文档库 最新最全的文档下载
当前位置:文档库 › 对称性与代数方程的公式解

对称性与代数方程的公式解

对称性与代数方程的公式解
对称性与代数方程的公式解

对称性与代数方程的公式解

一元二次方程的根满足维达定理

212120

x ax b x x a

x x b

++=+=-=

很明显12,x x 具有对称性2Z 2Z 具有两个1维不可约表示11

11-,表示基底可以由12,x x 构造,即

12

12x x x x +-,这两个表示基可以用来构造不变表示的基

()2

1122212()y x x y x x =+=-

可以用方程系数表示出来()1222124x x a

x x a b +=--=-,因此

1212x x a

x x +=--=

12x x =,

一元三次方程的根满足维达定理

321231223311230

x ax bx c x x x a

x x x x x x b

x x x c +++=++=-++==-

很明显123,,x x x 具有对称性3S

3S 具有不变子群3Z ,且332S /Z Z ≈

3Z 具有三个1维不可约表示22111

11ωωωω

,表示基底可以由123,x x x ,构造,即

0123

2112322123

y x x x y x x x y x x x ωωωω=++=++=++,后两个表示基可以用来构造不变表示的基

3211231223311233222212312233132123122331123322221231223313(1)(()()3)

()3()()

3(1)(()()3)

()3()()

y x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x x x x x x x x x x x x x x ωωωωωω=-++++-+++-+++=--++++-+++++++ 令2221122331

222

2122331z x x x x x x z x x x x x x =++=++,可知12x x ?时,12z z ?

即12z z ,承载了2Z 群的忠实表示,可以用他们构造不可约表示基,对应于

1212(1,2)

1

111e z z z z +--可以通过幂函数构造不变表示212()z z -,有

12122331123123()()3z z x x x x x x x x x x x x +=++++-

22212123123123123123122331222

122331123122331(-)27()4()18()()()()4()z z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =--++++++++++++-++于是开根方可以求解12z z -,求出12z z ,

代入可以计算3312

,y y ,开3次根求出12y y ,,结合0y 解三元1次方程求出123,,x x x

一元4次方程求解

一元4次方程的根满足维达定理

432123412233441243112323434141212340

x ax bx cx d x x x x a

x x x x x x x x x x x x b x x x x x x x x x x x x c

x x x x d

++++=+++=-+++++=+++=-=

很明显1234,,,x x x x 具有对称性4S

4S 有正规子群4V ,443S /V S ≈;3S 有正规子群3Z ,332S /Z Z ≈

4V =(e,(12)(34),(13)(24),(14)(23))具有4个1维不可约表示

1234

1234

1234

1234

(12)(34)(13)(24)(14)(23)1111111111111111e x x x x x x x x x x x x x x x x ++++-----+-----+--表示基

第一个已经是不变表示,后三个表示基可以用来构造不变表示的基

411422

433

z y z y z y === 由此构造3S 的不变量

2212342234531223312222422-16 a b + 32 b + 40 a c - 160 d

64 a b - 256 a b + 256 b + 64 a c - 640 a b c + 1024 a b c + 64 a c + 1024 b c - 640 a d + 5120 a b d - 8192 b d - 3584 a c d +z z z z z z z z z ++=++=2

752334123624222233348642 7168 d =-512 a b c + 3584 a b c - 8192 a b c + 6144 a b c + 2048 a c - 10240 a b c + 12288 a b c - 5632 a c + 16384 a b c + 4096 c + 512 a d - 2048 a b d -

4096 a b d + z z z 23453222242222223

24576 a b d - 24576 b d - 19456 a c d + 110592 a b c d - 147456 a b c d + 18432 a c d - 98304 b c d + 57344 a d -

344064 a b d + 491520 b d +

73728 a c d - 98304 d

因此123,,z z z 是一元三次方程

3222422345322224220

-16 a b + 32 b + 40 a c - 160 d

64 a b - 256 a b + 256 b + 64 a c - 640 a b c + 1024 a b c + 64 a c + 1024 b c - 640 a d + 5120 a b d - 8192 b d - 3584 a c d + 7168 x Ax Bx C A B +++=-==2

7523346242222333486422d =-512 a b c + 3584 a b c - 8192 a b c + 6144 a b c + 2048 a c - 10240 a b c + 12288 a b c - 5632 a c + 16384 a b c + 4096 c + 512 a d - 2048 a b d -

4096 a b d + 24576 a b C -3453222242222223 d - 24576 b d - 19456 a c d + 110592 a b c d - 147456 a b c d + 18432 a c d - 98304 b c d + 57344 a d -

344064 a b d + 491520 b d +

73728 a c d - 98304 d

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数周期性结论总结

精品文档 . 函数周期性结论总结 ① f(x+a)=-f(x) T=2a ② f(x+a)=±) (1x f T=2a ③ f(x+a)=f(x+b) T=|a-b| 证明: 令x=x-b 得 f(x-b+a)=f(x-b+b) f(x-b+a)=f(x) 根据公式f(x)=f(x+T)=f(x+nT) 得 T=-b+a 即a-b ④f(x)为偶函数,且关于直线x=a 对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为 偶函数,所以 f(-x)=f(x) 因为 关于x=a 对称 所以 f(a+x)=f(a-x) (对称性质)设 x=x+a 所以 f(x+2a)=f(x) 所以 周期T=2a) ⑤f(x)为奇函数,且关于直线x=a 对称,T=4a 证明:f(x+2a)=f(-x)=-f(x) 根据①可知T=2·2a=4a 证明:由于图像关于直线x=a 对称、所以f(a+x)=f(a-x) 令x=x+a 得:f(x+2a)=f(-x) 又f(x)= - f(-x)故f(x)= - f(x+2a) 代换x=x+2a 得: f(x+2a)= - f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a) 有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a) 换元:令x-a=t 那么x=a+t f(t+3a)=-f(t) 根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b 对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x) 假设a >b (当然假设a <b 也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 f(x+2a-2b) =f[a+(x+a-2b)] =f[a-(x+a-2b)] =f(2b-x) =f(x) ⑧f(x)的图像关于(a,0) (b,0)对称,T=2a-2b(a >b) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x ) f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)] =-f(2b-x) =f(x) 关于直线x=a 对称 关于直线x=b 对称

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数周期性公式大总结

竭诚为您提供优质文档/双击可除函数周期性公式大总结 篇一:函数周期性结论总结 函数周期性结论总结 ①f(x+a)=-f(x)T=2a ②f(x+a)=±1T=2af(x) ③f(x+a)=f(x+b)T=|a-b|证明:令x=x-b得 f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式 f(x)=f(x+T)=f(x+nT)得T=-b+a即a-b ④f(x)为偶函数,且关于直线x=a对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为偶函数,所以f(-x)=f(x)因为关于x=a对称 所以f(a+x)=f(a-x)(对称性质)设x=x+a所以 f(x+2a)=f(x)所以周期T=2a)⑤f(x)为奇函数,且关于直线x=a对称,T=4a 证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a 证明:由于图像关于直线x=a对称、所以f(a+x)=f(a-x)令x=x+a得:f(x+2a)=f(-x)又f(x)=-f(-x)故f(x)=-f(x+2a)

代换x=x+2a得: f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a)换元:令x-a=t那么x=a+t f(t+3a)=-f(t)根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x)假设 a>b(当然假设a<b也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a> b)f(x+2a-2b)=f[a+(x+a-2b)]关于直线x=a对称 =f[a-(x+a-2b)]关于直线x=b对称=f(2b-x)=f(x) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x)f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)]

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

高中数学 函数周期性总结

函数的周期性 一、周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值.... 时,都有()()f x T f x +=, 那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 二、常见函数的最小正周期 正弦函数 y =sin (ωx +φ)(w>0)最小正周期为T= ωπ2 y=cos (ωx+φ)(w>0)最小正周期为T= ω π 2 y =tan (ωx +φ)(w>0)最小正周期为T= ω π y =|sin (ωx +φ)|(w>0)最小正周期为T= ω π f(x)=C(C 为常数)是周期函数吗?有最小正周期吗? 三、抽象函数的周期总结 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(x b f a x f +=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) ()(x f c a x f =+ (C 为常数) ?)(x f y =的周期为a T 2= 5 ) (1) (1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 2= 6、 1)(1 )(+- =+x f a x f ?)(x f y =的周期为a T 4= 7、) (1) (1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4= 8、)()()2(x f a x f a x f -+=+ ?)(x f y =的周期为a T 6= 9、)1()()2(++=++++n x f n x f n x f ;(它是周期函数,一个周期为6) 10、)(x f y =有两条对称轴a x =和b x =()b a < ?)(x f y = 周期)(2a b T -= 11、)(x f y =有两个对称中心)0,(a 和)0,(b ?)(x f y = 周期)(2a b T -=

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

高中数学知识点;抽像函数周期性公式(基础知识总结)

高中数学抽线函数周期性难题解题技巧(名师总结) 今天跟同学们分享一个专题就是抽象函数怎么想周期,同学们抽象等式给到我们的时候有的时候,有得时候让我们找周期性、找对称中心、看奇偶函数等等一系列的问题,同学内题型还是比较困扰同学们的,今天就给同学分享一下抽象函数找周期性的问题!今天通过4个例题的讲解,同学们在遇到这类题型的时候,就知道是找抽象函数周期行的题型! 函数周期性技巧原理讲解: 首先这是定义是对每一位同学基本的要求,你必须要要掌握,同学们考试的时候给我们的周期式肯定不会这样简单,比如说f(x+8)=f(x)那么一目了然就知道周期式8,同学们这类题的考察本质是函数周期,那么它一定不会给那么简单地式子,而他会隐身给周期的解析式;接下来老师会分享四个抽象等式的式子,同学能够完全记住,在以后做题的时候才能节约时间; 接下看一下不等式的两种出现方式;

同学先讲两个f()型的题型,两个f()型我们要找到周期原本的定义,那怎么来找出周期的本质定义了,这里来看老师的具体讲解,怎样来理解; 接下来;老师会由浅入深给同学讲一些难点,能够做到循序渐进;

接下来要注意了,重点来了,这个式子两两个都是复杂,

同学们分享到这里,同学以后做题的时候对函数周期的了解、掌握不仅仅局限于定义式,而是这四个你都要记住,这里重要说一个知识点:第二个式子与第三个式子其实是一个类型的, 二式m为正、三式前面有负号,这里正负其实没有关系,只要是这种形式那么周期一定等于a的2倍:第四式是绝对值括号内部相减,绝对值括号内x+a-x-b,这个时候正x、负x约掉就是绝对值a减b或者b减a, 接下来要解决这样的问题,就要掌握什么样的情况想周期、什么情况想奇偶性、什么情况想对称轴、什么情况想对称中心,要解决这些问题老师给同学们总结了一句话,这句话是非常重要的。只要把这句话掌握清楚明白周期一眼就能看出来; 此类抽象等式:当f()内x前系数相同时一定想周期!

高中数学周期函数、公式总结、推导、证明过程

高中数学涉及周期的公式,例题,证明 1

2 以上基本是高中阶段遇到的各种周期公式及其变形的总结。 解周期问题,两种方法:1.列举多个数据,找寻规律和周期;2.通过抽象函数直接得到周期。 1. 已知f(X)是R 上不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(x +1)f(x),则f [f (5 2)]= 解:令x=0,f(0)=0; 令x =?1 2,f (?1 2)=0; 令x =1 2,f (32)=0; 令x =3 2,f (5 2)=0; ∴ f [f (52)]=f (0)=0 2. 定义在R 上的函数f(x)满足f (x )={log 2(1?x ),x ≤0 f (x ?1)?f (x ?2),x >0,则f(2009)= 解:整理f (x )=f (x ?1)?f (x ?2), 得到f (x ?1)=f (x )+f (x ?2) 令x=x+1得到,f (x )=f (x +1)+f (x ?1) 由公式6知道周期为6,即f (x +6)=f(x),x>0 f(2009)=f (334×6+5)=f(5)。 由公式f (x )=f (x ?1)?f (x ?2)

得f(5)=f(4)?f(3)=(f(3)?f(2))?f(3)=?f(2) =?(f(1)?f(0))=?((f(0)?f(?1))?f(0)) =f(?1)=0 ,4f(x)f(y)=f(x+y)+f(x?y),x,y∈R,则f(2010)= 3.已知函数f(x)满足f(1)=1 4 思路:消元和赋值。 令x=x,y=1,则f(x)=f(x+1)+f(x?1), 根据公式6知道,f(x+6)=f(x), ∴f(2010)=f(335×6)=f(0)。 令y=0,则4f(x)f(0)=2f(x), ∵ x不恒为零,∴f(0)=1 2 ∴f(2010)=1 。 2 下面两页是周期函数公式的周期推导证明过程,并总结了推导周期过程的一般思路。因为word 输入数学公式太过麻烦,所以手写了出来,以图片的形式奉上。 3

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全 函数是高中数学的重点与难点,在高考数学中占分比重巨大。高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。需要WORD 电子文档的同学,可以入群领取。 1.奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。 ①若为奇函数;则称)(),()(x f y x f x f =-=-() ()()0, 1() f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。() ()-()0, 1() f x f x f x f x -==- 2.周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 《 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:), (x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。 [][]?? ?++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f

第一章第三节 简谐运动的公式描述

1-3简谐运动的公式描述(选修3-4) 教材分析:这节课的内容标准主要是用公式和图像描述简谐运动,与前两节一起完成《课程标准》中对简谐运动的要求,即“通过观察与分析,理解简谐运动的特征”。本节的内容比较抽象,过去的教学安排是从简谐运动的回复力出发,直接给出简谐运动的运动图像,现在不仅增加了简谐运动的运动公式,并且增加了运用参考圆得出简谐运动的位移公式以及各个量的物理意义的过程,并讨论公式的x-t 图像中表示,难度是比较大的。教学中应注意将教学难点分散,逐层进行教学,多采取学生动手练习、讨论和启发式讲述的方法,同时设计配套课件,节约一定时间,提高直观性。 教学目标: 1.知识与技能 (1)会用描点法画出简谐运动的运动图像。 (2)知道振动图象的物理含义,知道简谐运动的图像是一条正弦或余弦曲线。 (3)了解替代法学习简谐运动的位移公式的意义。 (4)知道简谐运动的位移公式为)(?ω+=t A x cos ,了解简谐运动位移公式中各 量的物理含义。 (5)了解位相、位相差的物理意义。 (6)能根据图像知道振动的振幅、周期和频率、位相。 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在“方向的投影与教材中给出的数据比较,描出x-t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图像一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易以及应用已学的知识解决问题。 (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点。 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简,科学地寻找解决问题的方法。 (2)培养学生合作学习、探究自主学习的学习习惯。 重难点分析: 1、得出简谐运动的位移公式、x-t 图象是重点。 2、运用参考圆来分析和理解简谐运动及图象,对各量的理解是难点。 教学过程: 1、复习回顾:简谐运动最基本的特征?(周期性) 2、提出问题:简谐运动的位移是如何随时间的变化做周期性变化的? 3、引导学生分析讨论得到简谐运动的运动公式。 (1)给出用频闪照相的方法得到的一组简谐运动的位移x 随时间t 变化的数据,引导学生找出大致规律。 (2)讲述分析参考圆的方法。

函数周期公式

主要知识: 1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x (其中a 为常数), (1)()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; (2)()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数; (3)()() 1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; (4)()()f x a f x b +=-,则()f x 是以T a b =+为周期的周期函数; 以上(1)-(4)比较常见,其余几种题目中出现频率不如前四种高,并且经常以数形结合的方式求解。 (5)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =. (6)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数; (7)函数()y f x =()x ∈R 的图象关于两点(),0A a 、(),0B b ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数; (8)函数()y f x =()x ∈R 的图象关于(),0A a 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数; (9)有些题目中可能用到构造,类似于常数列。

函数奇偶性 对称性与周期性有关结论

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+ ?)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2 a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称

函数的周期性与函数的图象总结

函数的周期性 ㈠ 主要知识: 1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期, 则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x (其中a 为常数), ① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()() 1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数; ⑤)()(x a f x a f -=+,则)(x f 是以a T =为周期的周其函数; ⑥1()()1() f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数; ⑦1()()1()f x f x a f x ++= -,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >) 若()f x 为奇函数,则其周期为4T a =, 若()f x 为偶函数,则其周期为2T a =. ⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以 ()2b a -为周期的周期函数; ⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数; ⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数; 图象的对称性 一个函数的对称性: 1、函数()y f x =的图象关于点(,)a b 对称 ()2(2)f x b f a x ?=--?b x a f x a f 2)()(=-++ 特殊的有: ① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=--。 ② 函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-?。 ③ 函数)(a x f y +=是奇函数)(x f ?关于点()0,a 对称。 ④ c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 2、两个函数的对称性: ①)(x f y =与)(x f y -=关于X 轴对称。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲简谐运动的公式描述 1.以振幅值为半径做一个参考圆,一个小球在此参考圆上做匀速圆周运动,周期为12t0,把圆周分成12等分,测量圆周上每一个等分点在水平轴上的投影,描出过点t0、2 t0、3 t0、…12 t0的曲线。 2.匀速圆周运动在x轴上的投影和简谐运动图像一样,是余弦或正弦曲线。物体做匀速圆周运动,设半径为A,周期为T,质点从x1开始运动,则其在t时刻在x轴上的投影为。 式中w就是简谐运动所对应匀速圆周运动的角速度,在研究简谐运动时,称之为圆频率(或角频率)。 3.如果圆周运动的质点在t=0时刻从x7位置开始运动,则t时刻在x轴上的投影刚好与图1-3-2的曲线大小相等,方向相反,称之为反相,或者称这两种振动的相位差相反,也称相位差等于,数学公式为。 4.如果t=0时刻,质点的运动不是从x7开始,而是由任意一个角度开始,则应该写为:,叫做简谐运动在t时刻的相位,由于时间t

是变量,所以相位也在变化,是t=0时的相位叫做初相。相位每增加,振子完成一次全振动。相位从0变到,需要的时间。 5.对于频率、振幅相同,相位不同的振子,我们常通过相位差来比较它们,相位差用表示,有:。 当相位差为时,振动相差的时间为。 6.如图,一辆玩具电动车在一水平面上做匀速圆周运动,在同一水平面上放置一台幻灯机,灯光水平照射在这量小车上,小车运动时在墙壁的投影正好和弹簧振子做简谐运动的情景相似。 设小车沿半径为A的圆周做匀速圆周运动,其角速度为w,则 向心力F= 。 F在水平方向的投影Fx= 。式中负号表示Fx与坐标x轴的正方向相反。由几何关系知x= 。 于是有Fx= 。 由于m、w都有确定的值,mw2可以用一个常数k表示,k=mw2, 上式可写成:Fx= 。与弹簧振子做简谐运动的力相同。 由此可知,做匀速圆周运动的物体在直径方向的投影正好与弹簧振子做简谐运动的情景完全相同,并且w= 。 简谐运动的振动周期与物体做匀速圆周运动周期相等,所以T== 。

相关文档