文档库 最新最全的文档下载
当前位置:文档库 › 加氢催化剂预硫化技术

加氢催化剂预硫化技术

加氢催化剂预硫化技术
加氢催化剂预硫化技术

加氢催化剂预硫化技术

化工学院化学工程颜志祥 201015081421 随着原油重质化、劣质化的日趋严重,以及环保和市场对石油产品质量要求的日益提高,加氢过程成为炼油工业中非常重要的环节。它对于合理利用石油资源,改善产品质量,提高轻质油收率,深度脱除油品中的硫、氮、氧杂原子及金属杂质,以及烯烃饱和、芳烃加氢、提高油品安定性等都具有重要意义。

工业上常用的加氢催化剂大多数采用Mo,Co,Ni,W等金属元素作活性组分,并以氧化态分散在多孔的载体上。这种形态的催化剂加氢活性低,稳定性差,若催化剂以这种形态投人使用,那么在几周内催化剂就会失活到运转末期的状态。将催化剂进行预硫化处理,使金属氧化物转化为金属硫化物,才能表现出较高的加氢活性,较好的稳定性,较佳的选择性和抗毒性,延长使用寿命。且催化剂的硫化度越高,其活性越大。因此,加氢催化剂在使用前必须进行预硫化。

一、催化剂预硫化的方法及原理

1.1预硫化方法

预硫化技术是加氢催化剂开发应用的关键步骤之一,先进的预硫化技术能够使加氢催化剂保持最佳的活性和稳定性,提高选择性,延长使用寿命,在国内外受到广泛的关注。因此,深人研究加氢催化剂的预硫化方法对开发高活性的催化剂有重要意义。目前,工业上使用的加氢催化剂常用的硫化方法有很多种.从介质相态上可分为干法硫化和湿法硫化两类,从介质来源上可分为强化硫化和非强化硫化两种情况.从预硫化的位置又可分为器内预硫化和器外预硫化两种工艺。

1.1.1 干法硫化与湿法硫化

干法硫化是指催化剂在氢气存在下,直接与一定浓度的硫化氢或其他有机硫化物接触而进行的气相硫化。湿法硫化是指含有硫化物的硫化油在氢气存在下直接与催化剂进行的硫化过程。湿法硫化可以防止催化剂床层中“干区”的存在,防止活性金属氧化物被氢气还原。并且避免水分对催化剂的影响。但是与干法硫化相比,湿法硫化容易造成催化剂积炭,反应放热比较剧烈,不易控制温升。因此有研究在低温区使用干法,在高温区使用湿法的干法+湿法技术。

1.1.2 强化硫化与非强化硫化

强化硫化是采用外部加入的硫化物进行预硫化(例如加入二硫化碳、二甲基二硫等),非强化硫化是依靠硫化油中自身的硫化物完成的预硫化。尽管非强化硫化可以节省硫化剂及硫化剂注入系统,但是依靠硫化油中自身的硫进行硫化,硫化过程时间较长,硫化后催化剂活性、稳定性较差,硫化过程容易造成催化剂积炭。

1.1.3器内预硫化

器内预硫化是指将氧化态的催化剂装人反应器中,在一定的温度下同时通人氢气和硫化剂或氢气和含硫化剂的馏分油进行硫化,使加氢活性金属转化为硫化态。器内预硫化工艺过程一船分为催化剂干燥、硫化剂的吸附和硫化三个阶段。

催化剂的干燥:脱水介质可以是氢气或氮气。若用氢燥,为避免金属组分被还原,必须严格控制脱水温度,最高不超过180℃;若用氮气干燥,最高温度不超过250℃,120℃与180℃(氮气为250℃)两个阶段进行。干燥时间依器中是否有冷凝水生成而定。

硫化剂的吸附:为了防止催化剂发生还原反应,除了必须严格控制硫化温度外,还应在硫化反应开始前使催化剂表面预先吸附适量的硫化剂,以便在达到硫化温度后,硫化与还原反应同时进行。硫化剂吸附量一般为催化剂注硫量的30%- 50%。

硫化过程:主要经过230℃和370℃两次恒温阶段。硫化完成程度,一般以全程硫化剂加人量达到催化剂按金属计算理论硫含量的120%为准。恒温时问可通过测定反应器出口硫化氢浓度来确定。在230℃恒温前必须要求硫化氢完全穿透催化剂床层(以循环氢中开始出现大量硫化氢为标志)。硫化最终温度一般为360℃-370℃。事实上,在每一个温度下都有一个平衡极限值,即使再延长硫化时间,硫含量也不再增加,温度达300℃以上时硫化反应速度已经很快,可以达到硫化完全。

1.1.4 器外预硫化

器外预硫化是指将氧化态的催化剂先与硫化剂结合,再装人反应器,开工时只需通人氢气或同时通人氢气和油品,随后升温即可完成硫化活化的方法。器外预硫化方法常用的硫化剂为单质硫或有机多硫化物。

1.2 预硫化的原理

催化剂预硫化反应十分复杂,在H

2和H

2

S存在的条件下,金属氧化物存在还

原和硫化竞争反应。反应主要取决于反应温度与H

2和H

2

S的分压。如果温度过高,

金属氧化物在H

2

存在的条件下以还原反应为主,一旦被还原成低价的氧化物后,

再与H

2

S反应的速度很慢,这将导致硫化不完全而活性下降。在预硫化过程中,温度较低,硫化与还原同时进行,经硫化后的催化剂金属组分都是以硫化态的形式存在,催化剂活性最好。在氢分压过低时,虽然不会发生金属还原反应,但在

硫化后的催化剂金属表面可能同时有MoS

2·Mo0

3

, MoS

3

等混合品体存在,使活性

变差。H

2S浓度决定金属组分的硫化速度,在温度达到200℃以上时,H

2

S浓度一

般控制在0.5%-1.0%之间,浓度过低,金属氧化物将部分还原而导致硫化不完全。

无论采用何种预硫化方法,最基本的硫化剂就是H

2

S,因而只要在预硫化条件下

容易提供H

2

S的物质,如低相对分子量的有机硫化物等,均可用作硫化剂。预硫化过程通常分为硫化剂的分解和金属相态的转化2个步骤。

(1)硫化剂分解

CH

3SSCH

3

+3H

4

+2H

2

S

CS

2 +4H

4

+2H

2

S

(2)金属相态转化

Mo0

3+2H

2

S+H

2

+3H

2

O

3Ni0 +2H

23S

2

+3H

2

O

9CoO+8H

2S+H

9

S

8

+ 9H

2

O

W0

3+2H

2

S+H

2

+3H

2

O

图一 MoO

3

硫化反应可能的途径

加氢催化剂通常台有钴、钼、镍、钨等金属,这些金属一般是以金属氧化态的形式载于氧化铝或二氧化硅等载体上,氧化态金属必须转化成金属硫化态的形

式,才能表斑出较高的加氢精制或加氨裂化活性,因此加氢催化荆在使用前必须进行预硫化。传统的做法是采用器内预硫化,即在催化剂装入加氢反应器后进行硫化。加氢催化剂的器内预硫化过程存在着如下缺点:

①需要专用的预硫化设备和仪表;②硫化时间较长,影响正常开工;③容易产生催化刺床层温度陡升(飞温),造成催化剂活性暂时或永久损失;④硫化刺均为有毒有害物质,危害操作人员的健康并污染环境;⑤易造成催化剂硫化不完全影响其活性。近年束开发的器外预硫化工艺则克服了。

二、加氢催化剂预硫化技术进展

2.1国内预硫化技术

国内的预硫化工艺一般为器内预硫化。1995年,锦州石化公司制氢装置首次使用中石化北京设计院与化工部西北化工研究院开发出的GLJ-B型固体催化

剂,这是一种以无机硫化物为有效组份,以从Al

2O

3

为载体的固体硫化剂,具有

使用安全可靠,操作简单、方便,硫化效果好的优点. 1996年兰州石化公司裂解汽油加氢装置二段加氢催化剂的预硫化,使用了湖北省化学研究所研制的固体硫化剂,加氢催化剂完全硫化时间在10 h左右,与用DMDS硫化相比,节约资金134万元。专利CN1335362采用先低温干法硫化、后高温湿法硫化的方式,使得催化剂干燥和硫化可同时进行,缩短催化剂硫化时间,减少硫化油用量,降低硫化过程的成本,提高催化剂的硫化效果。专利CN1417299[6]发明了一种新的加氢催化剂预硫化的方法,该法直接用一种溶解有元素硫的硫化烯烃溶液作为浸渍液,然后在惰性氛围下加热催化剂。该法硫化后加氢催化剂的破碎率大幅度的降低,并大大提高硫的保留度。另外,新开发的器内预硫化工艺使用的是固体硫化剂,即将固体硫化剂与加氢催化剂混合装填在加氢反应器内,通人氢气并加热,在氢气反应器内实现硫化剂的分解反应和加氢催化剂硫化反应的藕合。一般是将固体硫化剂置于加氢催化剂的上部,也可将固体硫化剂置于加氢催化剂的中部,但不能置于下部。

虽然我国在器外预硫化技术这方面的研究起步较晚,但也取得了很大的进展。中国石油化工科学研究院成功研制出新型加氢催化剂器外预硫化技术,这一国内首家具有世界先进水平的新型加氢催化剂器外预硫化装置落户湖南岳阳长炼公司催化剂厂,至今运行良好。长炼催化剂生产厂将硫化物用浸渍等方法预先

固定在催化剂表面上,成品出厂后装人工业反应器内,在正常开工过程中引人氢气和原料油的同时缓慢升温至活化温度,一般需要花费20 h左右,即能完成催化剂硫化的全过程。齐鲁石化公司研究院吸收了荷兰AKZO公司的先进技术,采用器外预硫化,在制备催化剂的同时把硫化剂加人,装置开车时直接升温活化即可。实验结果表明,用此方法硫化的催化剂活性高,且稳定性好,综合性能优于用CS2硫化的催化剂。由我国自主开发、目前国内最大的3000吨/年加氢催化剂器外预硫化工业装置,日前在中国石化抚顺石油化工研究院建成并完成工业试生产,经鉴定达到国际先进水平。该装置在加氢催化剂的器外预硫化过程设计上更加周密、合理、安全、环保,主要设备完全实现国产化,自动化程度高,是目前国内第一条大型器外预硫化型催化剂生产线。该生产装置的开发、建设和试生产成功,标志着多年来困扰我国石化加氢催化剂领域的技术难题得到有效解决。2.2国外预硫化技术

由于器外预硫化技术具有简单、高效、低成本等优点,自80年代中期,国外许多公司纷纷致力于器外预硫化德研究。

CRI公司开发出actiCAT催化剂硫化技术,该技术采用两种预硫化方法。一种是在惰性气氛中,低于硫熔点的温度下,将催化剂与元素硫混合,使硫升华进人催化剂孔,形成催化剂和元素硫的混合物。然后将混合物与高沸点油或烃类溶剂混合。在H2存在下,将该混合物加热到硫的熔点以上,使进人催化剂孔硫和催化剂反应,生成金属硫化物。另一种方法是,先将确高沸点油或烃类溶剂混合,形成预硫化的悬浊液。惰性气爹低于硫熔点的温度加热该悬浊液,并在该条件下,浸渍催让够长时间。然后在H

存在下加热到高于硫熔点的温度,仗催化剂孔中

2

的硫与催化剂反应生成金属硫化物。该技术可少以往技术开工时硫的流失,也可避免发生十分集中的放应。“actiCAT”催化剂可以在比较宽的温度范围内进行(38℃-371℃),由于放热比较分散,只在260℃时产生一个相温升。所以该法能够避免催化剂床层温度陡升,使得在各段的硫化更加完全。

TRIACT公司近年来在成功地开发出沸腾床器外再生技术的基础上,又开发出了沸腾床器外预硫化技术,该技术是利用硫化氢和氢气在沸腾床反应器内进行预硫化,在另一个沸腾床反应器中采用一种气体钝化剂进行钝化。这种经过硫化和钝化的催化剂可以暴露在空气中,再添加到反应器中去,加氢装置可以直接加

工原料油,进行正常操作,而不需要任何预处理,也不存在硫化放热和生成水的问题,该技术被称为真正的器外预硫化技术。在TRIACT公司开发的器外预硫化技术中.硫化和钝化气体除了能够起硫化和钝化作用外,还可以作为床层膨胀用气,床层膨胀率维持在10%-20%。该技术的开发成功使加氢催化剂正做到了器外预硫化。

2002年,AKZO公司提出一种新的预硫化技术,采用浸渍法或捏合法将有机硫添加剂载到催化剂表面和微孔内,添加剂可以是琉基二甲苯甲酸,也可以是通

式为HS-R

1-COOR的有机物(R

1

代表二价烃,R代表氢、碱金属、碱土金属、钱或

烷基)。硫化剂采用H

2和H

2

S或在H

2

下能产生H

2

S的含硫化合物(如CS

2

,DMS,DMDS

等)。硫化过程在移动床或膨胀床中进行。先将含有添加剂的催化剂装人反应器,然后通人气相硫化剂。由于含硫添加剂均匀分散在催化剂表面和孔内,缩短了硫向催化剂孔内扩散的时间,这会使得硫化更容易进行,耐硫化更均匀。

3. 影响加氢催化剂预硫化的因素

3.1 硫化温度

温度是预硫化过程中最敏感的操作参数,温度控制过程中应当注意的因素是:高温下催化剂金属的氢气还原。美国联合油公司限制硫化剂的注入温度不得高于175℃,Ketjen公司推荐使用MoNi系列催化剂硫化剂注入温度为150℃,都是为了防止高温下催化剂金属氧化物在氢气气氛下被还原。严格控制升温速度和有2-3个恒温阶段,确保硫化过程中反应器入出口温度差低于25℃,不致于超过30℃。催化剂的低温硫化有较好的脱氮效果,但最终温度应高于硫化剂的分解温度。

3.2 硫化时间

一般说来,硫化速度随硫化温度升高而增加,最后达到一个临界值,催化剂达到完全硫化的时间,随着硫化温度升高而递减。每个温度下的硫化速度都有一个饱和极限值,达到此极限值后,即使再延长硫化时间,催化剂上的硫含量也不会明显增加。

3.3硫化氢分压

在硫化时间及温度固定的条件下,硫化速度取决于硫化氢分压或循环氢中硫

化物的含量。当硫化氢分压或循环氢中硫的浓度增加到一定值时,硫化速度就不再增加。因此在对催化剂进行硫化时,硫化氢浓度或循环氢中硫化物的含量必须控制一定值,以保证催化剂硫化完全。

3.4 H

2

S浓度

当增大反应气中H

2S浓度时,硫化反应速度加快,但是当H

2

S浓度增加到一定

浓度之后,硫化反应速度就不会增加。因为硫化反应是强放热反应,当H

2

S浓度

增加时,硫化反应迅速,再短时间内放出大量的热量,易使催化剂床层飞温,使

催化剂因局部过热而烧结。另外H

2

S浓度过高,可形成含硫高的化合物。以NiO为

例,正常形成Ni

3S

2

,当H

2

S浓度过商时,可形成Ni

6

S5或NiS,而且不稳定。同时在

实际硫化过程中,受反应系统抗H

2S腐蚀性能的限制,不可能采用过高的H

2

S浓度。

H

2

S浓度过低时,催化剂硫化不完全,

4.总结

传统的器内硫化使用的是有毒、易燃、易腐蚀、有难闻气味的硫化物,给炼油厂带来诸如装卸、运输、储存、设备保养和环境污染等一系列问题,而且硫化物注人速度等控制操作的任何失误均会造成催化剂床层超温事故。加氢催化剂器外预硫化技术还在不断地发展和完善,利用方便、高效的器外预硫化代替传统的器内硫化已成为今后发展趋势。开发、推广国内的器外预硫化技术,在国内建立器外预硫化的基地,将加氢催化剂集中处理,提高设备有效利用率,防止环境污染,提高催化剂的预硫化水平及其活性。

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

加氢催化剂硫化方案

内蒙庆华20万吨/年甲醇装置 JT-8焦炉气加氢催化剂予硫化方案 一、催化剂装填前准备 1.检查反应器内清洁无水无杂质; 2.准备好内件、填料及催化剂,其中有: ①2mm不锈钢丝网16张左右(直径与反应器直径相同); ②瓷球约数吨左右; ③催化剂;JT-8 装填数量:87M3其中:予加氢反应器D61201A、B各14.5 M3 一级加氢反应器D61202:29.06 M3;二级加氢反应器D61205:29 M3 ④φ300、6.5-10.5米长帆布筒子2根、剪刀2把; ⑤装料漏斗(需预制); ⑥500×700轻质木板2块; ⑦葫芦2只或吊车。 ⑧在设备内的工作人员以及所需的人孔值班人员在装填作业开始前必须具备具有认可的安全培训,所有时候进入设备内工作都须持有进入许可证以及反应器内气体测试报告。 ⑨装填前要对设备进行检验以确保所需的内件都已正确的安装好,特别是温度计导管和取样管,还要检验所有的施工材料是否都已拆掉并且反应器壁已清除氧化物和铁屑。钢丝网除锈,用白布擦净,检查各测温热电偶管,取样管的安装及连接管口方位是否符合图纸要求,特别注意固定筛网支架。 二、装填作业 1、检查反应器内清洁无水无杂质; 2、底部格栅安装牢固; 3、画出催化剂装填上下界限标记及中间分段标记; 4、底部格栅上面平铺1层不锈钢丝网; 5、装入填料(瓷球)至标志线铺平;瓷球上面平铺2层不锈钢丝网 6关闭下部人孔; 7装催化剂 装填催化剂时应避免阴天,下雨,以防催化剂受潮而影响其使用活性。催化剂装填之前

应先筛去粉尘。催化剂装填时,从上人孔放入加料帆布筒10.0米左右和漏斗连接;催化剂装填时视装填设备及人员情况,可进行一台或多台反应器的装填作业。 ①漏斗内倒入催化剂0.5-1.0吨;可根据具体情况确定。并用吊车吊至反应器人 孔上方,漏斗与帆布筒相连,放入催化剂。 ②视吊装催化剂的量,取出漏斗和帆布筒由软梯进入反应器,用木板刮平催化剂; ③刮平后,根据具体装填高度,帆布筒剪掉约1米,继续装催化剂,装量根据第 一次实际装填情况可调节。在整个装填过程中,要求均匀平整,防止粉碎变潮, 勿在催化剂上直接踩踏。 ④装入催化剂至分段标记高度后,均匀平整,然后继续装入催化剂。 ⑤装入催化剂至额定高度后,扒平后铺2层不锈钢丝网,再装瓷球; ⑥瓷球装到预定高度,扒平后铺一层不锈钢丝网; 7、安装并固定填料压实格栅; 8、安装上人孔。各加氢反应器催化剂的装填方法基本相同。 三、JT-8型焦炉气加氢催化剂的硫化 催化剂在正常使用之前,为获得较高的加氢转化活性,应对其进行硫化。 采用H2S为硫化剂时,发生如下反应: MoO3+2H2S+H2→MoS2+3H2O 系统在试压、试漏结束后,以氮气或其它惰性气体吹净置换后,开始催化剂的升温。升温时,可用氮气或氢氮气。 在对处理有机硫含量较高,硫形态较复杂的焦炉气原料时,为了获得较高的加氢转化活性,催化剂首次使用时,应进行预硫化,预硫化结束时,催化剂吸硫量约为本身重量的4-5%左右。 预硫化条件推荐如下: 气源:氢氮气或含氢的焦炉气中配入CS2 催化剂床层温度升至180℃以上时可在硫化用气中配入CS2。 空速:200~500h-1,压力:常压或低压(≤0.5MPa) 气体中含硫量:0.5~1.5%(体积)氧含量<0.2% 边升温边预硫化(升温速度20℃/小时),260℃、300℃分别恒温2小时,最终升温至正常的操作温度,再恒温,按催化剂理论吸硫量将CS2加完为止,可认为预硫化结束,然后系统逐步升压到正常操作压力,转入正常操作。

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

预加氢催化剂预硫化方法

精心整理 中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕, (2)绘出催化剂干燥脱水升、恒温曲线。 (3) 2、干燥示意流程 ↓N2 ↑↓ ↓放水 3 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃ 床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15

250~280 ≮200- 至干燥结束 250→<150≯15020~25 4~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa/h的升 温速度将反应器入口温度升至250℃, 不到200 (2)在干燥过程中,每2 (3) (4) <150 (如DMDS)分解生成H2S,H2S使 H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。 (3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。 (4)准备好不同规格的H 2S 检测管。硫化过程中每1小时测一次循环氢中的H 2S 浓度。 2、催化剂硫化示意流程 硫化油↓DMDS ↑ ↑分液罐→循环压缩机↓ ↑ ←高分←水冷←空冷←换热器 3、催化剂硫化条件 反应压力:操作压力 (CS 2)。 则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。 表3催化剂硫化阶段温度要求 反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h 循环氢H 2S 控制 v% 常温→150 15~20

2015年高校专业代码参考目录汇总

2015年高校专业代码参考目录汇总 01哲学 0101哲学类 010101哲学 010102逻辑学 010103宗教学 010104伦理学 02经济学 0201经济学类 020101经济学 020102国际经济与贸易 020103财政学 020104金融学 020105国民经济管理 020106贸易经济 020107保险 020109金融工程 020110税务 020111信用管理 020112网络经济学 020113体育经济 020114投资学 020115环境资源与发展经济学 020116海洋经济学 020117国际文化贸易 020120经济与金融 03法学 0301法学类 030101法学 030103知识产权 030120监狱学 0302马克思主义理论类 030201科学社会主义与国际共产主义运动030202中国革命史与中国共产党党史0303社会学类 030301社会学 030302社会工作 030303家政学 030304人类学 030305女性学 0304政治学类 030401政治学与行政学 030402国际政治 030403外交学 030404思想政治教育 030405国际文化交流 030406国际政治经济学 030407国际事务 0305公安学类 030501治安学 030502侦查学 030503边防管理 030504火灾勘查 030505禁毒学 030506警犬技术 030507经济犯罪侦查 030508边防指挥 030509消防指挥 030510警卫学

030511公安情报学 030512犯罪学 030513公安管理学 030514涉外警务 04教育学 0401教育学类 040101教育学 040102学前教育 040103特殊教育 040104教育技术学 040105小学教育 040106艺术教育 040107人文教育 040108科学教育 040109言语听觉科学 040110华文教育 0402体育学类 040201体育教育 040202运动训练 040203社会体育 040204运动人体科学 040205民族传统体育 040206运动康复与健康 040207休闲体育 0403其他类 040301农艺教育 040302园艺教育 040303特用作物教育 040306畜禽生产教育 040307水产养殖教育 040308应用生物教育 040311农产品储运与加工教育040312农业经营管理教育040313机械制造工艺教育040314机械维修及检测技术教育040315机电技术教育 040316电气技术教育 040317汽车维修工程教育040318应用电子技术教育040322食品工艺教育 040328建筑工程教育 040329服装设计与工艺教育040330装潢设计与工艺教育040331旅游管理与服务教育040332食品营养与检验教育040333烹饪与营养教育 040334财务会计教育 040335文秘教育 040336市场营销教育 040337职业技术教育管理 05文学 0501中国语言文学类 050101汉语言文学 050102汉语言 050103对外汉语 050104中国少数民族语言文学050105古典文献 050106中国语言文化 050107应用语言学

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

预加氢催化剂预硫化方案

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

再生资源科学与技术专业毕业实习周记范文原创全套

再生资源科学与技术专业毕业实习周记全 套 (本人在再生资源科学与技术专业相关岗位3个月的实习,十二篇周记,总结一篇,全部原创,共6500字,欢迎下载参考) 姓名:杜宗飞 学号:2011090118 专业:再生资源科学与技术专业 班级:再生资源科学与技术专业01班 指导教师:赵晓明

第1周 作为再生资源科学与技术专业的大学生,我很荣幸能够进入再生资源科学与技术专业相关的岗位实习。相信每个人都有第一天上班的经历,也会对第一天上班有着深刻的感受及体会。尤其是从未有过工作经历的职场大学们。 头几天实习,心情自然是激动而又紧张的,激动是觉得自己终于有机会进入职场工作,紧张是因为要面对一个完全陌生的职场环境。刚开始,岗位实习不用做太多的工作,基本都是在熟悉新工作的环境,单位内部文化,以及工作中日常所需要知道的一些事物等。对于这个职位的一切还很陌生,但是学会快速适应陌生的环境,是一种锻炼自我的过程,是我第一件要学的技能。这次实习为以后步入职场打下基础。第一周领导让我和办公室的其他职员相互认识了一下,并给我分配了一个师父,我以后在这里的实习遇到的问题和困难都可以找他帮忙。 一周的时间很快就过去了,原以为实习的日子会比较枯燥的,不过老实说第一周的实习还是比较轻松愉快的,嘿嘿,俗话说万事开头难,我已经迈出了第一步了,在接下去的日子里我会继续努力的。生活并不简单,我们要勇往直前!再苦再累,我也要坚持下去,只要坚持着,总会有微笑的一天。虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 第2周 过一周的实习,对自己岗位的运作流程也有了一些了解,虽然我是读是再生资源科学与技术专业,但和实习岗位实践有些脱节,这周一直是在给我们培训那些业务的理论知识,感觉又回到了学校上课的时候。虽然我对业务还没有那么熟悉,也会有很多的不懂,但是我慢慢学会了如何去处理一些事情。在工作地过程中明白了主动的重要性,在你可以选择的时候,就要把主动权握在自己手中。有时候遇到工作过程中的棘手问题,心里会特别的憋屈,但是过会也就好了,我想只要积极学习积极办事,做好自己份内事,不懂就问,多做少说就会有

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

催化剂预硫化

黑龙江安瑞佳石油化工有限公司 学习资料 (催化剂预硫化方法) 气分车间 2013年4月 催化剂的预硫化

催化剂的预硫化有两种方法:一是干法预硫化,亦称气相预硫化,即在循环氢或氢氮混合气或氢气与丙烷或氢气与丁烷混合气存在下注入硫化剂进行硫化;二是湿法预硫化,亦称液相预硫化,即在循环氢存在下以轻油等为硫化油携带硫化剂注入反应系统进行硫化。 催化剂硫化的基本原理 催化剂硫化是基于硫化剂(CS2或二甲基二硫DMDS )临氢分解生成的H2S, 将催化剂活性金属氧化态转化为相应的硫化态的反应。 干法硫化反应:用氢气作载体,硫化氢为硫化剂。 M O O3 + 2H2S + H2 ----------- ? M0S2 + 3H2O 9CoO + 8H2S + H2 --------- ? C09S8 + 9H2O 3NiO + 2H2S + H2 ________ . M3S2 + 3出0 湿法硫化反应:用氢气作载体,CS2为硫化剂。 CS2 + 4H2 ----------- ? 2H2S + CH4 M O O3 + CS2 + 5H2 --------------- k M0S2 + 3H20 + CH4 M O O3 + CS2 + 3H2 ---------------- ? M0S2 + 3H2O + C 9C O O + 4CS2 + 17H2 -------------- 09S8 + 9H20 + CH4 9C O O + 4CS? + 9H2 ----------- k C09S8 + 9H2O + 4C 3Ni0 + 2CS2 + 5H2 ------------ ? M3S2 + 3出0 + CH4 基于上述硫化反应式和加氢催化剂的装量及相关金属含量可估算出催化剂硫化剂的理论需要量。其硫化剂的备用量(采购量)一般按催化剂硫化理论需硫量的1.25倍考虑即可。

2018资源循环科学与工程专业就业方向与就业前景分析

2018资源循环科学与工程专业就业方向与就业前景分析 资源循环科学与工程专业面向国家节能减排、循环经济、低碳经济等战略性新兴产业需要,适应未来科技发展,培养系统掌握资源循环科学与工程基础理论知识,具有宽厚的专业知识、实践能力和良好的科学素养,能在资源循环利用、能源开发与利用以及循环经济等领域的高等院校、科研机构、政府机关、工矿企业等部门从事资源循环利用的科学研究、规划管理、技术研发等工作的高级复合型人才。 2、资源循环科学与工程专业就业方向 本专业学生毕业后可从事医药产品的生产、科技开发、应用研究和经营管理等方面工作 从事行业: 毕业后主要在新能源、环保、互联网等行业工作,大致如下: 1新能源 2环保 3互联网/电子商务 4广告 5机械/设备/重工 6非盈利机构 7专业服务(咨询、人力资源、财会) 8中介服务 从事岗位: 毕业后主要从事销售工程师、设备工程师、等工作,大致如下: 1销售工程师

2设备工程师 3研发工程师 4验证工程师 5qa 6工艺工程师 7销售经理 8制剂研究员 工作城市: 毕业后,哈密、南京、深圳等城市就业机会比较多,大致如下: 1哈密 2南京 3深圳 4福州 5上海 6北京 7厦门 8成都 3、资源循环科学与工程专业就业前景 学生就业有多种选择,可以在国家和北京市企事业单位、外资企业、上市公司中就业;通过出国留学、推荐或考取研究生、双学位、工程硕士等多种途径进一步深造。我院已经形成了本科生、硕士研究生、博士研究生培养的完整体系,每年招收硕士研究生约120人,博士研究生约30人,为本科生的学习和深造提供了广阔的空间。学生就业行业分布广泛,本专业毕业的学生可在资源循环、以及与资源综合利用相关的建材、冶金、新材料产业、原材料产业等行业从事工业规划、技术开发、工艺及设备设计、清洁生产评估与咨询等工作。 资源循环科学与工程和它的“同胞兄弟”再生资源科学与技术专业相比,更加重了对实践能力的锻炼。以南开大学为例,该校的资源循环专业主要教授

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

2019年再生资源科学与技术专业大学排名

2019年再生资源科学与技术专业大学排名 篇一:2019年大学十大热门专业排行榜 2019年大学十大热门专业排行榜 专业专注度代表着专业的热门程度,关注度越高的专业往往是高考报考的热门专业,本文依据新浪院校库专业的浏览量进行排序,统计出最受考生关注的10大高考专业,供考生和家长报考时参考,这些专业是:金融学、土木工程、国际经济与贸易、机械设计制造及其自动化、会计学、经济学、电气工程及其自动化、临床医学、法学、英语。NO.1金融学 金融学是从经济学中分化出来的应用经济学科,是以融通货币和货币资金的经济活动为研究对象,具体研究个人、机构、政府如何获取、支出以及管理资金以及其他金融资产的学科。 金融学专业主要培养具有金融保险理论基础知识和掌握金融保险业务技术,能够运用经济学一般方法分析金融保险活动、处理金融保险业务,有一定综合判断和创新能力,能够在中央银行、商业银行、政策性银行、证券公司、人寿保险公司、财产保险公司、再保验公司、信托投资公司、金融租赁公司、金融资产公司、集团财务公司、投资基金公司及金融教育部门工作的高级专门人才。 金融学主要学习货币银行学,方向有货币银行学、商业银行经营管理、中央银行、国际金融、国际结算、证券投资、投资项目评估、投资银行业务、公司金融等。

金融学专业毕业生总体上的就业方向有经济分析预测、对外贸易、市场营销、管理等,如果能获得一些资格认证,就业面会更广,就业层次也更高端,待遇也更好,比如特许金融分析师(CFA)、特许财富管理师(CWM)、基金经理、精算师、证券经纪人、股票分析师等。 中国人民大学金融学的整体实力最强,各个分科目实力平均;北京大学侧重金融管理;厦门大学侧重货币银行、金融工程;复旦大学是仅次于人大的金融综合性大学,尤其是国际金融表现突出;对外经 济贸易大学国际金融专业实力强,十分注重抓英语;南开大学的保险精算全国最好;中央财经大学具有区位优势,有好的学校条件;湖南大学是全国最早引入保险精算的学校;西南财经大学该专业为国家级重点学科;西安交通大学该专业为中国人民银行直属院校重点专业;上海财经大学金融学科在全国的金融教学和学术研究领域具有较高的声望和较大的影响;中南财经政法大学的金融证券实力强大,是国内研究方向最齐全,专业最全的学科;清华大学金融工程、微观金融走在我国最前列。 NO.2土木工程 所谓的大土木。是指一切和水、土、文化有关的基础建设的计划、建造和维修。现时一般的土木工作项目包括:道路、水务、渠务、防洪工程及交通等。过去曾经将一切非军事用途的民用工程项目,归类入本类,但随着工程科学日益广阔,不少原来属于土木工程范围的

预加氢催化剂预硫化方案审批稿

预加氢催化剂预硫化方 案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案 中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月

一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15 250~280 ≮200 - 至干燥结束250→<150≯150 20~25 4~5 4、干燥结束标准

高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

材料科学与工程专业介绍

材料科学与工程专业介绍 篇一:材料科学与工程专业介绍 材料科学与工程专业 材料科学与工程即材料科学与工程专业。 材料科学与工程(英文名:Materials Science and Engineering,缩写MSE)。在国务院学位委员会学科评议组制定和颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》中,材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、耐磨材料、表面强化、材料加工等。 1专业特色 材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。 2培养目标 材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、 材料科学研究者 高素质全面发展的科学研究与工程技术人才。培养要求 材料科学与工程专业学生主要学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。[2] 3知识领域 1.掌握金属材料、无机非金属材料、高分子材料、防腐专业以及其它高新技术材料科学的基础理论和材料合成与制备、材料复合、材料设计等专业基础知识; 2.掌握材料性能检测和产品质量控制的基本知识,具有研究和开发新材料、新工艺的初步能力; 3.掌握材料加工的基本知识,具有正确选择设备进行材料研究、材料设计、材料研制的初步能力; 4.具有本专业必需的机械设计、电工与电子技术、计算机应用的基本知识和技能; 5.熟悉技术经济管理知识; 6.掌握文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。 7.熟练掌握材料测试的仪器使用。

相关文档
相关文档 最新文档