文档库 最新最全的文档下载
当前位置:文档库 › ANSYS电热耦合分析

ANSYS电热耦合分析

ANSYS电热耦合分析
ANSYS电热耦合分析

一、Electric-Thermal Analysis

ANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。

1. ANSYS电-热耦合知识点

1.1、Element DOFs选项:UX, UY, UZ, and TEMP:

可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。

For SOLID5 or SOLID98, set KEYOPT(1) to 1;

For PLANE223, SOLID226, or SOLID227, set KEYOPT(1) to 110。

1.2、Material Properties设置:

对于Joule heating effects,需要设置材料参数:

电学参数:electric permittivity电阻率RSVX、RSVY、RSVZ

热学参数:thermal conductivity导热系数KXX, KYY, KZZ

若考虑瞬态热效应,需设置密度DENS、比热C或焓ENTH

1.3、Load载荷设置:

设置Applied Voltage or Current

设置对流、辐射、传热等边界条件

1.4、Solve求解

进行ANSYS三维电热分析,选择SOLID69单元,为专用于焦耳热分析的单元,只需设置电阻率RSVX、导热系数KXX,加载电压VOLT、对流系数CONV即可进行求解,不考虑加热元件本身的热变形;选择SOLID98,除以上参数外,还可以设置弹性模量EX、泊松比PRXY、热膨胀系数ALPX,即可分析加热元件本身的变形。

2. 实践操作:

以多晶硅polysilicon作为加热元件材料,选择SOLID69单元,设计简单的元件结构,设置材料参数RSVX、KXX,加载5V电压,空气对流系数为12.5W/(m2﹒℃),外界温度为20℃。

2.1、ANSYS命令流

2.2、部分分析结果视图

3D-Nodal Temperature 3D-Potential Distribution

3D-Nodal Temperature:稳定状态下加热元件的温度可以达到762859℃,实际应该无法达到,仿真中之所以出现可能与加载电压过大、与外界传热不足、电阻率大小选择不当等有关系。

热结构耦合

第21章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析。且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法。 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

ANSYS热应力分析 精选实例x

ANSYS热应力分析实例 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,则可以通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度间接法。首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。 直接法。使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应 力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法一间接法。因为这种方法叮以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法一使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 间接法进行热应力分析的步骤 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表 面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分

析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 重新进入前处理,将热单元转换为相应的结构单元,表7-1是热单元与结构

单元的对应表。可以使用菜单进行转换:

热力耦合分析单元简介

热力耦合分析单元简介! SOLID5-三维耦合场实体 具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界 用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体 具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。 LINK31-辐射线单元 用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。 允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆 用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆 用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK34-对流线单元 用于模拟节点间热对流的单轴单元。该单元每个节点只有一个温度自由度。热对流杆单元可用于二维(平面或轴对称)或三维、稳态或瞬态的热分析问题。 如果包含热对流单元的模型还需要进行结构分析,热对流单元可被一个等效(或空)的结构单元所代替。单元的对流换热系数可分为非线性,即对流换热系数是温度或时间的函数。

热应力分析

ABAQUS可以求解以下类型的传热问题: 1.非耦合传热分析:温度场不受应力应变场或电场的影响。应用ABAQUS/Standard可以求 解导热问题、强制对流、边界辐射和空腔辐射问题,其分析类型可以是瞬态或稳态的,也可以是线性或非线性的。 2.顺序耦合热应力分析:应力应变场受温度场的影响,但温度场不受应力应变场的影响。 此类问题用ABAQUS/Standard求解的步骤为:先求解温度场,然后以其作为已知条件,进行热应力分析,得到应力应变场。分析传热问题和热应力分析可以使用不一样的网格,abaqus会自动进行差值处理(此类问题称为热应力分析)。 3.完全耦合热应力分析:温度场和应力应变场之间有着强烈的相互作用。 4.绝热分析:在此类分析中,力学变形会产生热,而且整个过程中时间极短,不发生热扩 散。 5.热电耦合分析:用来求解电流产生的温度场。 7.1热应力分析中的主要问题 设定线胀系数、模型的初始温度场,并可以修改分析步中的温度场。 7.2带孔平板的热应力分析 学习: 在LOAD功能模块中,使用预定义场(predefined field)来定义温度场。 在此模块中可以直接指定温度场或读入分析结果文件中的温度场,可以指定并精确读入某个分析步中某个增量步的温度场 7.3法兰盘感应淬火的残余应力模拟 学习: 使用热应力来模拟残余应力;在LOAD功能模块中,为模型的各个区域定义不同的温度场 表面感应淬火:常用的热处理工艺,使用感应器对工件表面进行局部加热,然后迅速冷却,在工件内部产生残余压应力。它可以提高工件的弯曲疲劳抗力和扭转疲劳抗力,工件表面的

马氏体具有良好的耐磨性。 Abaqus可以完整的模拟淬火的全过程,即通过分析工件和感应器之间以及工件与冷却液之间的热场过程来确定工件的温度场,从而得到相应的塑性应变场和冷却后的残余应变场。 比较简单的模拟方法:先设定整个模型的初始温度场,在分析过程中令淬硬层区域的温度升高至某个温度值,其余区域的温度保持不变。经过几次试算,找到合适的淬硬层温度值,使得法兰盘内圆角处的表面压应力与实验结果吻合。施加工作载荷,保持上述温度场不变,就可以模拟在残余应力作用下的应力场。 优点:通用性强,可以模拟不同工艺所产生的残余应力场 缺点:精确度不高 改进方法:参淬硬层的不同区域设定不同的温度值

热力耦合分析单元简介

共享:热力耦合分析单元简介! 挑选了部分常用的,希望能方便大家的使用,其中自己翻译了一部分,不准确之处还望见谅,大家还可以继续补充哦!: SOLID5-三维耦合场实体    具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界    用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体    具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到 4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。LINK31-辐射线单元   用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。   允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆   用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。   如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆   用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。   如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

第20章 热-应力耦合分析实例

第20章热-应力耦合分析实例 由于温度的分布不均在部件内部会产生热应力,在结构分析中常会遇到需要考虑温度场对应力分布影响的情况。特别在进行各类燃机部件,如航空发动机的涡轮盘、叶片等的强度计算分析时通常要考虑热问题。还有一些输送管道由于内外温度不同也会产生热应力。另外材料的性能和其温度是相关的,不同的温度下其性能通常不同,这也会造成部件应力的变化。本章将通过实例来讲解如何用ANSYS6.1来进行这类问题的分析。 20.1 问题描述 一无限长的截面形状和尺寸如图20.1所示的厚壁双层圆管,其内外层温度分别为Ti 和To,材料数据和边条如表20.1所示,利用ANSYS程序来求解圆管沿径向的温度分布情况,并求解圆管内沿径向和周向的应力情况。 图20.1 双层管道的截面图 从上面描述的问题可以看出,本实例属于轴对称问题,我们可以采用轴对称方法来进行分析。同时本问题为典型的热-应力耦合问题,可以采用间接法顺序耦合分析的一般步骤进行分析。因为管道为无限长,故建模时轴向尺寸可以是任意大于零的值,且将其一边

轴向约束,一边所有节点轴向自由度耦合。下面我们将首先建立有限元模型,进行稳态热分析,并观察分析其沿径向的温度分布情况。然后将模型中的热单元类型转换称对应的结构分析单元类型,从新定义材料的力学性能参数,并将热分析的结果以体载荷的形式施加到模型中,定义合理的边界条件,进行结构静力求解。最后,观察并分析整个结构沿径向和周向的应力分布情况。 20.2 建立模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本算例的有限元模型,需要完成的工作有:指定分析标题,定义材料性能,定义单元类型,建立几何模型并划分有限元网格等。本节中定义的单元类型和材料属性都是针对热分析的。下面将详细讲解分析过程。 20.2.1指定分析标题并设置分析范畴 在这一步中我们将指定本实例的分析路径、数据库的名称、分析标题。另外为了得到适合热分析的菜单选项,需要将分析范畴指定为热分析。 1.选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图20.2所示。在输入新文件名(Enter new jobname)文本框中输入文字“CH20”,为本分析实例的数据库文件名。单击按钮,完成文件名的修改。 图20.2 修改文件名(Change Jobname)对话框 2.选取菜单路径Utility Menu >File >Change Title,将弹出修改标题(Change Title)对话框,如图20.3所示。在输入新标题(Enter new title)文本框中输入文字“Thermal Stress in Concentric Cylinders-Indirect Method”,为本分析实例的标题名。单击按钮,完成对标题名的指定。 图20.3 修改标题(Change Title)对话框 3.选取菜单路径Main Menu >Preference,将弹出菜单过滤参数选择(Preference of GUI Filtering)对话框,如图20.4所示。单击对话框中的Themal(热)选择按钮,选中Thermal选项,以便ANSYS6.1的主菜单设置为与热分析相对应的菜单选项。单击按钮,完成

相关文档