文档库 最新最全的文档下载
当前位置:文档库 › 后张拉法预制T梁锚下有效预应力损失率合理取值范围研究

后张拉法预制T梁锚下有效预应力损失率合理取值范围研究

后张拉法预制T梁锚下有效预应力损失率合理取值范围研究
后张拉法预制T梁锚下有效预应力损失率合理取值范围研究

智能张拉技术应用效果

桥梁预应力智能张拉技术推广应用效果 1、实实在在提高了桥梁预应力张拉质量。 ◆施加的预应力力值大小得到了精确控制,降低了由于预应力施加不足或超过引起的桥梁开裂、下挠、破坏等风险,有利于保证结构安全,提高耐久性,延长使用寿命,降低养护维修成本。 ◆实现对称同步张拉,保证施加应力均衡,消除了对称张拉不受力不均衡对结构造成的扭曲等危害。 ◆通过规范张拉行为大幅度减小了张拉过程中预应力的损失,保证了有效预应力符合设计要求。 例1:通平高速已经张拉了3027片预应力T梁,下图体现了三个效果: ①智能张拉真实掌握了施工质量,便于及时补救和改进。钢绞线延伸量偏差客观存在,只是以前不被发现。 ②采用智能张拉后,延伸量偏差基本为正偏差,说明预应力度得到了有效保证; ③在开工前期,延伸量偏差较大,但在1月份后偏差范围逐渐减小,3月份后基本控制在规定之内。说明由于采用智能张拉技术,施工质量得到了有效控制,预应力质量大幅度提高。

2月份开始好转,3月底完全受控 从上图可以看出,延伸量超过±6%的情况客观存在,只是以前没有被发现,随 着加强施工管理,施工质量得到了控制,趋势向好,到3月底时,延伸量误差基本 控制在±6%(红线)范围内,说明应用智能张拉系统让张拉质量显著提升。 例2:洞新高速已经张拉了1592片预应力梁板,下图同样体现 了采用智能张拉系统取得了上述良好效果: 随着时间推移,伸长量误差 逐步控制在±6%范围内。

2、及时发现了施工中各种质量问题,杜绝了张拉数据造假。 经常发现的质量问题有:锚下砼开裂、下陷,滑丝、断丝,张拉控制应力错误、张拉顺序错误、穿索错误、孔道漏浆、偷工减料和弄虚作假等,并得到了及时排除,消除了结构质量隐患。 案例1:发现断丝,并及时处理,消除隐患 某项目十一标断丝情况见下图: 从曲线图分析: 此根钢绞线断丝 此根钢绞线没有夹片咬痕未受力 压力曲线异常 位移曲线突变

后张法预应力张拉

后张法预应力张拉浅见 目录 一、初接触后张法预应力张拉应了解的东西 二、确定张拉选用千斤顶的方法 三、张拉伸长量、张拉力、油压的计算方法 四、开始张拉时候要做的准备工作 五、张拉过程控制要点 六、张拉过程中可能会遇到的问题及处理方法 七、张拉报表的数据导出与审核 八、作为现场技术人员需要知道的张拉要点 一、初接触后张法预应力张拉应了解的东西 1.张拉初了解

初接触张拉,需要知道张拉是什么东西,桥梁为什么要张拉,能起到什么作用,要达到什么效果。其实很简单,通俗浅显的理解就是:梁体在浇筑后,由于跨度较大,大体积钢筋混凝土结构的抗剪抗压能力不足以支撑桥梁安全可靠投入使用,故在梁体纵向或者横向均匀对称贯穿多束有弹性的钢绞线,然后把钢绞线用很大的力(这个力就是所要计算的张拉力)拉紧,相当于用多束钢绞线把梁体拖住,给予梁体一个向上的力,保证梁体安全性。由于钢绞线是一种有弹性的材料,在给他拉力的时候钢绞线会伸长,这个伸长量即为我们要需要计算的理论伸长量。 2.后张法预应力张拉力、伸长量计算 想要计算这两个值需要了解,哪些值决定他。错误! a.钢绞线的弹性模量Ep (图纸设计说明里面会给出值,但实际计算中规范要求需要用试验实测值,我们这个项目的实测值和设计值差不多所以用设计值) mm) b.钢绞线的截面面积(我们现在用的钢绞线截面面积取值1402 c.钢束与孔道壁之间的摩擦系数μ(图纸设计说明里有,这个值不是固定的,但规范要求是用实测值,我们用的是图纸上给的值) d.管道偏差系数k(图纸设计说明上有,这个值不是固定的,但规范要求是用实测值,我们用的是图纸上给的值) e.钢绞线分段长度L(后续会介绍)钢绞线弧度角θ(图纸上预应力布置图上有)

桥梁预应力智能张拉压浆系统施工工法

桥梁预应力智能张拉压浆系统施工工法 一、工艺原理 1、智能张拉系统工艺原理 桥梁预应力智能张拉系统指一种预应力自动张拉设备及其计算机控制系统,主要由预应力智能张拉仪、智能千斤顶、自带无线网卡的笔记本电脑、高压油管等组成。其以应力为控制指标,伸长量误差作为校对指标,系统通过传感技术采集每台张拉设备(千斤顶)的工作压力和钢绞线的伸长值(含回缩量)等数据,实时将数据传输给系统主机进行分析判断,同时张拉设备(泵站)接收系统指令,实现张拉力及加载速度实时精确控制。系统还根据预设程序,由主机发出指令,同步控制每台设备的每一个机械动作,自动完成整个张拉过程。 智能张拉系统工艺原理示意图 (1)预应力智能张拉仪 此设备为超高压动力输出装置,它的作用主要是为梁体的张拉装置(千斤顶)提供可靠、稳定的提升动力,具有提升、保压、回程等功能。该设备能够精准的实现程序设定的命令,通过无线通讯接口确保数据通讯的可靠交互。 智能张拉仪结构示意图

(2)智能千斤顶 采用新型密封件,高压自增强油缸强度,优化千斤顶结构尺寸,在保证千斤顶行程,油压不变的前提下,重量比常规穿心式千斤顶减轻30%~45%,使千斤顶的重量出力比达到0.6:1,同时千斤顶长度和外径减小,能减小预留钢绞线的长度,可广泛应用于先张法和后张法的预应力施工。自身附带电子位移传感器,用于千斤顶内缸伸长量的测试。具有精度高、误差小、量程大、移动平顺等特点;自身附带高精度压力传感器,能精准测量千斤顶输出的力值。 智能千斤顶及其尺寸(150T)示意图 2、智能大循环压浆系统工艺原理 大循环预应力管道智能压浆系统特指预应力自动压浆装置及其计算机控制系统,其主要技术原理如下: 系统由系统主机、测控系统、循环压浆系统组成。浆液在由预应力管道、制浆机、压浆泵组成的回路内持续循环以排净管道内空气,及时发现管道堵塞等情况,并通过加大压力进行冲孔,排出杂质,消除致压浆不密实的因素。 在管道进、出浆口分别设置精密传感器实时监测压力,并实时反馈给系统主机进行分析判断,测控系统根据主机指令进行压力的调整,保证预应力管道在施工技术规范要求的浆液质量、压力大小、稳压时间等重要指标约束下完成压浆过程,确保压浆饱满和密实。 主机判断管道充盈的依据为进出浆口压力差在一定的时间内是否保持恒定。 在预应力混凝土张拉完成后,采用快硬砂浆或快硬水泥对端头预应力筋与锚具间缝隙进行封堵,同时布置施工设备及机具。准备工作完成后,启动压浆系统进行压浆作业。 预应力智能压浆系统结构示意图

LZ-5901预应力智能张拉作业指导书

谷竹高速11合同段 预应力智能张拉作业指导书 编制: 审核: 批准: 湖北省谷竹高速公路GZTJ11合同段 中铁十三局集团第一工程有限公司项目经理部

LZ-5901预应力智能张拉单机版作业指导书 一、使用过程 1、核对主机和专用千斤顶的编号,由于主机和千斤顶都在出厂前统一标定,使用时一定要注意一一对应。 2、布置张拉控制站。控制站选择在确定待张拉梁板侧面,要求不影响现场施工、控制站能安全工作,无阳光直射,在张拉过程中无需移动就能方便看到梁板的两端,能连接到220V电源,取消电脑的屏幕保护,自动关闭硬盘等功能,安装好控制软件。将张拉仪主机和专用千斤顶一一对应的布置于梁板的两端,并且都能和控制站保持直线可视状态。 3、确保控制站、两端的张拉仪主机、被张拉梁板的周围无强磁场、电场(即梁板的周围20m范围内无电焊等大型电磁场施工设备作业)。否则会影响无线通信信号,严重者会出现打死现象。遇到这样的情况,可以断开、重连电源,重新进行信号连接。 4、请专业电工连接好三相四线(仪器红、绿、黄三根粗线为火线,蓝线为零线),接电箱中,一般数字2、4 、6代表火线,字母N代表零线。不允许剪断或拆除接线插头,连接电线以后,用试电笔检查电源是否正常。除了专业人士,不允许任何人接电源,更不允许带电作业。接线图如下:

5、连接好油管:仔细检查油嘴及快接头是否有杂质,必须将其擦拭干净;仔细检查进油管与回油管是否被混淆,回油管安装在张拉时候远离梁板的一段,即千斤顶安装了黑色安全阀的一端;油管必须顶紧后,方可拧动螺帽,可以采取观测螺丝丝口是否外露来判断是否拧到位。 a.干净的油嘴及有杂质的油嘴:

湖南联智桥隧技术有限公司智能张拉与压浆产品介绍

产品介绍 一.预应力智能张拉系统 产品简介 预应力智能张拉系统,通过计算机软件控制实现预应力张拉全过程自动化,杜绝人为因素干扰,能有效确保预应力张拉施工质量,是目前国内预应力张拉领域最先进的工艺。 一、系统结构及工作原理 预应力智能张拉系统结构图 工作原理: 智能张拉系统由系统主机、油泵、千斤顶三大部分组成。预应力智能张拉系

统以应力为控制指标,伸长量误差作为校对指标。系统通过传感技术采集每台张拉设备(千斤顶)的工作压力和钢绞线的伸长量(含回缩量)等数据,并实时将数据传输给系统主机进行分析判断,同时张拉设备(泵站)接收系统指令,实时调整变频电机工作参数,从而实现高精度实时调控油泵电机的转速,实现张拉力及加载速度的实时精确控制。系统还根据预设的程序,由主机发出指令,同步控制每台设备的每一个机械动作,自动完成整个张拉过程。 主要功能与特点 1、精确施加应力 智能张拉系统能精确控制施工过程中施加的预应力值,将误差范围由传统张拉的±15%缩小到±1%。(《公路桥涵施工技术规范》7.12.2第二款规定“张拉力控制应力的精度宜为±1.5%”。) 2、及时校核伸长量,实现“双控” 系统传感器实时采集钢绞线数据,反馈到计算机,自动计算伸长量,及时校核伸长量误差是否在±6%以内,实现应力与伸长量“双控”。(《公路桥涵施工技术规范》7.6.3款规定“预应力筋采用应力控制方法进行张拉时,应以伸长量进行校核。…其偏差应控制在±6%”。) 3、对称同步张拉

一台计算机控制两台或多台千斤顶同时、同步对称张拉,实现“多顶同步张拉”工艺。(《公路桥涵施工技术规范》7.12.2第1款规定“各千斤顶之间同步张拉力的允许误差为±2%”。) 4、规范张拉过程,减少预应力损失 实现了张拉程序智能控制,不受人为、环境因素影响;停顿点、加载速率、持荷时间等张拉过程要素完全符合桥梁设计和施工技术规范要求,避免或大幅减少了张拉过程中预应力的损失。(《公路桥涵施工技术规范》7.12.2第2款规定“保证千斤顶具有足够的持荷时间(5分钟)”。) 5、自动生成报表杜绝数据造假 自动生成张拉记录表,杜绝人为造假的可能,可进行真实的施工过程还原。同时还省去了张拉力、伸长量等数据的计算、填写过程,提高了工作效率。 6、远程监控功能 实现远程监控功能,方便质量管理,提高管理效率。统一业主、监理、施工、检测单位于同一互联网平台,能实时进行交互,突破了地域的限制,及时掌握预制梁场和桥梁预应力施工质量情况,实现“实时跟踪、智能控制、及时纠错”。

桥梁预应力智能张拉压浆系统施工工法

桥梁预应力智能张拉压浆系统施工工法 1前言 桥梁结构耐久性是影响桥梁安全、结构寿命的关键因素,上部结构的提前损坏如出现早期下挠、开裂等病害和桥梁安全事故发生是国内交通行业日益关注的问题。大量预应力桥梁调查和检测表明,预应力桥梁质量隐患主要来源于预应力张拉施工工艺不规范和缺乏有效的压浆质量控制手段,有效预应力的建立直接关系桥梁安全性、可靠性和使用寿命。如何改进预应力施工技术,如何对桥梁预应力进行有效控制,已经成为亟待解决的重要问题。河北省高速公路石安改扩建项目桥梁、高岭 2 号高架桥、天津津歧公路东风大桥、通平沙园里高架桥,推行桥梁标准化施工和精细化管理,桥梁预应力采用智能张拉和智能压浆施工技术,改变了传统的张拉压浆工艺,严格控制预应力张拉的精度和管道压浆的密实度,对提高桥梁结构的耐久性和使用寿命、降低桥梁的寿命周期成本具有重大现实意义。2012年5月20日,由交通运输部科技司组织的鉴定委员会对预应力张拉与压浆智能化成套技术及远程监控研究进行了技术鉴定,专家委员会一致认为该预应力张拉与压浆智能化成套技术及远程监控研究成果具有创新性和自主知识产权,推广应用意义深远,经济效益和社会效益显着,项目成果总体达到国际先进水平。 2工法特点采用智能张拉施工技术,变人工操作为智能机械自动控制,实现精确同步,自动施工提升张拉精度。 采用大循环智能压浆施工技术,持续循环压力排尽孔道空气,保证压浆密实,避免或明显减少钢绞线锈蚀,提高桥梁结构的耐久性,采用双孔同时压浆,提高工效、提高工程施工进度。 智能张拉、智能压浆配套智能系统控制方案,其共同作用效果保证桥梁预应力良好实现。 智能化施工,改变了传统的质量管理模式,一键式操作简单易懂,实现远程监控,全过程系统自动运作,施工规范,系统自动打印数据表,无法篡改,实现“智能控制、远程跟踪、及时纠错” ,便于实行动态管理和历史溯源。 采用优质专用压浆料,避免单纯使用水泥和外加剂混合,保证浆体质量。 3适用范围 该工法适用于桥梁结构预应力张拉和孔道压浆施工。 4工艺原理 智能张拉系统工艺原理 桥梁预应力智能张拉系统指一种预应力自动张拉设备及其计算机控制系统,主要由预应力智能张拉仪、智能千斤顶、自带无线网卡的笔记本电脑、高压油管等组成。其以应力为控制指标,伸长量误差

预应力智能张拉及循环智能压浆技术在T梁施工中的应用 王贺华

预应力智能张拉及循环智能压浆技术在T梁施工中的应用王贺华 发表时间:2016-10-26T10:21:34.023Z 来源:《低碳地产》2016年12期作者:王贺华 [导读] 【摘要】文中结合岳武高速09标工程的施工特点,重点阐述预应力智能张拉及循环智能压浆技术在T梁施工中的应用。 安徽省路桥工程集团有限责任公司安徽合肥 230000 【摘要】文中结合岳武高速09标工程的施工特点,重点阐述预应力智能张拉及循环智能压浆技术在T梁施工中的应用。 【关键词】智能张拉智能压浆施工方法 1前言 桥梁是人类根据生活与生产发展的需要而兴建的一种公共建筑,它以自身的实用性、巨大性、艺术性而极大地影响了人类的生活。T 梁是桥梁的结构中重要的受力结构,传统的张拉及压浆工艺设备,存在许多弊端,导致预应力筋的早期疲劳,危及桥梁使用寿命。为了保证桥梁的使用寿命,智能张拉及智能压浆技术被很多施工单位首选。 2工程概况 岳武高速09标位于岳西县白帽镇境内,起讫桩号K35+100-K40+ 300,全长5.2km,总投资1.97亿元,合同工期28个月。本标段主线共有大桥、分离立交3座: K35+840(K35+856)双畈河大桥。左幅3×(3×40)+4×40+4×40+3×40m P.C T梁,右幅30+5×40+30+8×40+30mP.C T梁。本桥40米T梁165片,30米T梁15片。 K38+163(K38+148)高强河大桥。左幅3×40+30+6×40+30m P.C T梁,右幅30+3×40+30+6×40+30m P.C T梁。本桥40米T梁90片,30米T梁25片。 K39+352(K39+331)上跨G318分离立交上部结构为7×25m P.C T梁。本桥25米T梁70片 全线共有T梁365片,其中40米T梁255片、30米T梁40片、25米T梁70片。 3 预应力智能张拉、循环智能压浆施工方法及要点 3.1 预应力智能张拉 预应力钢绞线必须待T梁混凝土强度达到设计强度的90%,且混凝土龄期不小于7d,方可张拉,张拉时严格按照设计图纸和技术规范要求进行张拉;张拉前钢绞线在管道内要保证能自由移动。张拉时两端对称、均匀张拉,采用张拉力和引申量双控,以钢绞线伸长量进行校核。40mT梁30m小边跨和40mT梁张拉顺序为50%N2、N3→100%N1→100%N2、N3→100%N4;25mT梁张拉顺序为 50%N2→100%N3→100%N2→100%N1。 钢绞线张拉程序为:0→15%→30%→100%设计张拉应力,持荷5分钟后锚固,记下伸长值。实际伸长值与理论伸长值的误差应控制在6%以内,否则应暂停张拉,待查明原因并采取措施予以调整后,方可继续张拉。张拉后,要测定钢绞线的回缩与锚具的变形量,超过容许值应重新张拉或更换锚具重新张拉,断丝和滑丝超过限制数应重新张拉。各项指标合格后,进行锚固,放松千斤顶压力时应避免振动锚具和钢绞线。切割露头要求用砂轮切割机,并需对锚具采取保护措施。 3.1.1 预应力智能张拉的系统工作原理 预应力智能张拉设备由系统主机、油泵、千斤顶三大部分组成。预应力智能张拉设备以应力为控制指标,伸长量误差作为校对指标。系统通过传感技术采集每台张拉设备(千斤顶)的工作压力和钢绞线的伸长量(含回缩量)等数据,并实时将数据传输给系统主机进行分析判断,同时智能张拉设备接收系统指令,实时调整变频电机工作参数,从而实现高精度实时调控油泵电机的转速,实现张拉力及加载速度的实时精确控制。系统还根据预设的程序,由主机发出指令,同步控制每台设备的每一个机械动作,自动完成整个张拉过程。 压力传感器在张拉过程中负责采集千斤顶油缸的压力值,通过下拉机传给控制主机,主机根据标定参数换算成拉力值。 位移传感器在张拉过程中负责采集钢绞线伸长量(回缩量)值,通过下位机传给控制主机。 3.1.2 预应力智能张拉的主要功能与特点 3.1.2.1 精确施加应力 预应力智能张拉设备能精确控制预应力张拉施工过程中施加的预应力值,将误差范围由传统张拉的±15%缩小到±1%。(《公路桥涵施工技术规范》(JTG/T F50-2011)7.12.2第2款规定“张拉力控制应力的精度宜为±1.5%”。) 3.1.2.2 及时校核伸长量,实现“双控” 系统传感器实时采集钢绞线数据,反馈到计算机,自动计算伸长量,及时校核伸长量误差是否在±6%以内,实现应力与伸长量“双控”。(《公路桥涵施工技术规范》(JTG/T F50-2011)7.6.3第3款规定“预应力筋采用应力控制方法进行张拉时,应以伸长量进行校核。其偏差应控制在±6%以内”。) 3.1.3 对称同步张拉 一台计算机控制两台或多台千斤顶同时、同步对称预应力张拉,实现“多顶同步张拉”工艺。(《公路桥涵施工技术规范》(JTG/T F50-2011)7.12.2第1款规定“各千斤顶之间同步张拉力的允许误差为±2%”。) 3.1.4 规范张拉过程,减少预应力损失 实现了预应力张拉程序智能控制,不受人为、环境因素影响;停顿点、加载速率、持荷时间等张拉过程要素完全符合桥梁设计和施工技术规范要求,避免或大幅减少了张拉过程中预应力的损失。(《公路桥涵施工技术规范》(JTG/T F50-2011)7.12.2第2款规定“保证千斤顶具有足够的持荷时间(5分钟)”。) 3.1.5 自动生成报表杜绝数据造假 自动生成张拉记录表,杜绝人为造假的可能,可进行真实的施工过程还原。同时还省去了张拉力、伸长量等数据的计算、填写过程,提高了工作效率。 3.1.8 远程管理功能 实现远程监控功能,方便质量管理,提高管理效率。统一业主、监理、施工、检测单位于同一互联网平台,能实时进行交互,突破了地域的限制,及时掌握预制梁场和桥梁预应力张拉施工质量情况,实现“实时跟踪、智能控制、及时纠错”。

后张法预应力施工方法(完整已排版)

后张法预应力工程 1、钢绞线束和波纹管准备 1)钢绞线束采用标准值fpk=1860MPa级低松驰钢绞线,公称直径15.2mm,公称面积140mm2。钢绞线束表面必须无锈、油垢等杂质,且不能有断丝。波纹管采用金属波纹管,表面也必须无锈、油垢等杂质,且不能有孔洞。波纹管在搬运过程中轻抬轻放,避免碰撞弯折。钢绞线束和波纹管到场以后,必须专人专管,并备有防雨材料。 2)钢绞线束下料长度等于波纹管孔道净长加上两端的工作长度,另加适当富余。

2、波纹管安装 波纹管安装需要同绑扎钢筋一同来完成。根据设计图纸中规定的预应力管道坐标来放出波纹管的位置控制点。施工人员依据管道位置控制点定出波纹管的位置,按每0.5m的间距用定位钢片来固定波纹管。气孔与波纹管连接处用胶带密封。波纹管及喇叭管连接处用胶带密封,以防止混凝土浇筑过程中砂浆进入波纹管内。排气孔位置须定在波纹管最高点上。 3、穿钢绞线束 穿束前要检查混凝土构件的外形尺寸、外观是否符合质量标准要求;钢绞束端头必须做成锥形并包裹,短束直接用人工穿束,长束可用钢丝并利用卷扬机进行牵引。 4、预应力张拉 1)预制板混凝土强度达到设计强度的85%后,且龄期不小于7d 方可张拉预应力钢束,钢束张拉采用两端同时张拉,设计锚下张拉控制应力为0.75fpk=1395Mpa。施加预应力采用张拉力与引伸量“双控”,以张拉力为主,以引伸量进行校核,实际引伸量值与理论引伸量值的误差要控制在6%以内。实际引伸量值要扣除钢束的非弹性变形影响。张拉过程中随时注意上拱度的变化,张拉时弹性上拱误差控制范围:±0.5㎝。 2)预应力钢束张拉顺序为:50%左N1→100%右N1→100%左N2→100%右N2→100%左N1。 3)后张法张拉程序:0→初应力→100σk%→σk%(锚固) 4)后张法预应力钢材伸长值计算 计算公式△L=σ×L / Eg×〔1-e-(kl+μθ)/(kl+μθ)〕式中:△L——预应力钢绞束理论伸长值; σ——预应力控制张拉力;

预应力小箱梁

预应力混凝土小箱梁 一、技术标准及采用规范 1、交通部标准《公路工程技术标准》(JTG B01—2003) 2、交通部标准《公路桥涵设计通用规范》(JTG D60—2004) 3、交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) 4、交通部标准《高速公路交通工程及沿线设施设计通用规范》 (JTG D80—2006) 5、交通部标准《公路桥涵施工技术规范》(JTG/T F50—2011) 二、荷载标准: 计算荷载:公路—Ⅰ级 三、主要材料及要点 1、预应力钢筋采用高强度低松弛钢绞线Φs15.2mm,其技术性能应符合(GB/T5224—2003)标准,其力学性能如下:fpk=1860MPa,Ep=1.95×105,整根钢绞线公称截面积为140mm2。 2、混凝土标号:预制箱梁,横梁采用C50。现浇接头,湿接头采用C50微膨混凝土。 3、锚下控制应力:σcon=0.73fpk=1357.8MPa 4、锚具极其附件:锚具需选用OVM等符合国家技术质量标准的产品及配套锚垫板,螺旋筋,锚具须符合现行的《预应力筋用锚具和连接器应用技术规范》,预应力管道采用预埋塑料波纹管成孔(圆形)。 5、普通钢材:除特殊要求外,钢筋直径≥12mm时,用HRB335(B);钢筋直径<12mm时,用HPB235(A)。 四、构造处理 1、为了减轻安装重量和增加横向整体性,在各箱梁之间设横向湿接缝。每联端部横梁部分与箱梁同时预制,各中间蹲位处横向采用现浇(箱内堵头板采用单独预制)。 2、为了满足锚具布置的需要,箱梁端部在箱内侧方向加厚,腹板内预应力钢束除竖向弯曲外,在主梁加厚段尚有平面弯曲。与此相应,锚固面在三个方向倾斜,使预应力钢束张拉时垂直与锚固端面。

预应力智能张拉设备控制系统

智能张拉设备系统简介 ZZJN-50F型预应力智能张拉系统主要是为了满足各种公路、桥梁等工程建设中预应力梁张拉而设计的,系统由2 台千斤顶,2台电动液压站、4 个高精度压力传感器、2 个高精度位移传感器、PLC控制器、主机、无线数据传输系统等组成,可同时控制2 台千斤顶同步工作,构成平衡的张拉。由计算机预设张力工艺,一键操作实现张拉过程的自动化控制,伸长值显示,张拉数据实现曲线采集及校核报警,张拉结果记录存储、无线数据传输以及网络传输等信息化管理。 系统结构图如下: 其中液压站采用超高压电液控压油路开关专利技术,高压、超高压液压油路的通、断控制实现了稳定可靠的电动控制。在每台电动液压站连接千斤顶的打压端种回油端分别安装压力传感器,减小了油压冲击对压力的干扰。同时在每台千斤顶上安装高精度位移传感器,实现监测张拉伸长值的变化。 本系统的特点是结构简单,张拉控制精度可达到0.5%要求,千斤顶端只有测量伸长值的位移传感器需要引线,可靠性好,工人操作千斤顶与原手动操作相同,且减小了伸长值测量和记录等工作。集成了计算机自动控制系统技术、无线传输技术、数据监控分析技术于一身。 系统把梁场预应力梁的张拉、数据传输、监控、管理等一系列功能紧密的结合起来,从张拉现场到管理中心均可实现张拉数据的管理,达到信息的快速流通,实现预应力梁张拉的现代化管理。

智能张拉控制系统控制软件使用说明 1、输入工程信息 启动智能张拉控制程序,首先进入张拉工程信息管理界面,在该界面上可输入相关的工程信息: (张拉工程信息管理界面) 工程信息在第一次使用张拉控制程序时或变更使用环境后需进行输入,一般情况下不需要更改,只需要输入张拉梁号、混凝土试块强度以及选择张拉方式:

浅谈预应力智能张拉的应用

浅谈预应力智能张拉的应用 摘要:通过传统预应力张拉、压浆工艺与智能张拉、压浆施工工艺的比较,各项经济技术指标的分析,智能张拉系统在实际施工中更具优势,更具操作性。 关键词:传统张拉智能张拉比较应用 随着科技的进步,预应力砼构件在各领域的应用逐渐推广,其中预应力构件的张拉和压浆施工是决定构件质量比较关键的一环,相对于传统的张拉和压浆施工,新型的智能张拉和压浆设备的推广和使用,更能保证工程质量和安全,加快了施工进度,节约施工成本。 1传统普通预应力施工工艺 1.1预应力张拉 1.1.1张拉设备安装 安装工作锚锚板和夹片;安装限位板;安装千斤顶;安装工具锚组件。 a.安装工作锚、夹片。 b.将工作锚环分别套入钢铰线,贴紧锚垫板,安装钢铰线工作夹片。夹片缝隙大小要均匀,用φ20mm钢管套在钢铰线上,轻轻敲打夹片,使夹片进入锚环,要求外露面要平齐,缝隙均匀。 c.安装限位板,限位板有止口与锚板定位。 d.安装千斤顶,千斤顶的穿心孔通过钢束,使钢束、锚孔在同一轴线上。然后安装垫圈、工具锚、夹片,将千斤顶活塞回到最小位置,保证其有足够的行程,将垫圈内孔穿过钢束贴紧千斤顶后,按照工作夹片安装顺序安装工具锚及夹片。千斤顶内的钢束要平行顺直,以防交错而断丝、滑丝等。 1.1.2张拉 张拉应力采用张拉力与伸长值双控的方法,以钢束伸长量进行校核。 压力达到张拉应力的初始应力时,手动量测张拉油缸行程并记录,作为计算伸长值的起点。张拉缸继续进油,手动量测油缸行程数值并作好相对应应力时伸长值记录,至张拉控制应力持荷2分钟后,回至设计张拉力,核对伸长值,符合规范要求做好记录。张拉缸回油,工作锚片锚固。张拉缸回油,卸工具锚。千斤顶回程,卸千斤顶。钢铰线容许回缩6mm,超过此值时则认为滑丝。当实测伸长值与理论伸长值超出规范要求时,应查明原因后再继续施工。

先张法预应力和后张法预应力的区别

先张法预应力和后张法 预应力的区别 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、你应该明白先张法与后张法的施工工艺。 先张法 1.先张拉钢筋,后浇灌混凝土构件。 2.先张法施工的 3个阶段: a、张拉钢筋; b、浇灌混凝土和养护; c、放松钢筋建立预应力。 后张法 1.先浇灌混凝土构件,后张拉钢筋 2.后张法施工的3个阶段:a、构件制作和养护;b、张拉钢筋建立预应力;c、灌浆和锚头处理。 3.有粘结、无粘结 4.直线预应力筋、曲线预应力筋 5.纵向张拉、横向张拉 二、先张法与后张法只是在施工手段上有区别,而力学性质并无明显区别。 中、小型预应力构件一般采用先张法,大型预应力构件一般采用后张法。唯一区别是先张法是将张拉后的预应力钢筋直接浇筑在混凝土内,依靠预应力钢筋与周围混凝土之间的粘结力来传递预应力。而后张无粘结预应力混凝土的预应力钢筋完全依靠端头锚具来传递预压力。如果忽略摩擦的影响,后张无粘结预应力混凝土中预应力钢筋的应力沿全长是相等的,在单一截面上与混凝土不存在应变协调关系,当截面混凝土开裂时对混凝土没有约束作用,裂缝疏

而宽,挠度较大,需设置一定数量的非预应力钢筋以改善构件的受力性能。是否容易产生裂缝只与预应力度有关即与预应力施加的大小有关,而与制作方法无关,但你要明白一点,一般来说,施加同样的张拉应力时,先张法要比后张法预应力损失大,因为先张法中混凝土有弹性回缩。 三、先张法与后张法的一个重要区别在于钢筋是否放张。 (1)先张法 即先张拉钢筋后浇注混凝土.其主要张拉程序为:在台座上按设计要求将钢筋张拉到控制应力→用锚具临时固定→浇注混凝土→待混凝土达到设计强度75%以上切断放松钢筋.其传力途径是依靠钢筋与混凝土的粘结力阻止钢筋的弹性回弹,使截面混凝土获得预压应力。 预加应力的方法先张法施工简单,靠粘结力自锚,不必耗费特制锚具,临时锚具可以重复使用(一般称工具式锚具或夹具),大批量生产时经济,质量稳定.适用于中小型构件工厂化生产. (2)后张法 ①有粘结预应力混凝土。 先浇混凝土,待混凝土达到设计强度75%以上,再张拉钢筋(钢筋束).其主要张拉程序为:埋管制孔→浇混凝土→抽管→养护穿筋张拉→锚固→灌浆(防止钢筋生锈).其传力途径是依靠锚具阻止钢筋的弹性回弹,使截面混凝土获得预压应力,如图所示.这种做法使钢筋与混凝土结为整体,称为有粘结预应力混凝土.

预应力混凝土箱梁预制

梁部工程 1 预应力混凝土箱梁预制。 1.1 预制箱梁控制流程 1.2 1.2.1 (1 (2 (3

基承载力应达到250KPa以上。 (4)审查施工单位简支箱梁的模板及支架的施工工艺设计是否符合设计和施工要求,其反拱和预留压缩量的设置是否符合设计要求和施工工艺要求。 1.2.2 主控项目 (1)模板及支架安装和拆除的检验必须符合铁道部现行《铁路混凝土工程施工质量验收标准》 (2)拆模时的梁体混凝土强度应符合设计要求。当设计无具体规定时,混凝土强度应达到设计强度的60%及以上,且能保证棱角完成。 (3)拆模时的梁体混凝土芯部与表层、箱内与箱外、表层与环境温差均不宜大于15℃;气温急剧变化时不宜拆模。 1.2.3 一般项目 模板安装允许偏差和检验方法如下表: 模板尺寸允许偏差和检验方法

1.3 钢筋 1.3.1 监理要点 (1)钢筋焊接前应选定焊接工艺和参数,在试焊质量合格和焊接工艺(参数)确定后,方可成批焊接。 (2)施工中应确保钢筋位置准确。当梁体钢筋与预应力钢筋管道相碰时,适当移动梁体钢筋或进行适当弯折。 (3)在起吊钢筋骨架时用加强钢筋加固骨架,保证骨架刚度以及骨架吊装以后的尺寸。吊装严格按操作规程作业。 (4)梁体的各种预埋件、预留孔与模板、钢筋骨架同时安装,保证设置齐全、位置准确。 1.3.2 主控项目 钢筋原材料、加工、连接和安装的检验必须符合铁道部现行《铁路混凝土工程施工质量验收标准》的规定。 1.3.3 一般项目: (1)钢筋原材料、加工和连接的检验应符合铁道部现行《铁路混凝土工程施工质量验收标准》。 (2)钢筋安装的允许偏差和检验方法如下表: 钢筋安装允许偏差和检验方法

预应力智能张拉系统说明书及操作指南

预应力智能张拉系统 说明书 柳州市银桥预应力机械厂

柳州市银桥预应力机械厂 目录 第一章智能张拉系统简介 (2) 第二章系统各项指标 (5) 第三章售后服务 (8) 第四章出厂配置 (9) 第五章智能张拉控制系统操作指南 (10)

第一章智能张拉系统简介 智能张拉是指不依靠工人手动控制,而利用计算机智能控制技术,通过仪器自动操作,完成钢绞线的张拉施工。 在如今的桥梁道路建设中,预应力施工被广泛应用,其中关键工序——张拉,其施工质量的好坏,会直接影响结构的耐久性,但是传统张拉施工,纯靠施工人员凭经验手动操作,误差率很高,无法保证预应力施工质量。不少桥梁因为预应力施工不合格,被迫提前进行加固,严重的甚至突然垮塌,给社会造成了巨大的生命财产损失。 智能张拉技术由于智能系统的高精度和稳定性,能完全排除人为因素干扰,有效确保预应力张拉施工质量,是目前国内预应力张拉领域最先进的工艺。 柳州市锐科机械厂一直致力于手动张拉设备的制造,系柳州市预应力张拉设备制造的佼佼者,在业内享有较高声誉。在总结手动张拉设备的多年制造经验基础上,工厂组织了富有机械制造经验、计算机编程经验的高级工程师团队进行研发,通过一年多的不懈努力,成功研制出了具有业内领先水平的智能张拉系统。 该系统具有以下几大特点: 1、数据控制精度高 智能张拉系统在国内已有不少厂家做出产品进行销售,但困扰业内多时的是应力的精确控制问题。如果应力值控制不精准,系统反应迟钝,那么智能张拉系统就失去了他存在的意义! 我厂出品的智能张拉系统采用了油压控制领域的最高技术----单片机控制技术进行控制,以最快的响应速度精确地控制阀门开关及液压油的流量,把应力值由传统张拉的±15%缩小到±1%的精准,解决了业界普遍存在的应力值控制不准,甚至通过编程篡改应力数据的造假的问题,使得张拉数据变成真正的真实可信,不加修饰! 此外,系统传感器实时采集钢绞线的伸长量数据,反馈到计算机,自动计算伸长量,及时校核伸长量是否在±6%范围内,实现应力与伸长量同步“双控”。 2、流量智能变量 为了满足不同桥梁的施工工艺需要,我厂推出的智能张拉系统具有业界众多智能张拉系统所不具备的功能-----流量可变量的功能,有2L/4L/6L/8L等不同流量的智能张拉系统供客户选择,而且系统可在不同流量之间进行智能切换,在需要小流量的张

大跨径现浇连续梁预应力智能张拉技术研究

大跨径现浇连续梁预应力智能张拉技术研究 摘要:本文结合预应力智能张拉技术的基本原理,对大跨径现浇连续梁预应力智能张拉技术进行了分析。 关键词:大跨径;连续梁预应力;智能张拉技术 前言 近年来,我国预应力智能张拉技术虽然取得了飞速发展,但依然存在一些问题和不足需要改进,在建设社会主义和谐社会的新时期,加强对预应力智能张拉技术要点的分析,对确保大跨径现浇连续梁工程的质量安全有着重要意义。 一、预应力是桥梁结构安全的关键 在我国发生的数起桥梁坍塌事故的调查表明,在施工中存在的预应力部分损失、管道压浆不饱满等质量缺陷在超限超载车辆的长期作用下,产生的荷载效应超过其承载能力,从而造成的桥梁坍塌。 桥梁坍塌事故是内外因共同导致的结果。桥梁坍塌的内因包括: 1、预应力张拉不合格。 (1)有效预应力精度不够。在施工中,有效预应力偏小,则会导致预应力度不足,结构过早出现裂缝;有效预应力偏大,则可能导致预应力筋安全储备不足,结构过大变形或裂纹,严重的甚至产生脆性破坏。 (2)有效预应力不均匀,则会导致预应力筋的早期疲劳,危及桥梁使用寿命。预应力施工不当,在桥梁结构内不能建立合格的有效预应力,在混凝土徐变的共同作用下,梁体必将发生严重的下挠,从而破坏桥面的铺装层,影响桥梁的使用寿命和行车舒适性,甚至危及行车安全。 2、管道压浆不密实。 灌人孔道的水泥浆,将预应力筋和孔道壁粘结起来形成共同作用,不仅保护预应力筋免遭锈蚀,而且保证了结构物的耐久性。预应力孔道压浆不密实使得钢绞线锈蚀,从而导致预应力失效,梁体产生裂缝,使梁体发生结构性破坏,可能在毫无征兆的情况下突然坍塌。 3、预应力施工质量通病。 在施工中,预应力施工质量通病主要有断丝、滑丝;锚下开裂、下陷;绞线在孔道内缠绕;钢筋外露等,给桥梁结构留下质量及安全隐患。可以看出,在传统的预应力施工中,预应力施工质量比较难以控制,存在着诸多的缺陷,给桥梁

后张法预应力施工工艺资料

后张法预应力施工工 艺

后张法预应力施工工艺 后张法可分为有粘结后张法和无粘结后张法 一,有粘结后张法: 有粘结后张法预应力的主要施工工序为:浇筑好混凝土构件,并在构件中预留孔道,待混凝土达到预期强度后(一般不低于混凝土设计强度的75%),将预应力钢筋穿人孔道;利用构件本身作为受力台座进行张拉(一端锚固一端张拉或两端同时张拉),在张拉预应力钢筋的同时,使混凝土受到预压。张拉完成后,在张拉端用锚具将预应力筋锚住;最后在孔道内灌浆使预应力钢筋和混凝土构成一个整体,形成有粘结后张法预应力结构(图4-37)。 有粘结后张法预应力施工不需要专门台座,便于在现场制作大型构件,适用于配直线及曲线预应力钢筋的构件。但其施工工艺较复杂、锚具消耗量大、成本较高。 图4-37 有粘结后张法工艺流程 l—混凝土构件;2—预留孔道;3—预应力筋;4—张拉千斤顶;5—锚具

预应力控制 在预应力混凝土在施工中引起预应力损失的原因很多,产生的时间也先后不一。在进行预应力筋的应力计算与施工时,一般应考虑由下列因素引起的预应力损失,即: ①锚具变形、预应力筋内缩和分块拼装构件接缝压密引起的应力损失σi1 ; ②预应力筋与孔道壁之间摩擦引起的应力损失σi2; ③混凝土加热养护时,预应力筋和张拉台座之间温差引起的应力损失σi3 ; ④预应力筋松弛引起的应力损失σi4; ⑤混凝土收缩和徐变引起的应力损失σi5; ⑥环形结构中螺旋式预应力筋对混凝土的局部挤压引起的应力损失σi6; ⑦混凝土弹性压缩引起的应力损失σi7。 后张法施工中对以上第 2 、 3 、 4 、 7 项预应力筋损失在张拉时应予以注意。 ( 1 )钢筋松弛引起的应力损失仍采用张拉程序控制。后张法预应力筋的张拉程序,与所采用的锚具种类有关,张拉程序一般与先张法相同。 ( 2 )对配有多根预应力筋的构件,应分批、对称地进行张拉。对称张拉是为避免张拉时构件截面呈过大的偏心受压状态。分批张拉,要考虑后批预应力筋张拉时产生的混凝土弹性压缩,会对先批张拉的预应力筋的张拉应力产生影响。为此先批张拉的预应力筋的张拉应力应增加α E σ pc :

智能张拉机使用操作方法

官网:https://www.wendangku.net/doc/ab18939365.html, 智能张拉机使用操作方法 智能张拉机使用操作方法,预应力智能技术是桥梁工程建设领域的新宠,其中智能张拉技术已经为交通建设行业人所熟知。智能张拉技术也得到了很多关注。随着智能张拉机慢慢走入大众视野,好多人开始对它的操作原理感兴趣,为了解答各位的疑惑,今天小编来和大家讲讲智能张拉机的工作原理。 本系统中的工业计算机,根据生产工艺要求,可设置的工艺参数,工作中,工业计算机向液压组合阀的执行机构发出指令,按当前生产预应力张拉的设定参数,控制组合控制阀进行预应力张拉,同时,采 主要生产:智能张拉设备、智能压浆设备、张拉千斤顶、锚具、等预应力产品!

主要生产:智能张拉设备、智能压浆设备、张拉千斤顶、锚具、等预应力产品! 官网:https://www.wendangku.net/doc/ab18939365.html, 用高精度的压力传感器,动态实时检测系统中的液压压力。预应力锚固后,由工业计算机发出卸荷指令,组合控制阀令液压缸后退。完成工作流程。压力,传输到运动控制器,运动控制器根据反馈按设定的工业计算机调节模式自动控制油顶压力。 根据位移差、张拉力差,自动调节两端张拉速度。保证两端均匀张拉。 在张拉控制过程中,油顶不停止运动,油顶活塞和外筒没有相对转动,有效的净化了张拉力反馈值,确保张拉过程中钢绞线同向均匀受力。回油锚固采用高压比例阀控制,锚固速度可控 ,工作锚以接近静压的方式咬合钢绞线,杜绝滑丝、断丝情况出现。 退缸到位自动停止,消除过度退缸引发的爆顶事故。数据采集采用通过国家认证的高精度压力传感器,通过直接检测油顶张拉油口压力,精确控制张拉过程,实现张拉自动化。 在张拉过程中,确保持续稳定张拉力,消除摩阻转向干扰,使工作夹片始终处于最小摩阻状态,工具夹片始终处于静力受压状态。 SKYB-50数控智能张拉系统一拖二,一托四系列是本公司自主研发的混凝土预应力梁张拉自动控制系统, 并被广泛应用于先张法和

智能张拉原理

产品概述: TH-PTA预应力张拉程控系统为本公司最新研制的预应力张拉外挂式程控系统,适用于任何预应力张拉设备的升级改造,加装本系统后可实现预应力张拉施工过程的全自动智能控制。 系统构成: 系统由程控主机、前端控制器、压力传感器、伸长量测量传感器、上拱度测量传感器等构成。系统组成示 意图如下所示: 工作原理: 主机由嵌入式工业计算机、触摸屏及专门的程控软件系统组成,可通过无线信号对一个或多个前端控制器进行测控。主机按预设的张拉程序及相应参数指令一个或多个测控前端工作,根据前端回传的监测数 据计算出测控指令,持续测控前端。 前端控制器监测千斤顶的工作拉力和钢绞线的伸长量(回缩量)等数据,并实时将数据传输给测控主机,并接收主机的测控指令,根据指令实时调整变频器的工作参数,从而实现高精度实时调控油泵电机的 转速,实现张拉力及加载速度的实时精确控制。 工作流程: 如图一所示,安装好油压千斤顶、工作锚具及夹片。将拉线式位移传感器固定在千斤顶的外壳上,并将其位移测量绳固定在钢绞线或工具锚具上。将压力传感器接到油泵上的油压表接口。前端控制器为油泵 电机供电。 启动程控主机和前端控制器,在程控主机的触摸屏显示界面上输入工程相关参数及本次张拉的控制参数(如预张拉设备参数、荷载分级、持荷时间等),启动系统工作,则程控主机自动地按预设的张拉作业程序控制前端控制器驱动油泵电机工作,控制千斤顶执行预应力张拉作业。 在张拉过程中,程控主机通过两端的油压传感器则实时监控张拉力,通过拉线式位移传感器实时监控

钢绞线伸长量,若发现两端的张拉力或伸长量不平衡,则通过控制油泵电机的转速实时调整。当出现各种意外原因导致张拉力或钢绞线伸长量的不平衡达到规定极限值且无法调整时,则系统自动报警并自动暂停油泵电机,待人工介入检查排除故障后解除报警继续工作。 本系统通过上拱度测量位移传感器监测上拱度量,在超过规定值时,可以控制系统,停止作业。 在一次完整的张拉测控作业完成后,系统自动存储测控数据。主机可直接连接打印机输出张拉数据报表,也可将数据通过无线网络远传到网络平台或输出到办公电脑,通过专用的报表程序,按照用户要求生 成文字档案及报表。 系统优点综述: 外挂式程控系统,适用市场上所有预应力张拉设备,无需对机械进行改造; 智能测控,变频控制油泵无级调速,多前端张拉力及位移高精度同步; 伸长量与回缩量精准量测,分辨率达到0.1mm,误差小于0.1%FS; 可按需设定张拉程序,张拉全程自动实现,多层次自动保护,安全高效; 力与形变的历时数据高频采集,实时生成数据与图表,现场监控直观、可靠; 可有效减少现场人工成本,提高资料整理效率的同时充分保证资料的真实; 可远程同步上传张拉数据并生成数据库,实现全过程可监控、可追溯。 技术参数: 1. 主机 同步控制前端控制器个数:1个或多个 数据存储容量:可扩展至8G 显示器:10.4寸800*600真彩液晶触摸屏 4个USB接口、2个RS232串行通讯接口 无线接口及预留远传接口(GPRS或3G) 内装锂电池,可连续工作10小时以上 2.前端控制器 1)载荷测试通道 压力传感器通道2个 压力范围:0~70MPa 精度:0.1%~0.5% (由选配的传感器精度决定) 两前端控制器同步时间精度:10ms 2)位移测试通道 拉线位移传感器通道数:4 测量量程:500mm (量程可选) 分辨率:< 0.1mm 精度:0.1%FS (由选配的传感器精度决定) 3)荷载控制通道 1个油泵电机控制通道,包括无级调速、正/反转控制 4)电源:3相380V±10% 3.无线通讯 调制方式:GFSK/FSK 工作频率:433MHz 发射功率:27dbm (0.5W)

后张法预应力施工

浅谈后张法预应力施工

————————————————————————————————作者:————————————————————————————————日期:

浅谈后张法预应力施工 ( 1.上海ⅩⅩ建设监理有限公司,上海20000;) 摘要:随着经济的快速发展,城市建筑逐渐向着”高、大、广”的方向发展,普通的钢筋混凝土结构已经无法适应现代建筑的发展,许多新的施工工艺应运而生,比如:钢结构工程、预应力工程。其中的预应力工程发展在新工艺中的优势尤为突出,它有着普通钢筋混凝土有之而不及的优势,但是预应力施工也存在这一些问题:1、施工工艺较普通钢筋混凝土来说更加复杂;2、对于施工质量要求这一块来说较普通混凝土也更加严格。本文通过对现场实际预应力工程施工经验,将预应力工艺和所碰到的问题逐一列出,便于大家更为全面的了解后张法预应力工程。 【关键词】:预应力工程;后张法;高强度;钢绞线 1.预应力工程概况 百联综合体项目位于崇明区城桥镇,总用地面积114551m2,总建筑面积23471m2。项目工程是以“田园都市”为理念指导将其打造成为崇明当地特色商业街区。由于综合体项目结构复杂,部分梁的悬挑长度过长、跨度和截面(800×1200、600×1200、800×1500)过大,普通混凝土结构已无法满足相应力学要求,经设计确认后部分框架主梁中布置采用有粘结预应力钢绞线。设计说明预应力筋采用1860MPa级、φs15.20低松弛应力钢绞线;孔道材料均采用金属波纹管,孔道布置图见下图1.1所示。 图1.1 孔道布置示意图(大跨度梁) 1.1预应力的原理 在预应力混凝土构件中,—般是通过张拉钢绞线来给混凝土施加较强的压应力,而此时钢绞

相关文档