真 地恢复原来的模拟信号。下面从频域出发,根据理想采样信号的频谱)(?Ωj X a 和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件 ∑∞-∞=Ω-Ω=Ωk s s a kj j X T j X )(1)(? (7-16) 上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍 h s Ω≥Ω2,或者h s f f 2≥,或者2 h s T T ≤ (7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。 在对正弦信号采样时,采样频率要大于这一最低的采样频率,或小于这一最大的采样间

实验二时域采样与频域采样

实验二:时域采样与频域采样 一 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用 二 实验原理 1 时域采样定理 对模拟信号()a x t 以T 进行时域等间隔采样,形成的采样信号的频谱?()a X j W 会以采样角频率2()s s T p W W =为周期进行周期延拓,公式为: 1??()[()]()a a a s n X j FT x t X j jn T +?=-? W==W -W ? 利用计算机计算上式并不容易,下面导出另外一个公式。 理想采样信号?()a x t 和模拟信号()a x t 之间的关系为: ?()()()a a n x t x t t nT d +? =-?=-? 对上式进行傅里叶变换,得到: ?()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt d d +??+??-W -W -??=-?-?W=-=-蝌邋 在上式的积分号内只有当t nT =时,才有非零值,因此: ?()()jn T a a n X j x nT e +?-W =-?W=? 上式中,在数值上()()a x nT x n =,再将T w =W 代入,得到: ?()()() jn j a a T T n X j x n e X e w w w w +?-=W =W =-?W==?

上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用T Ω代替即可。 2 频域采样定理 对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k N X k X e w p w == 0,1,2,,1k N =-L 则有: ()[()][()]()N N N i x n IDFT X k x n iN R n +?=-? ==+? 即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进行周期延拓后的 主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N 必须大于等于时域离散信号的长度M (即N M 3)。在满足频率域采样定理的条件下,()N x n 就是原序列()x n 。如果N M >,则()N x n 比原序列()x n 尾部多N M -个零点,反之,时域发生混叠,()N x n 与()x n 不等。 对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。在数字信号处理中,都必须服从这二个定理。 三 实验内容 1. 时域采样实验: %时域采样实验 A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=64/1000;F1=1000;F2=300;F3=200; %观察时间,Tp=64ms T1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率

时域采样与频域采样

实验二:时域采样与频域采样 一、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理与方法: 1、时域采样定理的要点: 1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱 )(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为 ∑∞ -∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞=?∑-=Ω])()([)(?δ

dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑ ? -)()( δ= 在上式的积分号只有当nT t =时,才有非零值,因此 ∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只 要将自变量ω用T Ω代替即可。 2、频域采样定理的要点: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞ =-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 零点;如果N

时域采样理论与频域采样定理验证

实验4时域采样理论与频域采样定理验证 一 一、实验目的 1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公 式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞ -∞ =-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞ =?∑ -=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑ ∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变 量ω用T Ω代替即可。 频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e j ω )在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞ =-∞ ==+∑ (b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

实验二:时域采样与频域采样

实验二:时域采样与频域采样 1. 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 2. 实验原理与方法 ? 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的 频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T ? 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信 号的频谱不产生频谱混叠。 3. 实验内容及步骤 %物联一班 胡洪 201313060110 %2015年10月24日

%实验二:程序1 Tp=64/1000; Fs=1000;T=1/Fs;M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,1); stem(n,xnt,'.');axis([1,65,-5,150]); title('图1 Fs=1000Hz'); subplot(3,2,2);plot(n/Tp,abs(Xk));title('图2 Fs=1000Hz幅度'); Fs=300;T=1/Fs; M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,3);

ASK--FSK--PSK频谱特性分析

分析ASK 、FSK 、PSK 调制信号的频谱特性 ASK(Amplitude-shift Keying):幅移键控 ASK 指的是振幅键控方式。在二进制数字调制中每个符号只能表示0和1(+1或-1)。但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点: 第一:在相同的信道码源调制中,每个符号可以携带log2M 比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。但由此付出的代价是增加信号功率和实现上的复杂性。 第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。 ASK 这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。 设S(t)频谱为S(ω),S2ASK(t)频谱为: 21 ()[()()] 2ASK c c S w s w w s w w =++- 2ASK 信号的频谱是将数字基带频谱中心搬移到载频处,带宽为基带带宽的两倍;又由 ()() n s n s t a g t nT =-∑ 可知,基带信号是由若干基本脉冲组成的, 因而基带信号的带宽完全由基本脉冲带宽决定。2ASK 信号的带宽取决于基带基本脉冲的带宽,是基本脉冲带宽的两倍。设矩形脉冲: 1,||/2()()() 20,s s t T T f t g t f t ≤?=?=-??其它 对其傅里叶变换得()f t 频谱为:

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

开课学期 2016-2017 学年第 2 学期 实验课程信号与系统仿真实验 实验项目常用信号的频谱分析及时域采样定理 班级学号学生姓名 实验时间实验台号A11 操作成绩报告成绩 一、实验目的 1.掌握常用信号的频域分析方法; 2.掌握时域采样定理; 3.掌握时域采样信号恢复为原来连续信号的方法及过程。 二、实验性质 验证性 三、预习内容 1.时域采样定理的内容及信号时域采样过程; 2.连续信号经时域采样后,信号的频谱发生的变化; 3.时域采样信号恢复为原来连续信号的方法及过程。 四、实验内容(编写程序,绘制实验结果) 1.实现周期信号的频谱 f(t)=sin( 2*80t) 程序: fa='sin(2.*pi.*80.*t)';%原信号 fs0=10000; %采样频率 tp=0.1;%时间范围 t=[-tp:1/fs0:tp];%信号持续时间范围 k1=0:999;k2=-999:-1; m1=length(k1);m2=length(k2); f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围 w=[-2*pi*k2/m2,2*pi*k1/m1]; fx1=eval(fa);%把文本fa赋值给信号fx1 FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换 figure subplot(2,1,1),plot(t,fx1,'r'); title('原信号');xlabel('时间t(s)');%原信号的时域波形图 axis([min(t),max(t),min(fx1),max(fx1)]); subplot(212),plot(f,abs(FX1),'r'); title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图 axis([-100,100,0,max(abs(FX1))+5]);

时域采样与频域采样

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc )后, 实验室统一刻盘留档。 实验四 时域采样与频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样前后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对采样点数选择的指导作用。 二、实验原理 在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。 三、实验内容(包括代码与产生的图形及结果分析) 1. 给定模拟信号如下: xa(t)=Ae -αt sin(Ω0t)u(t) 式中, A=444.128,α =50 π, Ω0=50 π rad/s ,将这些参数带入上式中,对x a (t 进行傅里叶变换,它的幅频特性曲线如图1所示。 现用DFT(FFT)求该模拟信号的幅频特性,以验证时 域采样理论。 按照xa(t)的幅频特性曲线,选取三种采样频率,即 Fs=1 kHz ,300 Hz ,200 Hz 。观测时间选Tp=64 ms 。 要求: 编写实验程序,计算x 1(n)、 x 2(n)和x 3(n)的幅度特性,并绘图显示。观察分析频谱混叠失真。 close all;clear all;clc; 22图1 x a (t)的幅频特性曲线

Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) % Fs=1000;T=1/Fs; Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,1); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn'); axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图 box on; title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]) %======================== % Fs=300Hz;T=1/Fs; Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,3); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn');

相关文档
相关文档 最新文档