文档库 最新最全的文档下载
当前位置:文档库 › 空调水系统施工工艺流程

空调水系统施工工艺流程

空调水系统施工工艺流程
空调水系统施工工艺流程

空调水系统施工工艺流程

二、设备吊架加工及软连接安装:

1、设备采用防晃减震吊架,具体做法为[5槽钢+¢10通丝杆组成。首先把

成品槽钢分为3段(便于操作方便),根据要求(每段55mm为宜)在成品槽

钢上做好切割标识。

2、按照槽钢上的切割标识居中进行开孔,开孔直径应比所穿丝杆大2号,开

孔时必须使用专用开孔机具,严禁使用电气焊。

3、根据切割标识切割,利用专用打磨机具进行槽钢块的毛刺打磨,然后做防,

腐处理,码放整齐。

4、根据风机盘管的吊装标高进行通丝杆下料,下料的半成品通丝杆两端应使

用专用打磨机具打磨,便于螺母安装。

5、按照施工要求进行软连接下料,宽度一般不能超过250mm,然后用镀锌铁

皮条采用铆固形式与出风口连接。

6、软连接安装完毕后把机体放回对应的包装箱里码放整齐。

二、划线定位:

1、认真熟悉施工图纸并结合精装隔墙及天花图确定风机盘管吊装位置。

:

2、按照每个机型用薄木板画出吊装孔洞尺寸做模具,根据风机盘管定位尺寸

用模具作打眼标识。

3、在顶板上用记号笔做好对应的风机盘管型号,便于吊装时核对。

三、风机盘管吊装:

1、参照顶板标注型号进行风机盘管吊装,吊装时必须注意以下几点:

&

(1)风机盘管吊装标高须结合精装天花图二级吊顶标高,必须满足使用功能。(2)风机盘管托水盘尾部与冷凝水出水口保持5mm坡度(出水口低)。

(3)固定风机盘管的通丝杆保持垂直,机体孔洞上口备1颗螺母,下口加减

震垫片然后备2颗螺母。通丝杆在螺母下口外露30—50mm(便于进行

!

风机盘管标高微调)。

(4)吊装完风机盘管后用包装箱内的塑料袋做好成品保护。

四、管道预制:

1、断管:根据现场测绘草图,在选好的管材上画线,按线断管。使用砂轮锯或

手锯断管,断管后要将管口断面的铁膜、毛刺清除干净。

2、!

3、套丝:将断好的管材,按管径、尺寸分次套制丝扣,一般以管径15-32mm者

套二次,40-50mm者套三次。

4、扫口:管道套丝完毕后,用套丝机对管道进行扫口。

5、配装管件:根据现场测绘草图,将已套好丝扣的管材配装管件,配装管件

时应将所有管件带入管丝扣,试试松紧度(一般用手带入3口为宜),在丝扣处涂铅油、缠麻后带入管件,然后用管钳将管件拧紧,使丝扣外露2-3扣,去掉麻头,擦净铅油,编号放到适当位置等待调直。

6、管段调直:将已装好管件的管段,在安装前进行调直。在装好管件的管段丝

~

扣处涂铅油,连接两段或数段,联接时不能只顾预留口方向而要照顾到管材的弯曲度,互相找正后再将预留口方向转到合适部位并保持正直。管段连接后,调直前必须按设计图纸核对其管径、预留口方向、变径部位是否正确。

五、管道安装:

1、管道安装坡度按图纸注明要求施工,无注明处其坡度应为:空调冷热水、采

暖管道≥。系统最高点设排气阀,最低点设泄水阀。安装管道时须注意以

下几点:

(1)公共走廊排管时必须结合精装电气图,让开筒灯位置(筒灯居中),包括户内小走廊。

(2)|

(3)安装管道时凡是穿墙体必须加钢制套管,套管型号比管道保温后大2号,

两端与装饰面齐。管道安装完毕后及时对套管内管段进行保温处理,防止堵洞造成套管偏移。

(4)管道穿二次结构墙剔凿洞口时必须用云石机切割,严禁断钢筋。剔凿产生

~

的垃圾及时清理。

(4)管道安装参照空调路由图并结合装饰天花图。(保证吊顶标高及造型宽度)

(5)户内供回水系统的接驳(户内各房间供回水管误接)。

(6) 木托与抱卡必须配套使用。

六、冷凝水管道PVC管材安装

1、根据图纸及现场情况,进行断管加工。粘接前对承插口先插入试验,不得全

部插入,一般为承口的3/4深度。试插合格后,用棉布将承插口需粘接部位的水分、灰尘擦拭干净。如有油污需用丙酮除掉。用毛刷涂抹粘接剂,先涂抹承口后涂抹插口,随即用力垂直插入,插入粘接时将插口稍作转动,以利粘接剂分布均匀,约30秒至1分钟即可粘接牢固。粘牢后立即将溢出的粘接剂擦拭干净。多口粘连时应注意预留口方向。

2、支吊架间距不能大于500mm。

3、管道长度超过5m时在距机体1m处应加排气口。

4、凝结水管道满水试验

隐蔽的凝结水管道在保温前做灌水试验,把分户管道末端封严,从风机盘管托水

盘开始注水,在满水15分钟水面下降后,再灌满观察5分钟,液面不降,管道及接口不渗不漏为合格。满水试验合格后拆除末端封堵,逐台检查每台风机盘管托水盘里水是否排净,如果发现托水盘里有存水现象,检查管道坡度进行调整,直至水排净为合格。

七、管道试压:

1、管道试压一般分单项试压和系统试压两种。单项试压是在干管敷设完后或隐蔽部位的管道安装完毕按设计和规范要求进行水压试验。

系统试压是在全部干、立、支管安装完毕,按设计或规范要求进行水压试验。联接试压泵一般设在首层,或室外管道入口处。

2、试压前应将预留口堵严,关闭管井立管总阀门和所有泄水阀门及高处放风阀门,打开各分路阀门。

3、打开水源阀门,往系统内充水,满水后在风机盘管跑风处放净冷风并将跑风阀门关闭。

4、检查全部系统,如有漏水处应做好标记,并进行修理,修好后再充满进行加压,压力值达到规范要求后复查,如管道不渗、漏,并持续到规定时间,压力降在允许范围内为合格。

5、拆除试压水泵和水源,把管道系统内水泄净。

6、冬季施工期间竣工而又不能及时供暖的工程进行系统试压时,必须采取可靠措施把水泄净,以防冻坏管道和设备。

八、管道保温:

1、将管道表面清理干净,使管道表面干燥。

2、测量将要保温的管段长度下料,适当多出10mm 的长度。

3 、将保温管面用切刀划开,把保温管套到管道上。

4、在切开的保温管的两切面上涂上保温专用胶水

5、用手指测试胶水是否干化,当手指接触涂胶面时,无粘手现象方进行封管。

6 、封管时压紧粘接口两端,从两端向中间封合。

7、两个管口连接时在两个连接的管端都加上胶水,后轻微压下或对实。

8 、粘接缝处要用胶带封口,以防粘接缝开裂。

-

9、管道保温应粘贴紧密,表面平整、圆弧均匀、无环形断裂。

九、管道冲洗:

1、管道系统的冲洗应在管道试压合格后,调试、运行前进行。

管道冲洗进水口及排水口应选择适当位置,并能保证将管道系统内的杂物冲洗干净为宜。排水管截面积不应小于被冲洗管道截面60%,排水管应接至排水井或排水沟内。

2、冲洗时,关闭系统主控阀门和泄水阀及排气阀,打开所有管井分户阀门及每台设备的控制阀门,以系统内可能达到的最大压力和流量进行,直到出口处水色和透明度与入口处目测一致为合格。

十、设备接线:

1、严格按照设备厂家设计要求进行施工。

2、接线的同时拆除风机盘管的保护膜,查看电机涡轮内是否有杂物。

十一、设备单体试运转:

1、核对风机、电机的型号、规格是否与设计参数一致;检查各紧固件是否拧紧;进出口帆布短管是否严密。

2、用手盘动叶轮,观察有无卡阻及碰擦现象;手动盘动叶轮第二次,观察叶轮

是否停留在同一位置,出于叶轮的动平衡考虑,叶轮两次应停留在不同

位置。

3、风机初次启动经一次启动立即停止运转,检查叶轮与机壳有无摩擦、有无异

常振动及声响;检查运转方向是否正确,是否与机壳标注方向一致。4、风机启动运转平稳后,用钳形电流表检测起动电流,运转电流、振动、转速

及噪声,并在试运行30分钟后检测轴承温度,其值必须达到设备说明书

的文件要求。

5、风机在额定转速下试运转2小时以上,测量轴承温升是否正常,不超过70℃为合格。

十一、系统调试:

1、首先关闭支系统阀门,对主系统注满水后,进行严格的检查,确保无渗漏后进行对支系统的注水,待支系统注满水,检查无渗漏后,进行风机盘管的注水、放气、查漏工作,风机盘管的调试需逐组进行。

2、启动空调水系统的循环水泵,进行系统循环经8h运行正常后,开始进行热水循环,调整电动二通阀,使房间的温度达到设计要求。冷冻水调试待夏天由厂家配合进行,方法与热水调试相雷同。

3、特别需要注意检查电动二通阀、过滤器、风机盘管、阀门、跑风等是否有渗漏现象。

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

空调水系统的设计原则

空调水系统的设计原则 1、空调水系统的设计原则 空调水系统设计应坚持的设计原则是: 力求水力平衡; 防止大流量小温差; 水输送系数要符合规范要求; 变流量系统宜采用变频调节; 要处理好水系统的膨胀与排气; 要解决好水处理与水过滤; 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 a、技术要求 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 a、造成大流量小温差的原因 设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 a、避免大流量小温差的方法 考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为0.2-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 a、水系统的补水与排水 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,

空调管路系统的设计原则

一、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施; 7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材 管路系统的管材的选择可参照下表选用:

三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用: 冷冻水压差旁通系统的选择计算 在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组为运行稳定,防止结冻,一般要求冷冻水流量不变,为了协调这一对矛盾,工程上常使用冷冻水压差旁通系统以保证在末端变流量的情况下,冷水机组侧流量不变。系统图如图一。

空调水系统的设计原则

空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。

l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。

空调水系统的设计与施工

空调水系统的设计与施工 一、设备间面积及层高与管路布置原则 随着智能建筑及建筑功能的发展,设备布置所需的空间越来越受限制了。设备间的管路管线只有认真合理的进行空间管理,才能节省空间,并避免不必要的返工。 设备层布置原则:20层以内的高层建筑:宜在上部或下部设一个设备层 30层以内的高层建筑:宜在上部和下部设两个设备层 30层以上超高层建筑:宜在上、中、下分别设设备层 生产厂房宜在其周边辅房内设空调设备,冷水机组及锅炉房等设备宜设在独立的建筑内。 设备层内管道布置原则:离地h≤2.0m布置空调设备,水泵等 h=2。5~3.0m布置冷、热水管道 h=3.6~4.6m布置空调通风管道 h>4.6m布置电线电缆 设备层层高概略: 在实际施工中往往因为机房空间不够或管线布置不合理,导致没有空调水阀组的安装位置,阀门装设过高,不便操作。 二、水泵选择与安装 在设计空调水系统时应进行必要的水力计算,根据设计流量计算出在该流量下管路的阻力,以确保选用水泵的扬程合理。在对流量和扬程乘以一定的安全裕量后,进行水泵的选择。有些设计人员未进行设计计算,认为扬程大一些保险,导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作. 一般工程项目中配置的冷水机组都在2至4台之间,对于规模很大的工程项目,甚至需要5台以上的冷水机组并联工作。制冷站内的主机与水泵的匹配一般来说是一机对一泵,以保证冷水机组的水流量及正常运行,因此,目前我国空调水系统大多为有2台或2台以上水泵并联的定流量系统或一次泵变流量系统.空调设计时,都是按最大负荷情况来进行设备选择以保证最不利情况时的需要.在循环水泵采用并联运行方式时,选择水泵一定要按管路特性与水泵并联特性曲线进行选型计算。选型时,除应注意水泵在设计工况时的性能参数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作.运行人员应注意工况转换时对阀门的调节. 很多空调设计都是冬夏两用的,即随着季节数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作。运行人员应注意工况转换时对阀门的调节。

空调水系统的设计原则

, 空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; ( l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 … l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而

不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 ! l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。 l水系统的排水阀应设在系统的最低点(集水器或制冷机水管路最低点),以便检修时能将管路系统中的水全部排除。 la、水系统的排气 l安装在每层建筑物的风机盘管、新风机组回水管路末端最高点,均应装设自动排气阀。如支环路较长而使管路转弯较多时,或某些水管为躲避消防管、新风管和装设在吊顶内的较大断面电缆等而有上下转弯时,均应在转弯的最高点设置自动排气阀。旅馆水系统

空调水系统设计

空调水系统设计 空调水系统流速的确定 一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有: DN15、DN20、DN25、DN32、DN40、DN50、DN70、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 管内水流速推荐值(m/s) 水泵吸入口 1.2-2.1冷却水管 1.0-2.4 水泵压出口 2.4-3.6分水器 1.0-1.5 供回水干管 1.0-2.0集水器 1.0-1.5 供回水支管0.5-0.7排水管 1.2-2.0

供暖水流速度m/s 户式水机设计经验值 水管流速按1.8/S计算,流量计算公式为:管道截面积×1.8/s×3600(换算成小时) 空调水系统管件附件的安装1.水泵在系统的设计位置:

一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。 2.冷却塔上的阀门设计: (1)冷却塔进水管上加电磁阀(不提倡使用手动阀) (2)管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻) 3.水质处理 a水过滤:无论开式和闭式系统,水过滤器都是系统设计中必须考虑的。目前常用的水过滤器装置有金属网状、Y型管道式过滤器,直通式除污器等。一般设置在冷水机组、水泵、换热器、电动调节阀等设备的入口管道上 b闭式水系统:冷、热水系统中必须设置软化水处理设备及相应的补水系统。 电子水处理仪的安装位置:放置于水泵后面,主机前面。 4.水泵前后的阀门 1水泵进水管依次接:蝶阀-压力表-软接 2水泵出水管依次接:软接-压力表-止回阀-蝶阀 5.分\集水器 多于两路供应的空调水系统,宜设置集分水器。集分水器的直径应按总流量通过时的断面流速(0.5-1.0m/s)初选,并应大于最大接管开口直径的2倍;分汽缸﹑分水器和集水器直径D的确定: a按断面流速确定D分汽缸按断面流速8-12m/s计算;分水器和集水器按断面流速0.1m/s计算。 b按经验公式估算来确定D, D=(1.5-3)D MAX D MAX 支管最大直径 c分\集水器之间加电动压差旁通阀和旁通管(管径一般取DN50) d集水器的回水管上应设温度计. 6.各种仪表的位置 布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2-1.5m,高于此高度时,应设置工作平台。 压力表:冷水机组、进出水管、水泵进出口及集分水器各分路阀门外的管道上,应设压力表;

空调系统设计规范及标准

第一章设计参考规范及标准 (7) 一、通用设计规范: (7) 二、专用设计规范: (8) 三、专用设计标准图集: (8) 第二章设计参数 (8) 一、商业和公共建筑物的空调设计参数ASHRAE (8) 二、舒适空调之室内设计参数日本 (10) 三、新风量 (10) 1、每人的新风标准ASHRAE (10) 2、最小新风量和推荐新风量UK (11) 3、各类建筑物的换气次数UK (12) 4、各场所每小时换气次数 (12) 4、每人的新风标准UK (13) 5、考虑节能的基本新风量(1/s人)(日本) (14) 6、办公室环境卫生标准日本 (14) 7、民用建筑最小新风量 (14) 第三章空调负荷计算 (17) 一、不同窗面积下,冷负荷之分布% (17) 二、负荷指标(估算)(仅供参考) (17) 三、空调冷负荷法估算冷指标。空调冷负荷法估算冷指标(W/m2空调面积)见下表 (18) 四、按建筑面积冷指标进行估算建筑面积冷指标 (20) 五、建筑物冷负荷概算指标香港 (21) 六、各类建筑物锅炉负荷估算W/m3℃ (22)

七、热损失概算W/m℃ (22) 八、冷库冷负荷概算指标 (23) 第四章风管系统设计 (23) 一、通风管道流量阻力表 (23) 1、缩伸软管摩擦阻力表 (23) 2、镀锌板风管摩擦阻力表 (23) 二、室内送回风口尺寸表 (27) 1、风口风量冷量对应表 (27) 2、不同送风方式的风量指标和室内平均流速ASHRAE (27) 三、室内风管风速选择表 (28) 1、低速风管系统的推荐和最大流速m/s (28) 2、低速风管系统的最大允许速m/s (28) 3、通风系统之流速m/s (28) 四、室内风口风速选择表 (29) 1、送风口风速 (29) 2、以噪音标准控制的允许送风流速m/s (29) 3、推荐的送风口流速m/s (30) 4、送风口之最大允许流速m/s (30) 5、回风口风速 (30) 6、回风格栅的推荐流速m/s (31) 7、百叶窗的推荐流速m/s (31) 8、逗留区流速与人体感觉的关系 (31) 9、顶棚散流器送风量 (31)

空调管路系统的设计原则范本

空调管路系统的设 计原则

一、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中经过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中经过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施;

7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材 管路系统的管材的选择可参照下表选用: 三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用: 冷冻水压差旁通系统的选择计算 在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组为运行稳定,防止结冻,一般要求冷冻水流量不变,为了协调这一对矛盾,工程上常使用冷冻水压差

空调水系统设计

、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1 ?空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水 系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2 .合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡冋题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施; 7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材管路系统的管材的选择可参照下表选用: 三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。 旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷 冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB ZAPC型电动调节阀作为旁通阀,末端设备管段的 阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用:

相关文档