文档库 最新最全的文档下载
当前位置:文档库 › 无线通信外文翻译

无线通信外文翻译

无线通信外文翻译
无线通信外文翻译

附件1:外文资料翻译译文

7.mimo:空间多路复用与信道建模

本书我们已经看到多天线在无线通信中的几种不同应用。在第3章中,多天线用于提供分集增益,增益无线链路的可靠性,并同时研究了接受分解和发射分解,而且,接受天线还能提供功率增益。在第5章中,我们看到了如果发射机已知信道,那么多采用多幅发射天线通过发射波束成形还可以提供功率增益。在第6章中,多副发射天线用于生产信道波动,满足机会通信技术的需要,改方案可以解释为机会波束成形,同时也能够提供功率增益。

这章以及接下来的几章将研究一种利用多天线的新方法。我们将会看到在合适的信道衰落条件下,同时采用多幅发射天线和多幅接收天线可以提供用于通信的额外的空间维数并产生自由度增益,利用这些额外的自由度可以将若干数据流在空间上多路复用至MIMO 信道中,从而带来容量的增加:采用n副发射天线和接受天线的这类MIMO信道的容量正比于n。

过去一度认为在基站采用多幅天线的多址接入系统允许若干个用户同时与基站通信,多幅天线可以实现不同用户信号的空间隔离。20世纪90年代中期,研究人员发现采用多幅发射天线和接收天线的点对点信道也会出现类似的效应,即使当发射天线相距不远时也是如此。只要散射环境足够丰富,使得接受天线能够将来自不同发射天线的信号分离开,该结论就成立。我们已经了解到了机会通信技术如何利用信道衰落,本章还会看到信道衰落对通信有益的另一例子。

将机会通信与MIMO技术提供的性能增益的本质进行比较和对比是非常的有远见的。机会通信技术主要提供功率增益,改功率增益在功率受限系统的低信噪比情况下相当明显,但在宽带受限系统的高信噪比情况下则很不明显。正如我们将看到的,MIMO技术不仅能够提供功率增益,还可以提供自由度增益,因此,MIMO技术成为在高信噪比情况下大幅度增加容量的主要工具。

MIMO通信是一个内容非常丰富的主题,对它的研究将覆盖本书其余章节。本章集中研究能够实现空间多路复用的物理环境的属性,并阐明如何在MIMO统计信道模型中简明扼要地俘获这些属性。具体分析过程如下:首先通过容量分析,明确确定确定性MIMO信道多路复用容量的关键参数,之后介绍一系列MIMO物理信道,评估其空间多路复用性能;根据这些实例的结果,我们认为在角域对MIMO信道进行建模是非常自然地,同时讨论了基于该方法的统计模型。本章采用的方法与第2章的方法是平行的,第2章就是从多径无线信道的几个理想实例着手进行分析,从中了解了基本物理现象,进而研究更适用于通信方案设计与性能分析的统计衰落模型。实际上,在特定的信道建模技术中,我们将会看到大量的类似方法。

我们贯穿始终的研究焦点是平坦衰落MIMO信道,但也可以直接扩展到频率选择性MIMO 信道,这方面的内容会在习题中加以介绍。

7.1确定性mimo信道的多路复用容量

包括n

t 副发射天线和n

t

接受天线的窄带时不变无线信道可以用一个n

t

*n

t

阶确定性矩阵

H描述,H具有哪些决定信道空间多路复用容量的重要属性呢?我们通过对信道容量的分析来回答这个问题。

7.1.1通过奇异值分解分析容量

时不变信道可以表示为:y = Hx+w_

其中x、y与w分别表示一个码元时刻的发射信号、接受信号与高斯白噪声(为简单起见省略了时标),信道矩阵H为确定性的,并假定在所有时刻都保持不变,而且对于发射机和接收机是已知的。这里的h

ij

为发射天线j到接受天线i的信道增益,对发射天线的信号的总功率约束为P。

这就是矢量高斯信道,将矢量信道分解为一组并行的、相互独立的标量高斯子信道就可以计算出该信道的容量。油线性代数的基本原理可知,每个线性变换都能够表示为三种运算的组合:旋转运算、比例运算和另一次旋转运算。用矩阵符号表示,矩阵H具有如下奇异值分解(SVD):

其中,与为(旋转)酉矩阵1,是对角元素为非负实数、

非对角线元素为零的矩形矩阵2。对角线元素为矩阵H的有序奇异值,

其中n

min :=min(n

t

,n

r

)。因为

所以平方奇异值为矩阵HH*的特征值,同时也是矩阵H*H的特征值。注意,奇异值共有n

min 个,可以将SVD重新写成为:

SVD分解可以解释为2个坐标变换:即如果输入用V的各种定义的坐标系统表示,并且输出用U的各列定义的坐标系统表示,那么输入/输出关系是非常简单的。

我们已经在第5章讨论时不变频率选择性信道以及具有完整CSI的时变衰落信道时看到了高斯并并行信道的例子。时不变MIMO信道也是另外一个例子,这里空间维所起的作用与其他问题中时间维和频率维的作用是相同的。大家熟知的容量表达式为:

其中,P

1*,…,P

nmin

*为注水功率分配:

通过选择满足总功率约束,各对应于信道的一个特征模式(也称特征信

道)。各非零特征信道能够支持一路数据流,因此,MIMO信道能够支持多路数据流的空间多路复用。基于SVD的可靠通信结构与第三章介绍的OFDM系统之间存在明显的相似之处,在这2种情况下,都是利用变换将矩阵信道转换为一组并行的独立子信道。在OFDM系统中,矩阵信道由上式中的轮换矩阵C给出,该矩阵由ISI信道和加在输入码元上的循环前缀定义,ISI信道与MIMO信道的重要区别在于,前者的U、V矩阵不依赖与ISI信道的特定实现,而后者的U、V矩阵则依赖与MIMO信道的特定实现。

7.2 MIMO信道的物理建模

通过本节的内容我们将了解到MIMO信道的空间多路复用性能对于物理环境的依赖程度,为此,我们将研究一系列理想化实例并分析骑信道矩阵的秩和条件数,这些确定性实例同时表明了下一节中讨论的MIMO信道统计建模的常规方法。具体地讲,本节的讨论局限于均匀线性天线阵列,即天线一均匀的间隔分布于一条直线上,分析的细节取决于特定的天线结构,但是我们要表达的概念于此无关。

7.2.1 视距SIMO信道

最简单的SIMO信道只有一条视距信道(如下所示),图中为不存在任何反射体和散射体的自由空间,并且各天线对之间仅存在直接信号路径,天线间隔为,其中为

载波波长,为归一化接受天线间隔,即归一化为载波波长的单位,天线阵列的尺寸比发射机与接收机之间的距离小得多。

发射天线与第i副接受天线之间信道的连续时间冲激响应为:

为发射天线与第i副接受天线之间的距离,c为光速,a为路径衰减,假定路径衰其中,d

i

/c《1/W,其中W为传输带宽,则可得基带信道增益为:

减对所有天线对都相同。设d

i

其中,f

c

为载波频率。SIMO信道可以写成:y=hx+w。其中,x为发射码元,w为噪声,y

为接受矢量。有时将信道增益矢量h=[h

1,…h

nt

]t称为信号方向或由发射信号在接收天线阵

列上感应出的空间特征图。

由于发射机与接收机之间的距离远大于接收天线阵列的尺寸,所以从发射天线到各接收天线的路径为1阶并行的,并且

其中,d为从发射天线到第一副接收天线之间的距离,为视距路径到接收天线阵列的入

射角,为在视距方向上接收天线i相对于接受天线1的位移。并且

通常被称为相对于接收天线阵列的方向余弦。因此,空间特征图h=[h

1,…h

nt

]t为

即有相对时延引起的相位差为的连续天线处的接收信号。为了符号表示方便,定义

为方向余弦上的单位空间特征图。

最佳接收机只是将有噪声接收信号投影到该信号方向上,也就是最大比合并或接收波束成形,对不同的时延进行调整,从而使天线的接收信号能够进行相长合并,得到n

t

倍的功率增益,所获取的容量为:

于是,SIMO信道提供了功率增益,但没有提供自由度增益。

在介绍视距信道时,有时将接收天线阵列称为相位阵列天线。

8. MIMO:容量与多路复用结构

本章研究MIMO衰落信道的容量,讨论能够从信道中提取所期望的多路复用增益的收发信机结构,特别是集中研究发射机未知信道的情况。在快衰落MIMO信道中,可以证明:

1 在高信噪比时,独立同分布瑞利快衰落信道的容量有n

min

logSNRb/s/Hz确定,其中

n min 为发射天线数n

t

与接收天线数n

r

的最小值,这是自由度增益。

2 在低信噪比时,容量近似为n

r

SNRlog

2

eb/s/Hz,这是接收波束成形功率增益。

3 在所有信噪比时,容量与n

min

呈线性比例关系,这是由于功率增益与自由度增益合

并造成的。

此外,如果发射机也能够跟踪信道,那么还存在发射波束成形增益以及机会通信增益。

利用确定性时不变MIMO信道的容量获取收发信机,其结构比较简单:在适当的坐标系统中对独立数据流进行多路复用,接收机将接收矢量变换到另一个适当的坐标系统中,分别对不同的数据流进行译码。如果发射机未知信道,那么必须事先固定独立数据流被多路复用所选取的坐标系统。连同联合译码,这种发射机结构实现了快衰落信道的容量,在文献中也将改结构称为V-BLAST结构1。

8.3节讨论比独立数据流的联合最大似然译码更简单的接收机结构,虽然可以支持信道全部自由度的接收机结构有若干种,其中的一种特殊结构是合并使用最小均方误差估计与串行干扰消除,即MMSE-SIC接收机可以获取容量。

慢衰落MIMO信道的性能可以通过中断概率和相应的中断容量来表征。在低信噪比时,

一个时刻利用一副发射天线就可以获取中断容量,实现满分集增益n

t n

r

和功率增益n

r

另一方面,高信噪比时的中断容量还受益于自由度增益,要简洁地刻画其特征更加困难,此问题留到第9章再分析。

虽然采用V-BLAST结构可以实现快衰落信道的容量,但该结构对于慢衰落信道则是严格次最优的,实际上,它甚至还没有实现MIMO信道期望的满分集增益。为了说明这一问题,考虑通过发射天线直接发送独立数据流,在这种情况下,各数据流的分集仅限于接收分集,为了从信道中获取满分集,须对发射天线进行编码。将发射天线编码与MMSE-SIC 结合起来的一种修正结构D-BLAST2不仅能够从信道中获取满分集,而且其性能还接近于中断容量。

8.1 V-BLAST结构

首先考虑时不变信道y[m]=Hx[m]+w[m] m=1,2,…

当发射机已知信道矩阵H时,有7.1.1节可知,最优策略是在H*H的特征矢量的方向上发射独立数据流,即在由矩阵V定义的坐标系统中发射,该坐标系统与信道有关。考虑到要处理发射机未知信道矩阵时的衰落信道,归纳出入如下图所示的结构,图中n

t

个独立的数据流在由酉矩阵Q确定的任意坐标系统中进行多路复用,该酉矩阵未必与信道矩阵H

有关,这就是V-BLAST结构。对数据流进行联合译码,为第k个数据流分配的功率为P

k

(使

得功率之和P

1+…+P

nt

等于P,即发射总功率约束),并利用速率为R

k

的容量获取高斯码进

行编码,总的速率为

几种特殊情况如下:

1 如果Q=V并且通过注水分配的方式确定功率,则得到如图7-2所示的容量获取结构。

2 如果Q=I

nt

,则独立数据流被发送到不同的发射天线。

下面利用与第5章关于球体填充的类似论述,讨论最高可靠通信速率的上界:

其中,K

x

为发射信号x的协方差矩阵,是多路复用坐标系和功率分配的函数:

考虑在长度为N的码元时间块内的通信,长度为n

r

N的接收矢量一高概率位于体积与下式成比例的椭圆体内:

该公式是与并行信道相对应的体积公式的直接推广,并在习题8-2中加以证明。由于必须考虑到各码字周围为非混叠噪声球空间才能却保可靠通信,所以能够填充的码字的最大数量为比值:

现在就可以得出结论,可靠通信速率的上界为上式。

采用V-BLAST结构能够达到该上界吗?注意到独立数据流在V-BLAST结构中多路复用,是否可能需要对数据流进行编码才能达到上界式?为了解决这个问题,考虑MISO信

道的特殊情况(n

t =1),并在该结构中设Q=I

nt

,即独立数据流由各发射天线发送。这恰好

就是6.1节介绍的上行链路信道,发射天线类似于用户,由这一节的内容可知,该上行链路信道的总容量为:

这恰恰是特殊情况下的上界式。因此,数据流独立的V-BLAST结构完全能够达到上界式。在一般情况下,可以将V-BLAST结构与包括n

t

副接收天线、信道矩阵为HQ的上行链路信道进行类比,与一副发射天线的情况相同,上界式就是该上行链路信道的总容量,因此采用V-BLAST结构可以达到。这种上行链路信道的详细研究见第10章。

8.2 快衰落MIMO信道

快衰落MIMO信道为y[m]=H[m]x[m]+w[m] m=1,2,…

其中,{H[m]}为随机衰落过程。为了恰当地定义容量(由随时间变化的信道衰落取平均获得的)的概念,现做出如下(与前几章相同的)假定,即假定{H[m]}为平稳遍历过程,作

|2=1,与前面的研究方法一样,考虑相干通信:接收机准确地跟为归一化处理,设E[|h

ij

踪信道衰落过程。首先研究发射机仅具有衰落信道统计特征的情况,最后研究发射机也能够准确跟踪衰落信道的情况(完整CSI),这种情况非常类似于时不变MIMO信道的情况。

附件2:外文原文

7. MIMO I: spatial multiplexing

and channel modeling

In this book, we have seen several different uses of multiple antennas in wireless communication. In Chapter 3, multiple antennas were used to provide diversity gain and increase the reliability of wireless links. Both receive and transmit diversity were considered. Moreover, receive antennas can also provide a power gain. In Chapter 5, we saw that with channel knowledge at the transmitter, multiple transmit antennas can also provide a power gain via transmit beamforming. In Chapter 6, multiple transmit antennas were used to induce channel variations, which can then be exploited by opportunistic communication techniques. The scheme can be interpreted as opportunistic beamforming and provides a power gain as well.

In this and the next few chapters, we will study a new way to use multiple antennas. We will see that under suitable channel fading conditions, having both multiple transmit and multiple receive antennas (i.e., a MIMO channel) provides an additional spatial dimension for communication and yields a degree-of- freedom gain. These additional degrees of freedom can be exploited by spatially multiplexing several data streams onto the MIMO channel, and lead to an increase in the capacity: the capacity of such a MIMO channel with n transmit and receive antennas is proportional to n.

Historically, it has been known for a while that a multiple access system with multiple antennas at the base-station allows several users to simultaneously

communicate with the base-station. The multiple antennas allow spatial separation of the signals from the different users. It was observed in the mid 1990s that a similar effect can occur for a point-to-point channel with multiple transmit and receive antennas, i.e., even when the transmit antennas are not geographically far apart. This holds provided that the scattering environment is rich enough to allow the receive antennas to separate out the signals from the different transmit antennas. We have already seen how channel fading can be exploited by opportunistic communication techniques. Here, we see yet another example where channel fading is beneficial to communication.

It is insightful to compare and contrast the nature of the performance gains offered by opportunistic communication and by MIMO techniques,Opportunistic communication techniques primarily provide a power gain.This power gain is very significant in the low SNR regime where systems are power-limited but less so in the high SNR regime where they are bandwidthlimited. As we will see, MIMO techniques can provide both a power gain and a degree-of-freedom gain. Thus, MIMO techniques become the primary tool to increase capacity significantly in the high SNR regime.

MIMO communication is a rich subject, and its study will span the remaining chapters of the book. The focus of the present chapter is to investigate the properties of the physical environment which enable spatial multiplexing and show how these properties can be succinctly

captured in a statistical MIMO channel model. We proceed as follows. Through a capacity analysis, we first identify key parameters that determine the multiplexing capability of a deterministic MIMO channel. We then go through a sequence of physical MIMO channels to assess their spatial multiplexing capabilities. Building on the insights from these examples, we argue that it is most natural to model the MIMO channel in the angular domain and discuss a statistical model based on that approach. Our approach here parallels that in Chapter 2, where we started with a few idealized examples of multipath wireless channels to gain insights into the underlying physical phenomena, and proceeded to statistical fading models, which are more appropriate for the design and performance analysis of communication schemes. We will in fact see a lot of parallelism in the specific channel modeling technique as well.

Our focus throughout is on flat fading MIMO channels. The extensions to frequency-selective MIMO channels are straightforward and are developed in the exercises.

7.1 Multiplexing capability of deterministic MIMO channels

A narrowband time-invariant wireless channel with n t transmit and nr receive antennas is described by an nr by nt deterministic matrix H. What are the key properties of H that determine how much spatial multiplexing it can support? We answer this question by looking at the capacity of the channel.

7.1.1 Capacity via singular value decomposition

The time-invariant channel is described by

y = Hx+w_ (7.1)

where x,y and w denote the transmitted signal,

received signal and white Gaussian noise respectively at a symbol time (the time index is dropped for simplicity). The channel matrix H is deterministic and assumed to be constant at all times and known to both the transmitter and the receiver. Here, hij is the channel gain from transmit antenna j to receive antenna i. There is a total power constraint, P, on the signals from the transmit antennas.

This is a vector Gaussian channel. The capacity can be computed by decomposing the vector channel into a set of parallel, independent scalar Gaussian sub-channels. From basic linear algebra, every linear transformation can be represented as a composition of three operations: a rotation operation, a scaling operation, and another rotation operation. In the notation of matrices, the matrix H has a singular value decomposition (SVD):

Where and are (rotation) unitary matrices1 and is a rectangular matrix whose diagonal elements are non-negative real numbers and whose

off-diagonal elements are zero.2 The diagonal elements are the

ordered singular values of the matrix H, where nmin:=min(nt,nr). Since

the squared singular values _2i are the eigenvalues of the matrix HH* and also of H*H. Note that there are n min singular values. We can rewrite the SVD as

The SVD decomposition can be interpreted as two coordinate transformations: it says that if the input is expressed in terms of a coordinate system defined by the columns of V and the output is expressed in terms of a coordinate system defined by the columns of U, then the

input/output relationship is very simple. Equation (7.8) is a representation of the original channel (7.1) with the input and output expressed in terms of these new coordinates.

We have already seen examples of Gaussian parallel channels in Chapter 5, when we talked about capacities of time-invariant frequency-selective channels and about time-varying fading channels with full CSI. The time-invariant MIMO channel is yet another example. Here, the spatial dimension plays the same role as the time and frequency dimensions in those other problems. The capacity is by now familiar:

where P1*,…,P nmin*are the waterfilling power allocations:

with chosen to satisfy the total power constraint corresponds to an eigenmode

of the channel (also called an eigenchannel). Each eigenchannel can support a data stream; thus, the MIMO channel can support the spatial multiplexing of multiple streams. Figure 7.2 pictorially depicts the SVD-based architecture for reliable communication.

There is a clear analogy between this architecture and the OFDM system introduced in Chapter 3. In both cases, a transformation is applied to convert a matrix channel into a set of parallel independent sub-channels. In the OFDM setting, the matrix channel is given by the circulant matrix C in (3.139), defined by the ISI channel together with the cyclic prefix added onto the input symbols. The important difference between the ISI channel and the MIMO channel is that, for the former, the U and V matrices (DFTs) do not depend on the specific realization of the ISI channel, while for the latter, they do depend on the specific realization of the MIMO channel. 7.2 Physical modeling of MIMO channels

In this section, we would like to gain some insight on how the spatial multiplexing capability of MIMO channels depends on the physical environment. We do so by looking at a sequence of idealized examples and analyzing the rank and conditioning of their channel matrices. These deterministic examples will also suggest a natural approach to statistical modeling of MIMO channels, which we discuss in Section 7.3. To be concrete, we restrict ourselves to uniform linear antenna arrays, where the antennas are evenly spaced on a straight line. The details of the analysis depend on the specific array structure but the concepts we want to convey do not.

7.2.1Line-of-sight SIMO channel

The simplest SIMO channel has a single line-of-sight (Figure 7.3(a)). Here, there is only free space without any reflectors or scatterers, and only a direct signal path between each antenna

pair. The antenna separation is where is the carrier wavelength and is the normalized receive antenna separation, normalized to the unit of the carrier wavelength. The dimension of the antenna array is much smaller than the distance between the transmitter and the receiver.

The continuous-time impulse response between the transmit antenna and the ith receive antenna is given by

where di is the distance between the transmit antenna and ith receive antenna, c is the speed of light and a is the attenuation of the path, which we assume to be the same for all antenna pairs. Assuming di/c 1/W, where W is the transmission bandwidth, the baseband channel gain is given by (2.34) and (2.27):

where fc is the carrier frequency. The SIMO channel can be written as y = h x+w where x is the transmitted symbol, w is the noise and y is the received vector. The vector of channel gains

h=[h1,…h nt]t is sometimes called the signal direction or the spatial signature induced on the receive antenna array by the transmitted signal.

Since the distance between the transmitter and the receiver is much larger than the size of the receive antenna array, the paths from the transmit antenna to each of the receive antennas are, to a first-order, parallel and

where d is the distance from the transmit antenna to the first receive antenna and _ is the angle of incidence of the line-of-sight onto the receive antenna array. (You are asked to verify this in

Exercise 7.1.) The quantity is the displacement of receive antenna i from receive antenna1 in the direction of the line-of-sight. The quantity

is often called the directional cosine with respect to the receive antenna array. The spatial signature h=[h1,…h nt]t is therefore given by

i.e., the signals received at consecutive antennas differ in phase by due to the relative delay. For notational convenience, we define

as the unit spatial signature in the directional cosine .

The optimal receiver simply projects the noisy received signal onto the signal direction, i.e., maximal ratio combining or receive beamforming (cf. Section 5.3.1). It adjusts for the different delays so that the received signals at the antennas can be combined constructively, yielding an

nr-fold power gain. The resulting capacity is

The SIMO channel thus provides a power gain but no degree-of-freedom gain.

In the context of a line-of-sight channel, the receive antenna array is sometimes called a phased-array antenna.

8. MIMO II: capacity and multiplexing architectures

In this chapter, we will look at the capacity of MIMO fading channels and discuss transceiver architectures that extract the promised multiplexing gains from the channel. We particularly focus on the scenario when the transmitter does not know the channel realization. In the fast fading MIMO channel, we show the following:

? At high SNR, the capacity of the i.i.d. Rayleigh fast fading channel scales like

n min logSNRb/s/Hz. where n min is the minimum of the number of transmit antennas n t and the number of receive antennas nr . This is a degree-of-freedom gain.

? At low SNR, the capacity is approximately n r SNR log2 e bits/s/Hz. This is a receive beamforming power gain.

? At all SNR, the capacity scales linearly with n min. This is due to a combination of a power gain and a degree-of-freedom gain.

Furthermore, there is a transmit beamforming gain together with an opportunistic communication gain if the transmitter can track the channel as well.

Over a deterministic time-invariant MIMO channel, the capacity-achieving transceiver architecture is simple (cf. Section 7.1.1): independent data streams are multiplexed in an appropriate coordinate system (cf. Figure 7.2). The receiver transforms the received vector into another appropriate coordinate system to separately decode the different data streams. Without knowledge of the channel at the transmitter the choice of the coordinate system in which the independent data streams are multiplexed has to be fixed a priori. In conjunction with joint decoding, we will see that this transmitter architecture achieves the capacity of the fast fading channel. This architecture is also called V-BLAST1 in the literature.

In Section 8.3, we discuss receiver architectures that are simpler than joint ML decoding of the

independent streams. While there are several receiver architectures that can support the full degrees of freedom of the channel, a particular architecture, the MMSE-SIC, which uses a combination of minimum mean square estimation (MMSE) and successive interference cancellation (SIC), achieves capacity.

The performance of the slow fading MIMO channel is characterized through the outage probability and the corresponding outage capacity. At low SNR, the outage capacity can be achieved, to a first order, by using one transmit antenna at a time, achieving a full diversity gain of nt nr and a power gain of nr . The outage capacity at high SNR, on the other hand, benefits from a degree-of-freedom gain as well; this is more difficult to characterize succinctly and its analysis is relegated until Chapter 9.

Although it achieves the capacity of the fast fading channel, the V-BLAST architecture is strictly suboptimal for the slow fading channel. In fact, it does not even achieve the full diversity gain promised by the MIMO channel. To see this, consider transmitting independent data streams directly over the transmit antennas. In this case, the diversity of each data stream is limited to just the receive diversity. To extract the full diversity from the channel, one needs to code across the transmit antennas. A modified architecture, D-BLAST2, which combines transmit antenna coding with MMSE-SIC, not only extracts the full diversity from the channel but its performance also comes close to the outage capacity.

8.1 The V-BLAST architecture

We start with the time-invariant channel (cf. (7.1))

y[m]=Hx[m]+w[m] m=1,2,…

When the channel matrix H is known to the transmitter, we have seen in

Section 7.1.1 that the optimal strategy is to transmit independent streams in the directions of the eigenvectors of H*H, i.e., in the coordinate system defined by the matrix V, where H is the singular value decomposition of H. This coordinate system is channel-dependent. With an eye towards dealing with the case of fading channels where the channel matrix is unknown to the transmitter, we generalize this to the architecture in Figure 8.1, where the independent data streams, n t of them, are multiplexed in some arbitrary coordinate system given by a unitary matrix Q, not necessarily dependent on the channel matrix H. This is the V-BLAST architecture. The data streams are decoded jointly. The k th data stream is allocated a power P t (such that the sum of the powers, P1 +···+P nt , is equal to P, the total transmit power constraint) and is encoded using a capacity-achieving Gaussian code with rate R k. The total rate is

As special cases:

? If Q = V and the powers are given by the waterfilling allocations, then we have the

capacity-achieving architecture in Figure 7.2.

? If Q = I nr , then independent data streams are sent on the different transmit antennas.

Using a sphere-packing argument analogous to the ones used in Chapter 5, we will argue an upper bound on the highest reliable rate of communication:

Here K x is the covariance matrix of the transmitted signal x and is a function of the multiplexing coordinate system and the power allocations:

Considering communication over a block of time symbols of length N, the received vector, of length n r N, lies with high probability in an ellipsoid of volume proportional to

This formula is a direct generalization of the corresponding volume formula (5.50) for the parallel channel, and is justified in Exercise 8.2. Since we have to allow for non-overlapping noise spheres around each codeword to ensure reliable communication, the maximum number of codewords that can be packed is the ratio

We can now conclude the upper bound on the rate of reliable communication in (8.2).

Is this upper bound actually achievable by the V-BLAST architecture? Observe that independent data streams are multiplexed in V-BLAST; perhaps coding across the streams is required to achieve the upper bound (8.2)? To get some insight on this question, consider the special case of a MISO channel (n r = 1) and set Q = I rt in the architecture, i.e., independent streams on each of the transmit antennas. This is precisely an uplink channel, as considered in Section 6.1, drawing an analogy between the transmit antennas and the users. We know from the development there that the sum capacity of this uplink channel is

This is precisely the upper bound (8.2) in this special case. Thus, the V-BLAST architecture, with independent data streams, is sufficient to achieve the upper bound (8.2). In the general case, an analogy can be drawn between the V-BLAST architecture and an uplink channel with nr receive antennas and channel matrix HQ; just as in the single receive antenna case, the upper bound (8.2) is the sum capacity of this uplink channel and therefore achievable using the

V-BLAST architecture. This uplink channel is considered in greater detail in Chapter 10 and its information theoretic analysis is in Appendix B.9.

8.2 Fast fading MIMO channel

The fast fading MIMO channel is

y[m]=H[m]x[m]+w[m] m=1,2,…

Where {H[m]} is a random fading process. To properly define a notion of capacity (achieved by averaging of the channel fading over time), we make the technical assumption (as in the earlier chapters) that {H[m]} is a stationary and ergodic process. As a normalization, let us suppose that E[|h ij|2=1. As in our earlier study, we consider coherent communication: the receiver tracks the channel fading process exactly. We first start with the situation when the transmitter has only a statistical characterization of the fading channel. Finally, we look at the case when the transmitter also perfectly tracks the fading channel (full CSI); this situation is very similar to that of the time-invariant MIMO channel.

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

外文翻译--农村金融主流的非正规金融机构

附录1 RURAL FINANCE: MAINSTREAMING INFORMAL FINANCIAL INSTITUTIONS By Hans Dieter Seibel Abstract Informal financial institutions (IFIs), among them the ubiquitous rotating savings and credit associations, are of ancient origin. Owned and self-managed by local people, poor and non-poor, they are self-help organizations which mobilize their own resources, cover their costs and finance their growth from their profits. With the expansion of the money economy, they have spread into new areas and grown in numbers, size and diversity; but ultimately, most have remained restricted in size, outreach and duration. Are they best left alone, or should they be helped to upgrade their operations and be integrated into the wider financial market? Under conducive policy conditions, some have spontaneously taken the opportunity of evolving into semiformal or formal microfinance institutions (MFIs). This has usually yielded great benefits in terms of financial deepening, sustainability and outreach. Donors may build on these indigenous foundations and provide support for various options of institutional development, among them: incentives-driven mainstreaming through networking; encouraging the establishment of new IFIs in areas devoid of financial services; linking IFIs/MFIs to banks; strengthening Non-Governmental Organizations (NGOs) as promoters of good practices; and, in a nonrepressive policy environment, promoting appropriate legal forms, prudential regulation and delegated supervision. Key words: Microfinance, microcredit, microsavings。 1. informal finance, self-help groups In March 1967, on one of my first field trips in Liberia, I had the opportunity to observe a group of a dozen Mano peasants cutting trees in a field belonging to one of them. Before they started their work, they placed hoe-shaped masks in a small circle, chanted words and turned into animals. One turned into a lion, another one into a bush hog, and so on, and they continued to imitate those animals throughout the whole day, as they worked hard on their land. I realized I was onto something serious, and at the end of the day, when they had put the masks into a bag and changed back into humans,

频谱感知技术外文翻译文献

频谱感知技术外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 一种新的协作频谱感知算法 摘要 该文提出了一种在认知无线网络控制信道带宽受限条件下基于信任度的双门限协同频谱感知算法。首先每个认知用户基于双检测门限独立进行频谱感知,但只有部分可靠的认知用户通过控制信道向认知无线网络基站发送本地感知结果。当所有的用户都不可靠时,选取信任度最高的认知用户发送本地感知结果进行判决。理论分析和仿真表明,同常规能量检测算法相比较,该算法能够在控制信道带宽受限条件下,以较少的网络开销获得更好的频谱感知性能。 关键词:认知无线电;频谱感知;信任度;双门限 1引言 随着无线通信技术的飞速发展,有限的频谱资源与不断增长的无线通信需求的矛盾越来越突出。然而根据现有的固定分配频谱资源策略,绝大多数频谱资源得不到有效利用。据FCC 的调查统计,70%的已分配频谱资源没有得到有效利用]1[。为了提高频谱资源的利用率,认知无线电技术由Joseph Mitola Ⅲ提出并得到了广泛的关注]5[]2[ 。频谱感知技术是认知无线电网络的支撑技术之一。通常它又可以分为

能量检测法、匹配滤波器法和循环平稳特征法[4]。能量检测算法因为应用简单且无需知道任何授权用户信号的先验知识成为研究热点。认知用户在接入授权频带之前,必须首先感知该频带空闲即授权用户没有工作,否则会对授权用户造成干扰。一旦授权用户重新工作,认知用户必须退避,实现在不对授权用户产生干扰的情况下对频谱资源的共享。由于实际信道中的多径和阴影效应,单个认知用户频谱感知的性能并不乐观,针对这个问题D. Cabric 等人提出了协同频谱感知算法[5]-[6]。协同频谱感知算法性能较好,但是当认知用户数量很大的时候,控制信道的带宽将不够用。文献[7]中提出了一种在控制信道带宽受限条件下的基于双检测门限的频谱感知算法,该算法能够以较小的网络开销,获得接近普通单门限频谱检测算法的性能。针对认知无线电频谱感知的需要,本文提出了认知无线电环境下一种基于信任度的双门限协同频谱感知算法。该算法中每个认知用户基于双检测门限独立进行频谱感知,但只有部分可靠的认知用户通过控制信道向认知无线网络基站发射感知报告。当所有的用户都不可靠时,选取信任度最高的认知用户发射感知报告进行判决。本文对该算法进行了性能分析并通过仿真表明,本文方法比较常规能量检测算法,在减小网络开销的同时提高了检测性能。 2系统模型 假设一个认知无线电网络有N 个认知用户和一个认知无线网络基站,如图1 所示。认知无线网络基站负责管理和联系N 个认知用户,在收到认知用户的检测报告后做出最终判决。 图1. 认知无线电网络示意图 频谱感知的实质是一个二元假设问题,即 01 (),,()()()(),n t H x t h t s t n t H ?=??+? (1)

财务管理外文翻译

财务风险管理 尽管近年来金融风险大大增加,但风险和风险管理不是当代的主要问题。全球市场越来越多的问题是,风险可能来自几千英里以外的与这些事件无关的国外市场。意味着需要的信息可以在瞬间得到,而其后的市场反应,很快就发生了。经济气候和市场可能会快速影响外汇汇率变化、利率及大宗商品价格,交易对手会迅速成为一个问题。因此,重要的一点是要确保金融风险是可以被识别并且管理得当的。准备是风险管理工作的一个关键组成部分。 什么是风险? 风险给机会提供了基础。风险和暴露的条款让它们在含义上有了细微的差别。风险是指有损失的可能性,而暴露是可能的损失,尽管他们通常可以互换。风险起因是由于暴露。金融市场的暴露影响大多数机构,包括直接或间接的影响。当一个组织的金融市场暴露,有损失的可能性,但也是一个获利或利润的机会。金融市场的暴露可以提供战略性或竞争性的利益。 风险损失的可能性事件来自如市场价格的变化。事件发生的可能性很小,但这可能导致损失率很高,特别麻烦,因为他们往往比预想的要严重得多。换句话说,可能就是变异的风险回报。由于它并不总是可能的,或者能满意地把风险消除,在决定如何管理它中了解它是很重要的一步。识别暴露和风险形式的基础需要相应的财务风险管理策略。 财务风险是如何产生的呢? 无数金融性质的交易包括销售和采购,投资和贷款,以及其他各种业务活动,产生了财务风险。它可以出现在合法的交易中,新项目中,兼并和收购中,债务融资中,能源部分的成本中,或通过管理的活动,利益相关者,竞争者,外国政府,或天气出现。当金融的价格变化很大,它可以增加成本,降低财政收入,或影响其他有不利影响的盈利能力的组织。金融波动可能使人们难以规划和预算商品和服务的价格,并分配资金。 有三种金融风险的主要来源: 1、金融风险起因于组织所暴露出来的市场价格的变化,如利率、汇率、和大宗商品价格。 2、引起金融风险的行为有与其他组织的交易如供应商、客户,和对方在金融衍生产品中的交易。 3、由于内部行动或失败的组织,特别是人、过程和系统所造成的金融风险。 什么是财务风险管理? 财务风险管理是用来处理金融市场中不确定的事情的。它涉及到一个组织所面临的评估和组织的发展战略、内部管理的优先事项和当政策一致时的财务风险。企业积极应对金融风险可以使企业成为一个具有竞争优势的组织。它还确保管理,业务人员,利益相关者,董事会董事在对风险的关键问题达成协议。金融风险管理组织就必须作出那些不被接受的有关风险的决定。那些被动不采取行动的战略是在默认情况下接受所有的风险,组织使用各种策略和产品来管理金融风险。重要的是要了解这些产品和战略方面,通过工作来减少该组织内的风险承受能力和目标范围内的风险。 风险管理的策略往往涉及衍生工具。在金融机构和有组织的交易所,衍生物广泛地进行

机械手机械设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 机械设计 摘要: 机器由机械和其他元件组成的用来转换和传输能量的装置。比如:发动机、涡轮机、车、起重机、印刷机、洗衣机和摄影机。许多机械方面设计的原则和方法也同样适用于非机械方面。术语中的“构造设计”的含义比“机

械设计”更加广泛,构造设计包括机械设计。在进行运动分析和结构设计时要把产品的维护和外形也考虑在机械设计中。在机械工程领域中,以及其它工程领域,都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实用性,现有的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需能够完全或部分代替以前人的功能,比如计算、装配、维修。 在设计的初级阶段,应该充分发挥设计人员的创意,不要受到任何约束。即使有一些不切实际的想法,也可以在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,必须提出几套设计方案,然后进行比较。很有可能在这个计划最后指定使用某些不在计划方案内的一些想法的计划。 一般当产品的外型和组件的尺寸特点已经显现出来的时候,就可以进行全面的设计和分析。接着还要客观的分析机器性能、安全、重量、耐用性,并且成本也要考虑在内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分的平衡。 选择原材料和工艺的方法。通过力学原理来分析和实现这些重要的特性,如稳定和反应的能量和摩擦力的利用,动力惯性、加速度、能量;包括材料的弹性强度、应力和刚度等物理特性,以及流体的润滑和驱动器的流体力学。设计的过程是一个反复与合作的过程,无论是正式的还是非正式的,对设计者来说每个阶段都很重要。。产品设计需要大量的研究和提升。许多的想法,必须通过努力去研究成为一种理念,然后去使用或放弃。虽然每个工

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

无线射频识别技术外文翻译参考文献

无线射频识别技术外文翻译参考文献(文档含中英文对照即英文原文和中文翻译) 翻译: 当前无线射频识别技术应用略述 摘要 无线射频识别技术可以自动识别多目标并以非接触式方式移动目标。越来越多的零售商、银行、交通管理系统、展览及物流供应商将这项新技术应

用于他们的产品和服务。因此,这给RFID技术的研究带来了机遇和挑战。本文简单介绍了RFID系统的组成、原理及RFID技术的特点。本文比较了RFID 与传统条码,然后提供了一个简短的关于目前RFID应用情况的调查报告。 关键词:无线射频识别技术应用物流

一、简 介 无线射频识别(RFID )是一种识别技术。与RFID 技术的前身——条码技术相比,RFID 技术具有很多的优点。但由于其成本高,RFID 技术至今未能广泛应用到各行各业。RFID 技术因其无需视线扫描而具有无可比拟的先进性,它能够降低劳动力水平,提高知名度并改善库存管理。 RFID 技术的普及提供了一项人或物体定位及追踪的解决方案。RFID 定位与跟踪系统根据独特的识别标签、阅读器与物体标签间射频通信的信号强度确定物体的空间位置,主要适用于室内,而GPS 系统是不适合应用于室内的。 RFID 技术是一项基于“无线电频率”的非接触式的自动识别技术,自动识别静态或动态的人和对象。 RFID 标签是一个特殊的微芯片,植入商品中,可以跟踪和管理物理对象,是物流管理信息化和跟踪信息化的重要手段。 RFID 的系统组成部分包括: (1)标签(应答器):对象植入待确定。 (2)阅读器:可以读或读/写,按结构和技术。正如图1-1,RFID 的工作原理 图1-1 RFID 的工作原理 与计算机通讯 阅读器 电磁波(操作指 令和新的数据) 标签 发出的ID 代码和数据

财务风险中英文对照外文翻译文献

中英文资料外文翻译 财务风险重要性分析 译文: 摘要:本文探讨了美国大型非金融企业从1964年至2008年股票价格风险的决定小性因素。我们通过相关结构以及简化模型,研究诸如债务总额,债务期限,现金持有量,及股利政策等公司财务特征,我们发现,股票价格风险主要通过经营和资产特点,如企业年龄,规模,有形资产,经营性现金流及其波动的水平来体现。与此相反,隐含的财务风险普遍偏低,且比产权比率稳定。在过去30年,我们对财务风险采取的措施有所减少,反而对股票波动(如独特性风险)采取的措施逐渐增加。因此,股票价格风险的记载趋势比公司的资产风险趋势更具代表性。综合二者,结果表明,典型的美国公司谨慎管理的财政政策大大降低了财务风险。因此,现在看来微不足道的剩余财务风险相对底层的非金融公司为一典型的经济风险。 关键词:资本结构;财务风险;风险管理;企业融资 1 绪论 2008年的金融危机对金融杠杆的作用产生重大影响。毫无疑问,向金融机构的巨额举债和内部融资均有风险。事实上,有证据表明,全球主要银行精心策划的杠杆(如通过抵押贷款和担保债务)和所谓的“影子银行系统”可能是最近的经济和金融混乱的根本原因。财务杠杆在非金融企业的作用不太明显。迄今为止,尽管资本市场已困在危机中,美国非金融部门的问题相比金融业的困境来说显得微不足道。例如,非金融企业破产机遇仅限于自20世纪30年代大萧条以来的最大经济衰退。事实上,非金融公司申请破产的事件大都发生在美国各行业(如汽车制造业,报纸,房地产)所面临的基本经济压力即金融危机之前。这令人惊讶的事实引出了一个问题“非金融公司的财务风险是如何重要?”。这个问题的核心是关于公司的总风险以及公司风险组成部分的各决定因素的不确定性。 最近在资产定价和企业融资再度引发的两个学术研究中分析了股票价格风险利

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

农村金融小额信贷中英文对照外文翻译文献

农村金融小额信贷中英文对照外文翻译文献(文档含英文原文和中文翻译) RURAL FINANCE: MAINSTREAMING INFORMAL FINANCIAL INSTITUTIONS By Hans Dieter Seibel Abstract Informal financial institutions (IFIs), among them the ubiquitous rotating savings and credit associations, are of ancient origin. Owned and self-managed by local people, poor and non-poor, they are self-help organizations which mobilize their own resources, cover their costs and finance their growth from their profits. With the expansion of the money economy, they have spread into new areas and grown in numbers, size and diversity; but ultimately, most have remained restricted in size, outreach and duration. Are they best left alone, or should they be helped to upgrade

单片机技术发展与应用中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照外文翻译 单片机技术的发展与应用 从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。 一、无线电世界造就了几代英才。在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无

线电定位,导航等遥测、遥控、遥信技术。早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。电子科学开始形成了一门新兴学科。无线电电子学,无线通信开始了电子世界的历程。无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。 二、从无线电时代到电子技术普及时代。早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。半导体技术发展导致集成电路器件的产生,形成了近代电子技术的飞跃,电子技术从分立器件时代走进了电路集成时代。电子设计工程师不再用分立的电子元器件设计电路单元,而直接选择集成化的电路单元器件构成系统。他们从电路单元设计中解放出来,致力于系统设计,大大地解放了科技生产力,促进了电子系统更大范围的普及。半导体集成电路首先在基本数字逻辑电路上取得突破。大量数字逻辑电路,如门电路,计数器,定时器,移位寄存器以及模拟开关,比较器等,为电子数字控制提供了极佳的条件,使传统的机械控制转向电子控制。功率电子器件以及传感技术的发展使原先以无线电为中心的电子技术开始转向工程领域中的机械系统的数字控制,检测领域中的信息采集,运动机械对象的电气伺服驱动控制。半导体及其集成电路技术将我们带入了一个电子技术普及时代,无线电技术成为电子技术应用领域的一个部分。进20世纪70年代,大规模集成电路出现,促进了常规的电子电路单元的专用电子系统发展。许多专用电子系统单元变成了集成化器件,如收音机,电子钟,计算器等,在这些领域的电子工程师从电路系统的精心设计,调试转变为器件选择,外围器件适配工作。电子技术发展了,电子产品丰富了,电子工程师的难度减少了,但与此同时,无线电技术,电子技术的魅力却削弱了。半导体集成电路的发展使经典电子系统日趋完善,留在大规模集成电路以外的电子技术日益减少,电子技术没有了往昔无线电时代的无穷乐趣和全面的工程训练。 三、从经典电子技术时代到现代电子技术时代进入 20 世纪 80 年代,世界经济

互联网金融对传统金融业的影响外文文献翻译

互联网金融对传统金融业的影响外文文献翻译(文档含中英文对照即英文原文和中文翻译) 译文: 互联网金融对传统金融业的影响 摘要 网络的发展,深刻地改变甚至颠覆了许多传统行业,金融业也不例外。近年来,金融业成为继商业分销、传媒之后受互联网影响最为深远的领域,许多基于互联网的金融服务模式应运而生,并对传统金融业产生了深刻的影响和巨大的冲击。“互联网金融”成为社会各界关注的焦点。 互联网金融低成本、高效率、关注用户体验,这些特点使其能够充分满足传统金融“长尾市场”的特殊需求,灵活提供更为便捷、高

效的金融服务和多样化的金融产品,大大拓展了金融服务的广度和深度,缩短了人们在时空上的距离,建立了一种全新的金融生态环境;可以有效整合、利用零散的时间、信息、资金等碎片资源,积少成多,形成规模效益,成为各类金融服务机构新的利润增长点。此外,随着互联网金融的不断渗透和融合,将给传统金融行业带来新的挑战和机遇。互联网金融可以促进传统银行业的转型,弥补传统银行在资金处理效率、信息整合等方面的不足;为证券、保险、基金、理财产品的销售与推广提供新渠道。对于很多中小企业来说,互联网金融拓展了它们的融资渠道,大大降低了融资门槛,提高了资金的使用效率。但是,互联网金融的跨行业性决定了它的风险因素更为复杂、敏感、多变,因此要处理好创新发展与市场监管、行业自律的关系。 关键词:互联网金融;商业银行;影响;监管 1 引言 互联网技术的不断发展,云计算、大数据、社交网络等越来越多的互联网应用为传统行业的业务发展提供了有力支持,互联网对传统行业的渗透程度不断加深。20世纪末,微软总裁比尔盖茨就曾断言,“传统商业银行会成为新世纪的恐龙”。如今,随着互联网电子信息技术的发展,我们真切地感受到了这种趋势,移动支付、电子银行早已在我们的日常生活中占据了重要地位。 由于互联网金融的概念几乎完全来自于商业实践,因此目前的研究多集中在探讨互联网金融的具体模式上,而对传统金融行业的影响力分析和应对措施则缺乏系统性研究。互联网与金融行业一向是风险

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

会计学专业外文翻译

本科毕业论文外文翻译 题目:民间融资存在的问题及其对策分析 原文题目:《正规与非正规金融:来自中国的证据》 作者:Meghana Ayyagari,Asli Demirguc-kunt,Vojislav Maksimovic 原文出处:世界银行发展研究组财政与私营部门政策研究工作文件,2008 正规与非正规金融:来自中国的证据 中国在财务结果与经济增长的反例中是被经常提及的,因为它的银行体系存在很大的弱点,但它却是发展最快的全球经济体之一。在中国,私营部门依据其筹资治理机制,促进公司的快速增长,以及促进中国的发展。本文以一个企业的融资模式和使用2400份的中国企业数据库资料,以及一个相对较小的公司在利用非正式资金来源的样本比例,得出其是更大依赖正式的银行融资。尽管中国的银行存在较大的弱点,但正规融资金融体系关系企业快速成长,而从其他渠道融资则不是。通过使用选择模型我们发现,没有证据证明这些成果的产生是因为选择的公司已进入正规金融体系。虽然公司公布银行贪污,但没有证据表明它严重影响了信贷分配或公司的业绩获得。 金融的发展与更快的增长已证明和改善资源配置有关。尽管研究的重点一直是正式的金融机构,但也认识到非正式金融系统的存在和其发挥的巨大作用,特别是在发展中国家。虽然占主导地位的观点是,非正规金融机构发挥辅助作用,提供低端市场的服务,通常无抵押,短期贷款只限于农村地区,农业承包合同,家庭,个人或小企业的贷款筹资。非正规金融机构依靠关系和声誉,可以有效地监督和执行还款。可是非正规金融系统不能取代正规金融,这是因为他们的监督和执行机制不能适应金融体系高端的规模需要。 最近,有研究强调非正式融资渠道发挥了关键的作用,甚至在发达市场。圭索,萨皮恩扎和津加莱斯(2004)表明,非正式资本影响整个意大利不同地区的金融发展水平。戈麦斯(2000)调查为什么一些股东在新股投资恶劣的环境下,仍保护投资者的权利,并得出结论,控股股东承诺不征用股本,是因为担心他们的声誉。Garmaise和莫斯科维茨(2003)显示,即使在美国,非正式金融在融资方面也发挥了重要的作用。举一个商业房地产作为例子,市场经纪人,他们主要是为客户提供服务,以获得资金,这和证券经纪和银行开发具有非正式

无线数据采集和传输系统外文翻译文献

无线数据采集和传输系统外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 一种无线数据采集和传输系统的设计【摘要】在现代无线通信领域主要有一些技术为无线传输网络提供解决方法,例如:GSM,CDMA,3G,Wi-Fi。这些方法使得网络能够高效率和高质量的工作,但是成本很高。因此要低成本和在没有基础设施或者基础设施被破坏的情况下推广它们是很困难的。根据这种情况,本论文中数据采集和无线传输网络里的信息终端和无线收发模块的关键部件,是依据nRF905收发模块和51系列单片机的原理设计而成作为核心硬件,此外,结合目前自组无线网络的技术,可以构建一个短距离无

线数据采集和传输网络,这个网络能够提供一个工作在ISM(工业科学医学)频段的低功率及高性能的数据通信系统。然后提出了一个对无线通信可行的解决方案,这个方案优势在于更强的实时响应,更高的可靠性要求和更小的数据量。通过软件和硬件的调试和实际测量,这个系统在我们的解决方案基础上运行良好,达到了预期的目标并且已经成功的应用到无线车辆系统。 【关键词】自组网络;数据采集;传输网络 1 简介 在现代无线通信里,GSM,CDMA,3G和Wi-Fi因为其高速和可靠的质量而逐渐成为无线数据传输网络的主流解决方案。它们也有高成本的缺点,因此如果广泛的应用,将会引起大量的资源浪费,也不能在小区域,低速率的数据通信中得到提升。多点短距离无线数据采集和传输网络将成为最佳解决方案。此系统支持点对点,点对多点和多点对多点通信系统的发展。 短距离无线通信可以适应各种不同的网络技术,例如蓝牙, IEEE802.11,家庭无线网和红外。与远距离无线通信网络相比,它们的不同之处在于基本结构,应用水平,服务范围和业务(数据,语音)。设计短距离无线通信网络的最初目的是为了提供短距离宽带无线接入到移动环境或者制定临时网络,这是在移动环境里互联网更深的发展。短距离无线通信网络最主要的优势是更低的成本和更灵活的应用。 本文介绍信息终端(单个器件)的硬件和软件以及多点短距离无线数据采集和传输网络的无线接收模块的设计建议,提供一个低功率高性

金融学毕业论文外文翻译中英文全

Improve the concept of financial supervision in rural areas1 Xun Qian Farmers in China's vast population, has some large-scale production of the farmers, but also survival-oriented farmers, huge differences between the financial needs of rural finance intermediation makes complex, together with agriculture itself is the profit low, natural and market risks high risk decision to weak agricultural industry characteristics, resulting in the cost of rural financial transactions is far higher than the city, also decided to organize the rural financial system in terms of operation or in the market has its own special characteristics. 20 years of financial reform, financial development while the Chinese city made impressive achievements, but the rural finance is the entire financial system is still the weakest link. Insufficient supply of rural finance, competition is not sufficient, farmers and agricultural enterprises in getting loans and other issues is also very prominent, backward rural financial system can no longer effectively support the development of modern agriculture or the transformation of traditional agriculture and the building of new socialist countryside, which to improve the rural financial supervision new topic. China's rural financial regulatory problems (A) the formation of China's financial regulatory system had "a line three commission " (People's Bank, the Securities Regulatory Commission, Insurance Regulatory Commission and the Banking Regulatory Commission) financial regulatory structure. Bank These stringent requirements, different management and diversification of monitoring has its positive role, but it also had some negative effects. First, inefficient supervision, supervision of internal consumption of high costs, limited financial industry business development and innovation space. Second, the regulatory agencies, regulatory bodies and the information asymmetry between central banks, banking, securities, and insurance mechanisms of coordination between regulatory bodies are not perfect. Information between central banks and regulatory agencies is difficult to share, is difficult to create effective monitoring force. Basically between the various 1American Journal of Agricultural Economics,2009.

相关文档
相关文档 最新文档