文档库 最新最全的文档下载
当前位置:文档库 › 整流滤波电路及其应用

整流滤波电路及其应用

整流滤波电路及其应用

实验5 整流、滤波和稳压电路

实验三 整流、滤波和稳压电路 一、实验目的 1、学会用示波器观察半波整流电路,全波整流电路的整流作用,及滤波电路的滤波作用和效果。 2、学会测量半波整流电路,会波整流电路输入电压值与输出电压值的方法。 二、实验器材 示波器一台,可调交流电压源一台,万用表一只,直流毫安表一只,整流二极管四只,电阻和电容。 三、实验原理 单相半波整流电路,单相桥式整流电路及滤波和稳压电路的原理,参看教材第五章。 四、实验内容及步骤 一)、半波整流电路的测量与观察。 1、按线路图1接好电路,将RW 调至最大。 2、置可调交流电压源电压~10V 左右。 3、将输入电压和输出电压分别接到示波器 输入端CH1和CH2上。 4、接通电源,在示波器上观察到输入和输出电压 波形,调节垂直偏转因数。使波形高度适宜, 便于观察。 5、用万用表测出输入电压(交流档)Ui= 测出输出电压平均值(直流档)Uo= 6、将输入电压和输出电压的波形画在图上。

二)、观察滤波电路的滤波作用。 在图1的A 、B 两点间分别接入电容C1=1μF , C2=10μF ,C3=47μF ,(注意电容的接法)。 测量接入电容后的输出电压平均值U01= V U02= V U03= V 并将输出电压波形画在图上。 三)、单相桥式整流电路的测量与观察。 1、按图2接电路,并将输出端电压接到示波器CH2上,(输入交流电压源电压不要接到示波器上)。 2、调正输入交流电压源电压~10V 左右,测出输入 交流电压有效值Ui= V ,测出输出电压平均值(直流档)Uo= V 。 3、将输出电压的波形画在图上。 4、按图3接好电路,并在示波器上观察输出电压波形,同时用万用表测出输出电压平均值Uo= V 。 5、调节RW ,观察输出电压大小如何变化? 图 3 图2

整流滤波电路详解

为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。 图2电感滤波电路 在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。 图3电感滤波电路波形图 已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为 要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算 由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。 电容滤波原理详解 1.空载时的情况 当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

整流滤波稳压实验报告

整流滤波及稳压电路 学院:机电工程学院专业:电气工程及其自动化学号:14040410039 姓名:廖芳群 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz 图一 1、整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。

图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化时,输出电压稳定。 ⑶温度系数T S 小,T U S T ??=/0(mV/℃),T S 表示温度变化时,输出电压稳定。 四、实验内容

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下:

整流滤波电路

第一节整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和 负载电阻R fz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变 电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的 波形如图5-2(a)所示。在0~π时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在2π~3π时间内,重复0~π 时间的过 程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电 压U sc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流 得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但 极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。

整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻 并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω 100Ω 50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω) 200Ω 100Ω

50 Ω 25 Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: a v g ) r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

整流电路、滤波电路及稳压电路

第七章整流电路、滤波电路及稳压电路 知识目标 1.掌握单相桥式整流电路的结构和工作原理。 2.了解电容滤波电路和电感滤波电路的作用。 3.了解稳压电路的工作原理和特点。 4.了解集成稳压器的使用方法。 技能目标 1.掌握单相桥式整流电路。 2.掌握集成稳压器的基本使用方法和连接方法。 3.能够使用万用表测量电压,能够使用双踪示波器观察测试波形。 4.能够根据直流稳压电源框架组装直流稳压电源。 第一节整流电路 一、整流与整流电路 利用二极管的单向导电性可以将交流电转换为直流电,这一过程称为整流,这种电路就称为整流电路。 常见的整流电路有半波整流电路和全波整流电路。 二、单相桥式整流电路的结构和特点 单相桥式整流电路利用整流二极管的单向导电性,将交流电变成单向脉动直流电,其组成结构如图7-1所示。 图7-1单相桥式整流电路 图7-1中,T r表示电源变压器,作用是将交流电网电压u1变成整流电路要求的交流电压;R L是直流供电的负载电阻;4只整流二极管VD1~VD4依次接成电桥的形式,故称桥式整流电路。 桥式整流电路的特点是:输出电压的直流成分得到提高,脉冲成分被降低,每只整流二极管承受的最大反向电压较小,变压器的利用效率高,因此被广泛使用。 单相桥式整流电路的实现 在实际应用中,单相桥式整流电路可以用四个独立的整流二极管实现,也可以用集成器件“桥堆”来实现。

图7-2所示为单相桥式整流电路的习惯简化画法。 图7-2单相桥式整流电路的习惯简化画法 三、单相桥式整流电路的工作原理 图7-3单相桥式整流电路波形 在图7-3单相桥式整流电路波形中,在u的正半周时,u2>0时,VD1、VD4导通,VD2、VD3截止,故有图示i D1(i D4)的波形; 同样,在u1的负半周时,u2<0时,VD1、VD4截止VD2、VD3导通,故有电流i D2(i D3)。 可见在u的正、负半周均有电流流过负载电阻R L,且电流方向一致,综合得到u o(i o)的波形。 低音炮音箱 如图7-4所示,日常生活中使用的低音炮音箱,有些采用了专业的桥式整流技术,通过内置的桥式整流电路,使得低频带通电路的信号顺畅与稳定,可以使声音更加纯净。 图7-4低音炮音箱 第二节滤波电路 经过整流电路后的输出电压已经是单相的直流电压,但是其中含有直流和交流的成分,电压的大小仍有变化,这种直流电称为脉动直流电。对于某些工作(如蓄电池充电),脉动电流已经可以满足要求,但是对于大多数电子设备,需要平滑的直流电,故整流电路后面都要接滤波电路,尽量减小交流成分,以减小整流电压的脉动程度,适合稳压电路的需要,这就

整流滤波电路实验报告(模板加实验图片)

学生姓名: XX 学号:00000000 专业班级:XXXXXXXXXXXXXX 实验时间:XXXX时XXX分第XX周星期X 座位号:XX 上面是我自己的信息,被我改成“XX”,下载者自行修改,最下面还有我做实验的图片,如果没做实验或者实验一塌糊涂可以参照,或者P成黑白or照着画,这5财富值,你看值,就下载!我很给力的!!!!! 整流滤波电路实验 一.实验目的 1.研究半波整流电路、全波桥式整流、滤波电路; 2.测绘电学原件的伏安特性曲线,学习图示法表示实验结果。 二.实验器材 6伏交流电源,双踪示波器,电解电容470μF×1、100μF×1,整流二极管IN4007×4,电阻箱,导线若干。 三.实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四.实验步骤

1、连接好示波器,将信号输入线与6V 交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。 3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。改变电阻大小(200Ω、100Ω、50Ω、25Ω) 6、更换10μF的电容,改变电阻大小(200Ω、100Ω、50Ω、25Ω) 7、分别记下并描绘出各波形图。 五.实验数据以及波形图

整流、滤波和稳压电路

整流、滤波和稳压电路 第二节滤波电路 交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。 一、电容滤波 电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候, 电容器两端的电压逐渐升高,直到接近充电电 压;放电的时候,电容器两端的电压逐渐降低, 直到完全消失。电容器的容量越大,负载电阻值 越大,充电和放电所需要的时间越长。这种电容 带两端电压不能突变的特性,正好可以用来承担 滤波的任务。 图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D受反向电压,不能导通,于 是Uc便通过负载电阻R fz放电。由于C和R fz较 大,放电速度很慢,在e2 下降期间里,电容器C上 的电压降得不多。当e2 下一个周期来到并升高到大 于Uc时,又再次对电容器充电。如此重复,电容器 C两端(即负载电阻R fz:两端)便保持了一个较 平稳的电压,在波形图上呈现出比较平滑的波形。

实验十一整流滤波与并联稳压电路

实验十一 整流滤波与并联稳压电路 一、实验目的 1.熟悉单相半波、全波、桥式整流电路。 2.观察了解电容滤波作用。 3.了解并联稳压电路。 二、实验仪器及材料 1.示波器 2.数字万用表 三、实验内容 1.半波整流、桥式整流电路实验电路分别如图13.1,图13.2所示。 分别接二种电路,用示波器观察V 2及V L 的波形。并测量V 2、V D 、V L 。 图13.1 图13.2 图13.1是二极管半波整流,如果忽略二极管导通电压,输出应是半波波形。如果输入交流信号有效值为1U ,输出信号平均值为 11 45.02U U ≈π ,有效值为 2 1U 。图13.2是二极管 桥式整流电路,如果忽略二极管导通电压,输出应是全波波形。输出信号平均值为 11 9.022U U ≈π ,有效值为1U 。 2.电容滤波电路 实验电路如图13.3 (1)分别用不同电容接入电路,R L 先不接,用示波器观察波形,用电压表测V L 并记录。 (2)接上R L ,先用R L =1K Ω,重复上述实验并记录。 (3)将R L 改为150Ω,重复上述实验。 电容滤波电路是利用电容对电荷的存储作用来抑制纹波。在不加入负载电阻时,理论上应输出无纹波的稳定电压,但实际上考虑到二极管反向电流和电容的漏电流,所以仍然可以看到纹波,由于大电容的漏电流较大,所以接入470μF 时观察到的纹波比接入10μF 时的大。接入负载后,在示波器中可看到明显的纹波。纹波中电压处于上升部分时,二极管导通,通

过电流一部分经过负载,一部分给电容充电,其时间常数为L R r R C R =//(,r 为输入电路内阻);下降部分时,二极管截止,负载上的电流由电容提供,其放电时间常数为C R L 。一般有r R r R L L >>>,因此滤波的效果主要取决于放电时间常数, 其数值越大滤波后输出纹波越小、电压波形越平滑,平均值也越大。平均值)41(21C R T U U L Om - =。 图13.3 电容滤波电路 图13.4 并联稳压电路 稳压管稳压电路由稳压二极管和限流电阻组成,利用稳压管的电流调节作用通过限流电阻上电流和电压来进行补偿,达到稳压目的,因而限流电阻必不可少。对于稳压电路,一般用稳压系数r S 和输出电阻O R 来描述稳压特性, r S 表明输入电压波动的影响,O R 表明负载电阻对稳压特性的影响。 不变 L R i i O O r U U U U S ??= ,不变 i U O O O I U R ??- =。分析电路,设稳压管两端电压为Z U ,流过稳 压管的电流为Z I ,则稳压管交流等效电阻Z Z Z I U r ??=。根据交流等效电路可知: L Z L Z O i i O O i r R r R R r U U U U U U S +?=???= ,Z O r R R =。 3.并联稳压电路

6.11演示实验11桥式整流电容滤波电路

Electronics Workbench 5.0C应用基础教程 6.11 演示实验11:桥式整流电容滤波电路 一、教学目的 1. 演示桥式整流输出电压的波形并与变压器次级波形作比较。 2. 演示加有电容滤波的输出电压的波形,负载变化后对输出电压波形的影响。 3. 测试各种情况下的输出电压,演示当一支二极管开路、短路后输出电压的变化,加深理解桥式整流电路的应用。 二、演示内容 1. 创建单相桥式整流、电容滤波实验电路 (1)双击桌面Wewb32.exe快捷方式图标,启动EWB5.0进入EWB5.0工作界面。 (2)按图6.11.1在电路工作区连接电路 图6.11.1 单相全波整流电容滤波实验电路 ◆安放元器件(或仪器) 单击打开相应元器件库(或仪器库),将所需元器件(或仪器)拖拽至相应位置。利用工具栏的旋转、水平翻转、垂直翻转等按钮使元器件符合电路的安放要求。 ◆连接电路 (3)按图6.11.1所示,给元器件标识、赋值(或选择模型) 双击元器件打开元件特性对话框,进行相应设置。 全波整流波形 电源电压波形 (示波器面板波形显示框) 图6.11.2 电源与全波整流波形 - 181 -

第6章虚拟教学演示实验 ◆信号源u s 单击Label,键入单相交流电源Us。单击Value,设置Vo1tage:200V,Frequency:50Hz,Phase:0。 ◆变压器Tr 单击“Label”,键入Tr 10:1。单击Mode1s,选中Library 中的default和Model中的ideal,单击“Edit”按钮打参数设置对话框,在“primary to Secondary tums ratio”框键入“10”,单击“确定”。 ◆整流桥堆D×4 单击Labe1,键入D×4,单击Models,选中Library中的general1和Model中的BYM10.100,单击“确定”。 ◆电容C 单击Labe1,键入滤波电容C。单击Value,将“Capacitance”设置为20μF,单击“确定”。 ◆开关K 单击Label,键入K,单击确定。由于只有一个开关,故控制键可采用其缺省设置的“Space”(空格键)。否则应在“Value”选项的“key”框键入控制键符号。 ◆负载电阻RL 单击Labe1,键入负载电阻RL。单击Value,将Resistance、Setting、Increment框分别设置为“1k?”、“50”、“5”。单击“确定”。电位器控制键采用缺省设置“R”键,按一下西文状态下的“R”键,将使电位器电阻减小5%。 (4)给节点1~4、Uo进行标识 双击节点打开其特性对话框,单击“Label”,键入标识符号,然后单击“确定”。 (5)通过设置导线颜色确定示波器波形颜色 双击示波器Channel A输入线,打开其设置对话框,单击选项“Schematic Options”,单击“Set Wire Color”按钮调出“Wire Color” 选色板,点击的绿色,而后“确定”。再将Channel B输入线设置为绿色。 (6)仔细检查,确保连接的电路图无误、可靠。 (7)保存文件 单击File菜单的Save选项,在出现的Save Circuit File对话框中首先确定文件存放的路径,然后键入用户文件名,单击“保存”。(实验时应注意及时保存,并注意文件的路径)。 2. 仿真实验 (1)观测整流电路 ◆双击示波器图标打开面板。 ◆设置示波器参数:参考值为: Time base设置:“2.00ms/div”、“Y/T”显示方式。 Channel A设置:“10V/div”、Y Position:“0.00”、“DC”工作方式。 Channel B设置:“10v/div”、Y Position:“0.00”、“DC”工作方式。 Trigger设置:“Auto”触发方式。 ◆运行电路 单击主窗口右上角“O/I”按钮,示波器即可显示工作波形。Channel A显示变压器副边电压的绿色波形,Channel B显示半波整流电路输出电压的红色波形。 ◆观察并记录波形及其幅值 为便于观测,可单击示波器面板上的“Expand”将示波器面板展开,单击“Reduce”则回到示波器面板,单击主窗口“Pause”按钮可控制暂停或仿真。 ◆用数字多用表测量直流输出电压 双击数字多用表图标打开面板,进行设置:单击“V”和“—”(直流)按钮。观察并记录所显示的直流输出电压值。 (2)观测整流滤波电路 ◆按一下空格键,开关K将电容C接入电路,电路成为全波整流电容滤波电路。 ◆观察示波器波形的变化并定性记录波形。 ◆用数字多用表测量直流输出电压。注意应等待读数较稳定后读取数据。 ◆按动西文状态下的“R”键调节负载电阻RL,观察整流滤波输出电庄波形的变化和数字多用表读数的变化。 ◆将RL与Uo点断开,即使负载开路,观察并记录整流滤波输出电压波形的变化和数字多用表- 182 -

电源设计之整流桥和滤波电容的选择

1、整流桥的导通时间与选通特性 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波 电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通 范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电 压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半 周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路 的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c) 所示。 总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。 (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频 率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管 (例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢 复时间trr≈250ns。 2、整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整 流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管 接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流 桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工 作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流 电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(μA)。整流 桥的反向击穿电压URR应满足下式要求:

整流滤波稳压电路看不懂你砍我

整流、滤波、稳压电路看不懂你砍我 好久的电路原理说明,终于能够看懂整流滤波稳压电路了,分享一下。 一、整流与滤波电路 整流电路的任务是利用二极管的单向导电性,把正、负交变的50Hz电网电压变成单方向脉动的直流电压。 整流电路只是将交流电变换为单方向的脉动电压和电流,由于后者含有较大的交流成分,通常还需在整流电路的输出端接入滤波电路,以滤除交流分量,从而得到平滑的直流电压。

由波形可知: 1.开关S打开时,电容两端电压为变压器付边的最大值。 2 .开关S闭合,即为电容滤波电阻负载,当变压器付边电压大于电容上电压时 ,电容充电,输出电压升高,当时电容放电,输出下降。如此充电快,放电慢的不断反复,在负载上将得到比较平滑的输出电压。当负载电阻越大时,放电越慢,纹波电压越小,负载电阻小时,放电快,纹波大,而且输出电压低。 为此有三种情况下的输出电压估算值: 1)电容滤波,负载开路时。 2)无电容滤波,电阻负载时,输出电压平均值为: 。

3)电容滤波,电阻负载时通常用下式进行估算,通常按 估算。 为确保二极管安全工作,要求:不同电子设备要求其电源电压的平滑程度不同,为此可采用不同的滤波电路。常见的有电容滤波、电感滤波和复式滤波电路(两个或两个以上滤波元件组成)。 二、线性串联型稳压电路 整流滤波后的电压是不稳压的,在电网电压或负载变化时,该电压都会产生变化,而且纹波电压又大。所以,整流滤波后,还须经过稳压电路,才能使输出电压在一定的范围内稳定不变。

1.稳压电路(电源)的主要性能指标 输出的稳定电压值Vo,最大输出电流Imax,输出纹波电压V~,稳压系数(电压调整率),该值越小,稳定性越好。 输出电阻(内阻),,内阻越小越好。 2.串联型稳压电路的基本结构基本思路: 串联型:

LC滤波电路分析

LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。 LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中. RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路 中.RC体积小,成本低.滤波效果不如LC电路 LC滤波器的组成 LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; LC 滤波的单相桥式整流网侧谐波分析 摘要: 对LC 滤波的单相桥式整流电路作了较深入的理论分析, 得到了与谐波有关的各项性能指标 和谐波含量的表达式及关系曲线, 仿真结果验证了所得结论的正确性。 1 引言 许多电力电子装置含有由直流电压源供电的逆变或斩波电路。在这类装置中直流电压源大多是由电网交流电源整流后, 再经并联有大电容的滤波电路滤波得到的。滤波电容的引入造成了这类装置网侧电流的较大畸变。近年来,这类装置越多地投入使用(如各种电压型交2直2交变频装置、直流斩波调速装置、开关电源及不间断电源等) , 其网侧谐波问题逐渐引起了人们的关注。对其网侧谐波进行深入的分析是一项有意义的工作。 以往对整流电路分析大多针对电感滤波型整流电路, 个别对含有滤波电容的整流电路也只是作了一些定性分析。作者曾对电容滤波型整流电路作了较深入的分析, 但分析中没有考虑电网电抗的影响, 然而当电网电抗影响不能忽略时必须进一步分析研究。另一方面,在并联电容前串一小电感以抑制电流冲击引起的畸变, 这种电路一般称为LC 滤波整流电路。可证明, 这种情况在一定条件下与电容滤波型整流电路考虑电网电抗的情况是完全等效的。 本文在考虑电网电抗影响情况下, 对LC滤波单相桥式整流电路的网侧谐波进行较深入的定性和定量分析, 给出网侧电流谐波含量和某些性能指标与电路参数的关系表达式及关系曲线, 分析电路参数对电流谐波成分和各项性能指标的影响, 仿真结果验证了结论的正确性。 2 电路模型及直流电流工作方式 在由直流电压源供电的装置中, 输出电压幅值可由逆变电路或斩波电路来调节, 因此其整流电路由二极管组成是常见的情况。文中的分析即针对二极管单相桥式整流电路。图1 是分析所采用的电路模型和电压、电流波形,C 是滤波电容,L 是抑制电流冲击的电感。稳态时逆变或斩波电路消耗的直流平均电流一定, 所以可用电阻模型代表逆变或斩波电路。 在图 1 中若L 取值由小变大(以至无穷大) , C 取值由大变小, 则整流电路负载由容性 逐渐变为感性, 直流侧充电电流 id 由断续方式1 经断续方式2 变成连续方式, 如图2 所示。因 是二极管整流, 所以不论是哪种方式, 二极管VD1和VD4只能在电压正半周时导通, 而VD2和 VD3只能在电压负半周时导通。在断续方式 1中, id 在电源电压过零前即为零, VD1、 VD4和 VD2、 VD3间不发生换相过程; 在断续方式 2 中,电源电压过零时 id 未降到零, 两组二极管间发

整流滤波与并联稳压电路

实验2.5 整流、滤波与稳压电路 一、实验目的 1、掌握单相半波、全波、桥式整流电路的工作原理及测量方法。 2、观察了解电容滤波作用及测量方法。 3、了解稳压二极管的稳压作用。 二、实验原理 整流是把交流电变成单向脉动直流电的过程,整流的基本器件是整流二极管。利用其单向导电性即可把交流电转换成直流电。半波整流和桥式整流电路分别如 图2.5.1和图2.5.2所示。 在图2.5.1中,经过半波整流后负载上得的直流电压为(K打开时) U L =0.45U 2 (其中U 2 为副边电压的有效值)。 在图2.5.2中,经过桥式整流后负载(R + R L )上的得到的直流电压为(K 1 、 K 2同时打开时)U 34 =0.9U 2 。 在图2.5.2中,滤波作用则是降低输出电压中的脉动成分,得到较为理想的 直流电源,常用的滤波电路有C型、π型和T型。对于桥式整流C型滤波(合上 开关K 1),结构简单,其输出电压为 U 34 ≈1.2U 2 。 R L 220V 图9-1 220V 图9-2 R L 1K ③④⑤ ⑥ U L 图2.5.1 半波整流电路图图2.5.2 桥式整流电路图 141

在图2.5.1中,半波整流C型滤波(合上开关K)其输出电压 U L U 2 。 经电容滤波后,输出电压的纹波减小,直流分量得到提高。 在图2.5.2中R为限流电阻,其作用是通过调节自身的压降来保持输出电压的基本不变。Dw为稳压二极管,它是利用其反向击穿的伏安特性来实现稳压的(可 参考教材中有关内容)。若合上K 1、K 2 时,U L =U Z (U Z 为稳压二极管的稳压值)。 三、实验设备 1、模拟电路实验箱一套 2、示波器一台 3、数字万用表一块 四、实验任务及步骤 按表2.5.1所规定的顺序及内容,用万用表电压档(AC或DC)测量有关电压,并用双踪示波器观察有关波形,按实验电路图2.5.2连线。 142

十个精密整流电路的详细分析

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 分析: 当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下: 当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。 当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V ,A2的反馈导致R3右端电压钳位在0V ,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1||R4。 因此,此电路的输出等于输入的绝对值。 此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。 此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V 时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。

图2优点是匹配电阻少,只要求R1=R2 图2 四个二极管型 分析: 当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui 当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。 此电路采用两个运放分别处理正电压和负电压的情况,所以R1和R2需配对,否则输入为负电压时电路增益不为1,。R3阻值不重要,但不能太小,否则输入为负电压时A1需向R3提供较大的电流,该电路的输入阻抗为R1。 当电压过零时,A1,A2的输出电压会发生突变,因此当频率较大时,会影响结果的输出,可选用高速型运放。

整流滤波实验报告

整流滤波的电路设计实验 一、实验目的:1、研究半波整流电路,全波整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流中的滤波效果。 3、整流滤波电路输出脉动电压的峰值 4、进一步掌握示波器显示与测量的技能。 二、实验仪器:示波器,6v交流电源,面包板,电容(470uF、10uF)电阻(200Ω,100Ω,50Ω,25Ω),导线若干。 三、实验原理: 1、实验思路 利用二极管正向导通反向截至的特性,与RC电路的特性,通过二极管、电阻与电容的串并联设计出各种整流电路和滤波电路进行研究。 2、半波整流电路 变压器的次级绕组与负载相接,中间串联一个整流二极管,就是半波整流。利用二极管的单向导电性,只有半个周期内有电流流过负载,另半个周期被二极管所阻,没有电流。 2.1单相半波整流 只在交流电压的半个周期内才有电流流过负载的电路称为单相半波整流电路。 原理:如图4.1,利用二极管的单向导电性,在输入电压Ui为正的半个周期内,二极管正向偏置,处于导通状态,负载RL上得到半个周期的直流脉动电压和电流;而在Ui为负的半个周期内,二极管反向偏置,处于关断状态,电流基本上等于零。由于二极管的单向导电作用,将输入的交流电压变换成为负载RL两端的单向脉动电压,达到整流目的,其波形如图4.2。 3、全波桥式整流 前述半波整流只利用了交流电半个周期的正弦信号。为了提高整流效率,使交流电的正负半周信号都被利用,则应采用全波整流,现以全波桥式整流为例,其电路和相应的波形如图6.2.1-3所示。

若输入交流电仍为 t U t u P i ωsin )(= (8) 则经桥式整流后的输出电压u 0(t)为(一个周期) t U u t U u P P ωωsin sin 00-== π ωππ ω20≤≤≤≤t t (9) 其相应直流平均值为 ?≈==T P P U U dt t u T u 000637.02 )(1π (10) 由此可见,桥式整流后的直流电压脉动大大减少,平均电压比半波整流提高了一倍(忽略整流内阻时)。 (1) 滤波电路 经过整流后的电压(电流)仍然是有“脉动”的直流电,为了减少被波动,通常要加滤波器,常用的滤波电路有电容、电感滤波等。现介绍最简单的滤波电路。 电容滤波电路 电容滤波器是利用电容充电和放电来使脉动的直流电变成平稳的直流电。我们已经知道电容器的充、放电原理。图6.2.1-4所示为电容滤波器在带负载电阻后的工作情况。设在t 0时刻接通电源,整流元件的正向电阻很小,可略去不计,在t=t 1时,U C 达到峰值为i U 2。此后U i 以正弦规律下降直到t 2时刻,二极管D 不再导电,电容开始放电,U C 缓慢下降,一直到下一个周期。电压U i 上升到和U C 相等时,即t 3以后,二极管D 又开始导通,电容充电,直到t 4。在这以后,二极管D 又截止,U C 又按上述规律下降,如此周而复始,形成了周期性的电容器充电放电过程。在这个过程中,二极管D 并不是在整个半周内都导通的,从图上可以看到二极管D 只在t 3到t 4段内导通并向电容器充电。由于电容器的电压不能突变,故在这一小段时间内,它可以被看成是一个反电动势(类似蓄电池)。 由电容两端的电压不能突变的特点,达到输出波形趋于平滑的目的。经滤波后的输出波形如图6.2.1-5所示。

《电工技术》试题与答案--整流滤波电路

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成 PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般 其正反向的电阻阻值相差越大越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是0.3,死区电压是。 6、(1-1,低)硅二极管的工作电压为0.7,锗二极管的工作电压为0.3。 7、(1-1,中)整流二极管的正向电阻越小,反向电阻越大,表明二极管的单向导 电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选 用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为 现象雪崩。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转 变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的 场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L = ,单相桥式整流电容滤波器的输出直流电压U L(A V)= ,单相桥式整流电感滤波器的输出(A V) 直流电压U L(A V)= 。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极 管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路 有,,复合滤波电路。 17、(1-2,难)电容滤波器的输出电压的脉动τ与有关,τ愈大,输出电压脉动愈,输出直流 电压也就愈。

相关文档
相关文档 最新文档