文档库 最新最全的文档下载
当前位置:文档库 › 云南省2011届高三数学一轮复习章节练习:坐标系与参数方程1

云南省2011届高三数学一轮复习章节练习:坐标系与参数方程1

云南省2011届高三数学一轮复习章节练习:坐标系与参数方程1
云南省2011届高三数学一轮复习章节练习:坐标系与参数方程1

高三数学章节训练题21 《坐标系与参数方程1》

时量:60分钟 满分:80分 班级: 姓名: 计分:

个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1.直线l 的参数方程为()x a t t y b t

=+??

=+?为参数,

l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( )

A .1t

B .12t C

1 D

1

2.参数方程为1()2x t t t y ?

=+?

??=?

为参数表示的曲线是( )

A .一条直线

B .两条直线

C .一条射线

D .两条射线

3

.直线112()2

x t t y t ?

=+??

?

?=-+??为参数和圆2216x y +=交于,A B 两点,则A B 的中点坐标为( )

A .(3,3)- B

.(3) C

.3)- D

.(3, 4

.圆5cos ρθθ=-的圆心坐标是( ) A .4(5,)3

π--

B .(5,

)3

π

- C .(5,

)3

π

D .5(5,

)3

π-

5

.与参数方程为)x t y ?=??

=??为参数等价的普通方程为( ) A .2

14y

+

=2

x B .2

1(01)4y

x +

=≤≤2

x

C .2

1(02)4

y

y +

=≤≤2

x D .2

1(01,02)4

y

x y +

=≤≤≤≤2

x

6.直线2()1x t t y t

=-+??

=-?为参数被圆2

2

(3)(1)25x y -++=所截得的弦长为( )

A

..140

4

C

.二、填空题(本大题共5小题,每小题5分,满分25分)

1.曲线的参数方程是211()1x t t y t ?

=-?

≠??=-?为参数,t 0,则它的普通方程为 。

2.直线3()14x at

t y t =+??=-+?

为参数过定点 。

3.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为 。 4.曲线的极坐标方程为1tan cos ρθθ

=?

,则曲线的直角坐标方程为 。

5.设()y tx t =为参数则圆2240x y y +-=的参数方程为 。 三、解答题(本大题共3小题,满分25分,第1小题7分,第2小题8分,第3小题

10分。解答须写出文字说明.证明过程或演算步骤) 1.参数方程cos (sin cos )()sin (sin cos )

x y θθθθθθθ=+??=+?为参数表示什么曲线?

2.点P 在椭圆2

2

116

9

x

y

+

=上,求点P 到直线3424x y -=的最大距离和最小距离。

3.已知直线l 经过点(1,1)P ,倾斜角6

π

α=

,(1)写出直线l 的参数方程;

(2)设l 与圆42

2

=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。

高三数学章节训练题21 《坐标系与参数方程1》参考答案

一、选择题

1.C

1=

2.D 2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线 3.

D 2

21(1)()162

2

t +

+-+

=,得2

880t t --=,12

128,

42

t t t t ++==

中点为114324

2

x x y y ?

=+??=???

???=???=-??4.A

圆心为5(,2

2

-

5.D 2

2

2

2

2

,

11,1,0,011,024

4

y

y

x t t x x t t y ==-=-+

=≥≤-≤≤≤而得

6.

C 222

112

x x t y t y ?=-+??=-+?????

=-??

=-???,把直线21x t y t =-+??=-?代入 2

2

(3)(1)25x y -++=得2

2

2

(5)(2)25,720t t t t -++-=-+=

12t t -==

12t -=

二、填空题

1.2

(2)(1)(1)

x x y x x -=≠- 111,,1x t t x -==-而2

1y t =-, 即2

2

1(2)1(

)(1)1(1)

x x y x x

x -=-=

≠--

2.(3,1)-

143

y x a

+=-,(1)4120y a x -++-=对于任何a 都成立,则3,1x y ==-且 3

. 椭圆为

2

2

164

x

y

+=

,设,2sin )P θθ,

24sin )x y θθθ?+=

+=+≤

4.2

x y = 2

2

2

2

1

sin tan ,cos sin ,cos sin ,cos cos θρθρθθρθρθθ

θ

=?

=

==即2

x y =

5.22

2

4141t x t t

y t ?=??+??=?+?

22

()40x tx tx +-=,当0x =时,0y =;当0x ≠时,241t x t =+;

而y tx =,即2241t y t =+,得22

2

4141t x t

t

y t ?=??+??=?+?

三、解答题

1.解:显然

tan y x

θ=,则

22

22

2

2

111,cos cos 1

y y x

x θθ

+=

=

+

22

2

2

11

2tan cos sin cos sin 2cos cos 2

2

1tan x θθθθθθθθ

=+=

+=

?++

即22222

2

2

2

2111,(1)12

111y y

y y x x x x y y y x

x

x

x

x

+=

?+=+

=

++

+

+

得2

1y

y

x x x

+

=

+,即2

2

0x y x y +--=

解发2:两式相加与两式平方相加可得.

2.解:设(4cos ,3sin )P θθ,则12cos 12sin 24

5

d θθ--=

即5

d =,

当cos()14

π

θ+=-

时,m ax 12(25d =+

; 当cos()14

π

θ+

=

时,m in 12(25

d =

-

3.解:(1)直线的参数方程为1cos 61sin

6x t y t ππ?=+????=+??

,即12

112x y t ?=+????=+??

(2

)把直线12

112

x y t ?=+????=+??代入422=+y x

得2

22

1

(1)(1)4,1)2022

t t t +

++

=+-=

122t t =-,则点P 到,A B 两点的距离之积为2

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编及答案解析

【高中数学】数学《坐标系与参数方程》复习知识要点 一、13 1.若点P 的直角坐标为() 1,3-,则它的极坐标可以是( ) A .52, 3 π?? ?? ? B .42, 3 π?? ?? ? C .72, 6 π?? ?? ? D .112, 6π?? ?? ? 【答案】A 【解析】 【分析】 设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】 设点P 的极坐标为()(),02ρθθπ≤<,则() 2 2132ρ=+-=,3 tan 31 θ-= =-. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3 π?? ??? ,故选:A. 【点睛】 本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题. 2.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2 x = C .2202x y x +==或 D .2y = 【答案】C 【解析】 由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C. 【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=?? =??+=? ,利用这个公式可以实现直角坐标 与极坐标的相互转化. 3.参数方程 (为参数)所表示的图象是

A.B.C.D. 【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。 【详解】 由题意知将代入,得, 解得,因为,所以.故选:D。 【点睛】 本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。消参时要注意参数本身的范围,从而得出相关变量的取值范围。 4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A.B. C.D. 【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析 式。 【详解】 由伸缩变换得,代入,有, 即.所以变换后的曲线方程为.故选:C。

选修坐标系与参数方程高考复习讲义

选修4-4坐标系与参数方程高考复习讲义 本部分是人教A 版教材选修模块内容,主要对极坐标的概念、点的极坐标及简单曲线的极坐标方程进行考查。对于参数方程,主要考查直线、圆与圆锥曲线参数方程的应用。参数方程是解析几何、平面向量、三角函数、圆锥曲线与方程等知识的综合应用和进一步深化,是研究曲线的工具,特别值得关注。最重要的是它是新课标全国卷三个选考模块中难度系数最高的,明显比另两个模块简单。 第一节坐标系 基本知识点: 1.平面直角坐标系中的坐标伸缩变换 设点P(x ,y)是平面直角坐标系中的任意一点,在变换φ: ??? x′=λ·x, λ>0, y′=μ·y, μ>0 的作用下,点P(x ,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点, 自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位, 一个角度单位(通常取弧度)及其正方向(通常取逆时针方向), 这样就建立了一个极坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴 Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M(ρ,θ)不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化 设M 是坐标系平面内任意一点,它的直角坐标是(x ,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表: 点M 直角坐标(x ,y) 极坐标(ρ,θ) 互化公式 ?? ? x =ρcos θy =ρsin θ ? ?? ρ2=x 2+y 2 tan θ=y x x≠0

高中数学选修4-4极坐标与参数方程练习题

极坐标与参数方程单元练习1 一、选择题(每小题5分,共25分) 1、已知点M 的极坐标为?? ? ??35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。 A. B. C. D. ?? ? ? ? -355π, 2、直线:3x-4y-9=0与圆:? ??==θθ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3、在参数方程? ??+=+=θθ sin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、 t 2,则线段BC 的中点M 对应的参数值是( ) 4、曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2 +2y 2 =6x ,则x 2 +y 2 的最大值为( ) A 、 27 B 、4 C 、2 9 D 、5 二、填空题(每小题5分,共30分) 1、点()22-, 的极坐标为 。 2、若A ,B ?? ? ? ? -64π, ,则|AB|=___________,___________。(其中O 是极点) 3、极点到直线()cos sin 3ρθθ+=________ _____。 4、极坐标方程2sin 2cos 0ρθθ-?=表示的曲线是_______ _____。 5、圆锥曲线()为参数θθ θ ?? ?==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是 3 π ,且与直线032=--y x 交于M ,则0MM 的长为 。 三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C ,半径为3的圆的极坐标方程。 2、已知直线l 经过点P(1,1),倾斜角6 π α=, (1)写出直线l 的参数方程。 (2)设l 与圆42 2=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。 3、求椭圆14 92 2=+y x )之间距离的最小值,与定点(上一点01P 。 极坐标与参数方程单元练习1参考答案 【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B 二、填空题:1、??? ? ?-422π, 或写成?? ? ? ? 4722π,。 2、5,6。 3、。 4、()2 2sin 2cos 02y x ρθρθ-==,即,它表示抛物线。 5、13 13 9±=y 。6、3610+。 三、解答题 1、1、如下图,设圆上任一点为P ( ),则((((2366 OP POA OA π ρθ=∠=- =?=,, ((((cos Rt OAP OP OA POA ?=?∠中, 6cos 6πρθ? ?∴=- ???而点O )32,0(π A )6 ,0(π符合 2、解:(1)直线的参数方程是是参数)t t y t x (;211,23 1??? ????+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为 ),211,231(11t t A ++ )2 1 1,231(22t t B ++ 以直线L 的参数方程代入圆的方程42 2 =+y x 整理得到02)13(2=-++t t ① 因为t 1和t 2是方程①的解,从而t 1t 2=-2。所以|PA|·|PB|= |t 1t 2|=|-2|=2。 3、(先设出点P 的坐标,建立有关距离的函数关系)

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

《坐标系与参数方程》练习题(含详解)

数学选修4-4 坐标系与参数方程 [基础训练A 组] 一、选择题 1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 23 B .2 3- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ=??=+? 为参数上的点是( ) A .1(,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .2 01y y +==2 x 或 B .1x = C .2 01y +==2 x 或x D .1y = 5.点M 的直角坐标是(1-,则点M 的极坐标为( ) A .(2, )3π B .(2,)3π- C .2(2,)3π D .(2,2),()3 k k Z π π+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 二、填空题 1.直线34()45x t t y t =+?? =-?为参数的斜率为______________________。 2.参数方程()2() t t t t x e e t y e e --?=+??=-??为参数的普通方程为__________________。 3.已知直线113:()24x t l t y t =+?? =-?为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,

极坐标与参数方程 经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ=-+??=? 的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ?=+? ??=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与? ??==θθ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7 .与参数方程为)x t y ?=?? =??为参数等价的普通方程为( ). A .22 14 y x + = B .22 1(01)4y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .22 1(01,02)4 y x x y +=≤≤≤≤

(完整版)极坐标与参数方程专题复习

坐标系与参数方程 一、考试大纲解析: 1.坐标系 (1)理解坐标系的作用; (2)了解平面坐标系伸缩变换作用下图形的变化情况; (3)能在坐标系中用极坐标表示点的位置,理解在极坐标和平面之间坐标系表示点的位置的区别,能进行极坐标和直角坐标的互化; (4)能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标和直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义; 2.参数方程 (1)了解参数方程和参数方程的意义; (2)能选择适当的参数写出直线、圆、圆锥曲线的参数方程; (3)能用参数方程解决一些数学问题和实际的运用; 二、题型分布: 极坐标和参数方程是新课标考纲里的选考内容之一,在每年的高考试卷中,极坐标和参数方程都是放在选作题的一题中来考查。由于极坐标是新添的内容,考纲要求比较简单,所以在考试中一般不会有很难的题目。 三、知识点回顾 坐标系 1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简 称伸缩变换。 2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。 如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

坐标系与参数方程(题型归纳)

坐标系与参数方程 (一)极坐标系: 1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做 极轴,再选一个长度单位和角度的正方向(通常取逆时针方向).对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标.这样建立的坐标系叫做极坐标系. 2、极坐标与直角坐标互化公式: ★极坐标与直角坐标的互化公式:? ??==θρθ ρsin cos y x , ?? ? ? ?≠=+=0,tan 2 22x x y y x θρ。 ★极坐标与直角坐标的互化的前提: ①极点与直角坐标的原点重合;②极轴与x 轴的正方向重合;③两种坐标系中取相同的长度单位。 例如:极坐标方程cos sin 11x y ρθρθ+=?+=(在转化成,x y 时要设法构造cos ,sin ρθρθ , 然后进行整体代换即可) 3、求极坐标方程的两种方法: ★处理极坐标系中问题大致有两种思路: (1)公式互化法:把极坐标方程与直角坐标方程进行互化; (2)几何法:利用几何关系(工具如:三角函数的概念、正弦定理、余弦定理)建立ρ与θ的方程. (二)参数方程: 1、参数方程的定义: 如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =???=??,那么()() x f t y g t =???=?? 就称为该曲线的参数方程,其中t 称为参数。 2、常见的消参技巧: (1)代入法:()3 ()2333723x t t y x y x y t =+??=+-?=-? =+? 为参数 (2)整体消元法:2211 x t t y t t ? =+??? ?=+?? ()t 为参数,由222112t t t t ?? +=++ ???可得:22x y =+ (3)三角函数法:利用22 sin cos 1θθ+=消去参数 例如:22cos 3cos 3 ()12sin 94sin 2 x x x y y y θθθθθ? =?=????+=? ?=??= ??为参数

极坐标与参数方程含答案(经典39题)(整理版)

高考极坐标参数方程(经典39题) 1.在极坐标系中,以点(2,)2 C π 为圆心,半径为3的圆C 与直线:() 3 l R π θρ= ∈交于,A B 两点. (1)求圆C 及直线l 的普通方程. (2)求弦长AB . 2.在极坐标系中,曲线2 :sin 2cos L ρθθ=,过点A (5,α) (α为锐角且3tan 4α= )作平行于()4 R π θρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直 角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2 , 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以 极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是)(24222 2 是参数t t y t x ??? ??? ?+== ,圆C 的极坐标方程为 )4 cos(2π θρ+=. (1)求圆心C 的直角坐标; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.

5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3?? ?=+=.在极坐标 系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为 (2, ) 3π ,半径r=1,P 在圆C 上运 动。 (I )求圆C 的极坐标方程; (II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。 7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为 ) 4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(= θ+πρ. (1)求圆C 的极坐标方程; (2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线? ? ?==ααsin cos 4y x (α为参数)上的每一点纵坐标不变, 横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.

选修4-4坐标系与参数方程练习题及解析答案

高中数学选修4-4经典综合试题(含详细答案) 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.曲线与坐标轴的交点是(). A. B. C. D. 2.把方程化为以参数的参数方程是(). A. B. C. D. 3.若直线的参数方程为,则直线的斜率为().A. B. C. D. 4.点在圆的(). A.内部B.外部C.圆上D.与θ的值有关 5.参数方程为表示的曲线是(). A.一条直线B.两条直线C.一条射线D.两条射线 6.两圆与的位置关系是(). A.内切 B.外切 C.相离 D.内含 7.与参数方程为等价的普通方程为(). A. B.

C. D. 8.曲线的长度是(). A. B. C. D. 9.点是椭圆上的一个动点,则的最大值为().A. B. C. D. 10.直线和圆交于两点, 则的中点坐标为(). A. B. C. D. 11.若点在以点为焦点的抛物线上,则等于().A. B. C. D. 12.直线被圆所截得的弦长为(). A. B. C. D. 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.参数方程的普通方程为__________________. 14.直线上与点的距离等于的点的坐标是_______.15.直线与圆相切,则_______________. 16.设,则圆的参数方程为____________________.

三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 求直线和直线的交点的坐标,及点与的距离. 18.(本小题满分12分) 过点作倾斜角为的直线与曲线交于点, 求的值及相应的的值. 19.(本小题满分12分) 已知中,(为变数), 求面积的最大值. 20.(本小题满分12分)已知直线经过点,倾斜角, (1)写出直线的参数方程. (2)设与圆相交与两点,求点到两点的距离之积.21.(本小题满分12分) 分别在下列两种情况下,把参数方程化为普通方程: (1)为参数,为常数;(2)为参数,为常数. 22.(本小题满分12分) 已知直线过定点与圆:相交于、两点.求:(1)若,求直线的方程; (2)若点为弦的中点,求弦的方程. 答案与解析:

高中数学选修4-4坐标系与参数方程完整教案

第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 四、数学运用 例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 222t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C 、 ???-=-=121t y t x (t 为参数) D 、???+==1 sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( ) A .0 B .1 C .-2 D .8 3.已知??? ? ?-3,5πM ,下列所给出的不能表示点的坐标的是( ) A 、??? ?? -3,5π B 、??? ?? 34,5π C 、??? ?? -32,5π D 、?? ? ?? --35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线 对称的是( ) A .(-ρ,θ) B .(-ρ,-θ) C .(ρ,2π-θ) D .(ρ,2π+θ) 5.点()3,1-P ,则它的极坐标是 ( ) A 、??? ?? 3,2π B 、??? ?? 34,2π C 、??? ?? -3,2π D 、?? ? ?? -34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θθ =+??=? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). A.1 B.2 C.3 D.4 7.参数方程为1()2 x t t t y ?=+???=?为参数表示的曲线是( ) A .一条直线 B .两条直线 C .一条射线 D .两条射线 8.()124123x t t x ky k y t =-?+==?=+?若直线为参数与直线垂直,则常数( )

选修4-4坐标系与参数方程-高考题-分类汇总-(题目和答案)

坐标系与参数方程 1、(2011天津)下列在曲线sin 2(cos sin x y θ θθθ =??=+?为参数) 上的点是( ) A 、1 (,2)2- B 、31(,)42 C 、(2,3) D 、 (1,3) 2、(2011·安徽理,5)在极坐标系中点?? ? ??3,2π到圆ρ=2cos θ的圆心的距离为( ) A .2 B. 4+π 2 9 C. 1+π2 9 D. 3 3、(2011·北京理,3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2) B .(1,-π 2 ) C .(1,0) D .(1,π) 4、(2010·湖南卷)极坐标方程ρ=cos θ和参数方程? ?? ?? x =-1-t y =2+3t (t 为参数)所表示的图形分别是( ) A .圆、直线 B .直线、圆 C . 圆、圆 D .直线、直线 5、(2010·北京卷)极坐标方程为(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线 C .一个圆和一条射线 D .一条直线和一条射线 6.N3[2012·安徽卷] 在极坐标系中,圆ρ=4sin θ的圆心到直线θ= π 6 (ρ∈R )的距离是________. 7.N3[2012·北京卷] 直线??? ?? x =2+t , y =-1-t (t 为参数)与曲线 ???? ? x =3cos α,y =3sin α (α为参数)的交点个数为________. 8.N3[2012·广东卷] (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为?? ? x =t ,y =t (t 为参数)和 ?? ? x =2cos θ,y =2sin θ (θ为参数),则曲线C 1与C 2的交点坐标为________. 9.N3[2012·湖南卷] 在直角坐标系xOy 中,已知曲线C 1:????? x =t +1,y =1-2t (t 为参数)与曲线C 2:? ?? ?? x =a sin θ, y =3cos θ(θ为参数,a >0)有一个公共点 在x 轴上,则a =________. 10.N3[2012·湖北卷]在直角坐标系xOy 中,以原点O 为极点,x 轴的 正半轴为极轴建立坐标系.已知射线θ=π 4与曲线? ???? x =t +1,y =t -12 (t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________. 11、(2012·高考广东卷)(坐标系与参数方程选做题)在平面直角坐标系 xOy 中,曲线C 1和C 2的参数方程分别为???x =5cos θ y =5sin θ ? ????θ为参数,0≤θ≤π2和 ? ????x =1-2 2t y =-2 2 t (t 为参数),则曲线C 1与C 2的交点坐标为__________. 12.【广东省珠海市2012年9月高三摸底考试】在极坐标系中,圆 2cos ρθ=的圆心到直线cos 2ρθ=的距离是_____________. 13、(2011·陕西理,15)直角坐标系xOy 中,以原点为极点,x 轴的正 半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1: ? ???? x =3+cos θy =4+sin θ(θ 为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________. 14、 N3 [2012·陕西卷]直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________. 15、(2012·高考湖南卷)在极坐标系中,曲线C 1:ρ(2·cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =__________. 17.(2011·天津理,11)已知抛物线C 的参数方程为? ?? ?? x =8t 2 , y =8t ,(t 为 参数),若斜率为1的直线经过抛物线C 的焦点,且与圆(x -4)2 +y 2 = r 2(r >0)相切,则r =________. 18.(2011·广东理)已知两曲线参数方程分别为?? ? x =5cos θ y =sin θ (0≤θ<π)和????? x =54 t 2 y =t (t ∈R ),它们的交点坐标为________. 19、【福建省华安、连城、永安、漳平一中、龙海二中、泉港一中六校 2013届高三上学期第一次联考】 已知在直角坐标系xOy 中,直线l 的参数方程为33x t y t =-???=??, (t 为参数), 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点, 以x 轴正半轴为极轴)中,曲线C 的极坐标方程为2 4s 30co ρρθ-+=. ①求直线l 普通方程和曲线C 的直角坐标方程; ②设点P 是曲线C 上的一个动点,求它到直线l 的距离的取值范围. 20、(2012·高考课标全国卷) 已知曲线C 1的参数方程是? ????x =2cos φ, y =3sin φ,(φ为参数),以坐标原点为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2, 正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为(2,π 3 ). (Ⅰ) 求点A 、B 、C 、D 的直角坐标; (Ⅱ) 设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2 的取值范围.

坐标系与参数方程专题复习

坐标系与参数方程专题复习 学号: 班级: 姓名: 1(Ⅰ)求经过,,O A B 的圆1C 的极坐标方程; (Ⅱ)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆2C 的参数方程为 1cos 1sin x a y a θ θ=-+?? =-+? (θ为参数),若圆1C 与圆2C 外切,求实数a 的值. 2、在直角坐标系xoy 中,曲线C 的参数方程为32cos , 2sin x y θθ =+?? =?(θ为参数), (Ⅰ)以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程; (Ⅱ)直线l 的方程为πsin()4ρθ+l 被曲线C 截得的弦长.

3、已知圆的极坐标方程为06)4 cos(242 =+--π θρρ (Ⅰ)将极坐标方程化为普通方程; (Ⅱ)若点),(y x P 在该圆上,求y x +的最大值和最小值. 4、在平面直角坐标系xOy 中,曲线C 1的参数方程为cos (sin x y ? ??=??=?为参数),曲线C 2的参数方程为 cos (0,sin x a a b y b ? ??=?>>? =? 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:l θα=与C 1,C 2各有一个交点,当0α=时,这两个交点间的距离为2,当2 π α=时,这两个交点重合. (Ⅰ)分别说明C 1,C 2是什么曲线,并求a 与b 的值; (Ⅱ)设当4 π α= 时,l 与C 1,C 2的交点分别为A 1,B 1,当4 π α=- 时,l 与C 1,C 2的交点分别为A 2, B 2,求直线A 1 A 2 、B 1B 2的极坐标方程.

高中数学选修4-4坐标系与参数方程完整教案(精选.)

选修4-4教案 教案1平面直角坐标系(1课时) 教案2平面直角坐标系中的伸缩变换(1课时)教案3极坐标系的的概念(1课时) 教案4极坐标与直角坐标的互化(1课时) 教案5圆的极坐标方程(2课时) 教案6直线的极坐标方程(2课时) 教案7球坐标系与柱坐标系(2课时) 教案8参数方程的概念(1课时) 教案9圆的参数方程及应(2课时) 教案10圆锥曲线的参数方程(1课时) 教案11圆锥曲线参数方程的应用(1课时) 教案12直线的参数方程(2课时) 教案13参数方程与普通方程互化(2课时) 教案14圆的渐开线与摆线(1课时)

课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:互动五步教学法 教具:多媒体、实物投影仪 复习及预习提纲: 1平面直角坐标系中刻画点的位置的方法 2坐标系的作用 ————教学过程———— 复习回顾和预习检查 1平面直角坐标系中刻画点的位置的方法 2坐标系的作用 创设情境,设置疑问 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 分组讨论 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标

极坐标与参数方程经典试题带详细解答

极坐标与参数方程经典试题带详细解答

————————————————————————————————作者:————————————————————————————————日期: 2

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为12232 x t y t ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α= 6 π ,圆C 的极坐标方程为2cos()4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y α α =+??=-+?(α为参数), 点Q 的极坐标为7(22,)4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

高考数学压轴专题(易错题)备战高考《坐标系与参数方程》难题汇编附答案

高考数学《坐标系与参数方程》课后练习 一、13 1.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v (,m n ∈R ),则m n +的取值范围是( ) A .[21,221]-+ B .[422,422]-+ C .22 [1,2]22- + D .22 [1,2]44 - + 【答案】D 【解析】 【分析】 建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r 的坐标,进而可得BP u u u r 的坐标.分类讨论,当 动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】 解:建立如图所示平面直角坐标系,可得, (0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r , 当点Q 在CD 上运动时,设(4,), [0,4]Q t t ∈, 则点P 在圆Q :22 (4)()1x y t -+-=上及内部, 故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,

则(4cos ,sin )BP r t r θθ=++u u u r , 44cos 4sin m r n t r θθ =+?∴?=+?, 444(sin cos )4sin 4m n t r t πθθθ? ?∴+=+++=+++ ???, 04,01,t r R θ≤≤≤≤∈Q , 当50,1,4t r πθ===时,m n +取最小值为44-,即14 -; 当4, 1,4 t r π θ=== 时,m n +24+ m n ∴+的取值范围是1244?- +?? ? ; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈, 则点P 在圆Q :22 ()(4)1x s y -+-=上及其内部, 故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤, 则(cos ,4sin )BP s r r θθ=++u u u r , 4cos 44sin m s r n r θθ =+?∴?=+?, 444(sin cos )4sin 4m n s r s πθθθ? ?∴+=+++=+++ ???, 04,01,s r R θ≤≤≤≤∈Q , 当50,1,4s r πθ===时,m n +取最小值为44-,即14 -; 当4, 1,4 s r π θ=== 时,m n +取最大值为 84 +,即24+, m n ∴+的取值范围是1244?- +?? ? ; 故选:D . 【点睛】 本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题. 2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2 ρ的最大值为( ) A . 7 2 B .4 C . 92 D .5

坐标系与参数方程-知识点总结

坐标系与参数方程 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?的 作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示, 在平面取一个定点O ,叫做极点, 自极点O 引一条射线Ox ,叫做极轴; 再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:(i)极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景; (ii)平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ; 以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ. 有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴 作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面任意一点,它的直角 坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与 直角坐标的互化公式如下: 极坐标(,)ρθ 直角坐标(,)x y : cos sin x y ρθ ρθ=??=? 直角坐标(,)x y 极坐标(,)ρθ: 222 tan (0) x y y x x ρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

相关文档
相关文档 最新文档