文档库 最新最全的文档下载
当前位置:文档库 › 卷积与傅里叶变换攻略

卷积与傅里叶变换攻略

卷积与傅里叶变换攻略
卷积与傅里叶变换攻略

Only for DM07

大家都知道,傅里叶和卷积之间变换和证明的题目是图像处理中最难的一块,我这里写一下我的心得以及收集的一些例题。

首先第一个问题,定义公式太多,而且又很复杂。其实呢,真正有用的公式只有4个。

课本里的公式只是同一个公式在离散空间、连续空间、一维空间、二维空间的不同应用。我们理解哪一个?只要理解离散二维空间中的傅里叶变换公式:

很多人又奇怪了,为什么有的公式里有三角函数?其实是因为应用了一个欧拉代换,朝姐姐讲到这个代换的时候总是一句话带过,还真以为我们高中学过了。

也就是说,有了上面三个公式,我们就可以在所有傅里叶定义之间切换,但是实际做证明题的时候也只需要这三个公式。

接着记住,傅里叶只有一个性质——平移性质。期中考最后一题我就是因为当时还没认识到这个性质的使用。

上面那个0是属于x的,x0,这是一维的,找不到二维的公式,但因为XY方向是无关的,所以如果同时移动x和y方向只要将再乘多一个上去。注意这里j的符号,以及将x替换为y,M替换为N,u替换为v。

最后的最后还要知道一个大前提,那就是卷积定理,证明一般从它开始。

漏了一个常用的傅里叶变换——二阶二维拉普拉斯算子变换,虽然可以通过以上公式推导,但是记住它可以节省较多的时间。

课本210页要折起来,全部公式都在里面。

期中试题最重要,这里做多一遍:

1.设仅利用像素点(x,y)的4-近邻像素(不用点(x,y))组成一个低通滤波器。

(1)给出它在频域的等价滤波器H(u,v);

(2)证明所得结果确实是一个低通滤波器。

已知:f(x,y)*h(x,y) = 1/4[f(x-1,y) + f(x+1,y) + f(x,y+1) + f(x,y-1)] F(u,v)*H(u,v) = 1/4[F(u,v)e j2πu/M +F(u,v) e-j2πu/M +F(u,v) e-j2πv/N+F(u,v) e j2πv/N]

=F(u,v)*1/4[cos(2πu/M)+j*sin(2πu/M)+ cos(2πu/M)-j*sin(2πu/M)+

cos(2πv/N)+j*sin(2πv/N)+ cos(2πv/N)-j*sin(2πv/N)]

=F(u,v)*1/4[2 cos(2πu/M)+2 cos(2πv/N)]

=F(u,v)*1/2[cos(2πu/M)+ cos(2πv/N)]

等式两边同除以F(u,v),得H(u,v)= 1/2[cos(2πu/M)+ cos(2πv/N)]

可见,当u=v=0,即取中心点时,H(u,v)取最大值1,所以是低通滤波器。

从上面证明过程可以看出,依次使用了卷积定理、平移性质、欧拉定理。以下是相关课后习题中文版。

一.证明如式所示的拉普拉斯变换是各向同性的(旋转不变)。需要下列轴旋转角的坐标方程:

其中为非旋转坐标,而为旋转坐标。

二.使用式

给出的拉普拉斯变换的定义,证明将一幅图像减去其相应拉普拉斯图像等同于对图像做反锐化掩模处理。

考虑到以下公式:

表示的平均值在一个预先确定的附近是的圆心,包括中心的像素和它的四个紧靠着的点。在上述的公式最后一条行中的注入常数如比例因素,我们可以得出:

这个等式的右边被看作是公式的反锐化掩模定义。从而,就证明了,将一幅图像减去其相应拉普拉斯图像等同于对图像做反锐化掩模处理。

三.证明式子的正确性。

我们首先知道,于是:

四.说明二维正弦函数的傅里叶变换是共轭脉冲对:

提示:用式的连续傅里叶变换并以指数项描述正弦。

运用正弦函数的指数、幂定义:

从而得出:

以下是函数的傅里叶变换:

和:

1的傅里叶变换给了最初的动力,而指数替换了最初的动力,因此:

五.考虑在x方向均匀加速导致的图像模糊问题。如果图像在静止,并用均匀加速加速,对于时间T,找出模糊函数,可以假设快门开关时间忽略不计。

和,这是涅耳余弦和正弦的积分。

六.获得对应于式子到式子

的带阻滤波器的带通滤波器的等式。带通滤波器是从1减去带阻滤波器获得的:

然后:

(a)理想的带通滤波器:

(b) Butterworth带通滤波器:

(c)高斯带通滤波器:

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

(完整版)第三章离散傅里叶变换及其快速算法习题答案参考

第三章 离散傅里叶变换及其快速算法习题答案参考 3.1 图P3.1所示的序列()x n %是周期为4的周期性序列。请确定其傅里叶级数的系数()X k %。 解: (1) 1 1 *0 ()()()()()()N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k -----=====-==-=∑∑∑ %%%%%% 3.2 (1)设()x n %为实周期序列,证明()x n %的傅里叶级数()X k %是共轭对称的,即*()()X k X k =-%。 (2)证明当()x n %为实偶函数时,()X k %也是实偶函数。 证明:(1) 1 01 1 * * ()()()[()]()() N nk N n N N nk nk N N n n X k x n W X k x n W x n W X k --=---==-=-===∑∑∑%%%%%% (2)因()x n %为实函数,故由(1)知有 *()()X k X k =-%或*()()X k X k -=% 又因()x n %为偶函数,即()()x n x n =-%%,所以有 (1) 11*0 ()()()()()()N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k -----=====-= =-=∑∑∑ %%%%%% 3.3 图P3.3所示的是一个实数周期信号()x n %。利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级 数的系数()X k %,确定以下式子是否正确。 (1)()(10)X k X k =+%%,对于所有的k ; (2)()()X k X k =-%%,对于所有的k ; (3)(0)0X =%;

卷积傅里叶变换拉普拉斯变换

什么是卷积、傅里叶变换、拉普拉斯变换? 先说"卷积有什么用"这个问题。(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。我大吼一声,把他拖出去枪毙!) 讲一个故事: 张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。 然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,画了一个波形图。 "很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!" 这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?" 于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。 上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!" 张三照办了,"然后呢?" 上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。" 张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?" 上帝说:"叫卷积!" 从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了! ---------------------------------------- 张三愉快地工作着,直到有一天,平静的生活被打破。

傅里叶变换的性质

§3–4傅里叶变换的性质 设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数, 则有如下性质: 一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω) 二、对称性:F(jt)←→2πf(-ω) 证明: 将上式中的t换为ω,将原有的ω换为t, 或: , 即:F(jt)←→2π f(-ω) P.67例3-3:已知 , 再令 ==> ←→2πG(-ω) 三、尺度变换: (α≠0的实数) 可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。 推论(折叠性):f(-t) ←→F(-jω) 四、时移性: (此性质易由傅氏变换的定义证得) 推论(同时具有尺度变换与时移): P.69-70例3-4请大家浏览。

五、频移性:

(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。 频移性的重要应用——调制定理: 欧拉公式 ? 例如门信号的调制:

显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。 六、时域卷积: f1(t)* f2(t) ←→F1(jω)F2(jω) 证明: 时域卷积的重要应用——求零状态响应的频域法: 时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω) 七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)] 八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容) 推论: 条件: 例如:d(t) ←→1 ==>δ'(t) ←→jω 九、时域积分性:

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。 类似的,变换也存在于工程,技术领域,它就是积分变换。 积分变换的使用,可以使求解微分方程的过程得到简化, 比如乘积可以转化为卷积。什么是积分变换呢?即为利用 含参变量积分,把一个属于A函数类的函数转化属于B函 数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要 积分变换。分析信号的一种方法是傅立叶变换,傅里叶变换能 够分析信号的成分,也能够利用成分合成信号。可以当做信号 的成分的波形有很多,例如锯齿波,正弦波,方波等等。傅立 叶变换是利用正弦波来作为信号的成分。 拉普拉斯变换最早由法国数学家天文学家 Pierre Simon Laplace (拉普拉斯)(1749-1827)在他的与概率论相关科学研究 中引入,在他的一些基本的关于拉普拉斯变换的结果写在 他的著名作品《概率分析理论》之中。即使在19世纪初, 拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研 究却一直没什么太大进展,直至一个英国数学家,物理学 家,同时也是一位电气工程师的Oliver Heaviside奥利 弗·亥维赛(1850-1925)在电学相关问题之中引入了算 子运算,而且得到了不少方法与结果,对于解决现实问题 很有好处,这才引起了数学家对算子理论的严格化的兴 趣。之后才创立了现代算子理论。算子理论最初的理论依 据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论 的继续发展也是得益于算理理论的更进一步发展。这篇文 章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关 性质,以及相关应用做一下简要讨论,并且分析傅里叶变 换和拉普拉斯变换的区别与联系。 1.2预备知识

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

图像处理与傅里叶变换原理与运用

图像处理与傅里叶变换 1背景 傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。 1.1离散傅立叶变换 图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。 对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。则其离散傅立叶变换定义可表示为: 式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为 式中,x=0,1,…, M-1;y= 0,1,…, N-1 在图象处理中,一般总是选择方形数据,即M=N 影像f(x,y)的振幅谱或傅立叶频谱: 相位谱: 能量谱(功率谱) ) 1(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+-= M x N y N vy M ux i y x f MN v u F π) 2(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+= M u N v N vy M ux i v u F MN y x f π) ,(),(),(2 2 v u I v u R v u F +=[] ),(/),(),(v u R v u I arctg v u =?) ,(),(),(),(222v u I v u R v u F v u E +==

1.2快速傅里叶变化 可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换 正变化 逆变换 由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。 正变换 逆变换 由于计算机进行运算的时间主要取决于所用的乘法的次数。 按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F ∑ ∑∑∑ -=-=-=-=? ???? ? ?????? ? = ?? ???? +=1 1 0101 )(2exp ),(1 )(2exp ),(1 )(2exp ),(1),(N v N u N u N v N vy i v u F N N ux i v u F N N vy ux i v u F NN y x f πππ∑ -=?? ? ???-= 1 2exp )(1)(N x N ux i x f N u F π∑ ∑ ∑∑ -=-=-=-=? ???? ? -?????? ? -= ?? ???? +-= 1 1 101 )(2exp ),(1 )( 2exp ),(1 )(2exp ),(1),(N y N x N x N y N vy i y x f N N ux i y x f N N vy ux i y x f NN v u F πππ∑ -=?? ????= 1 2exp )(1)(N u N ux i u F N x f π

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

二维傅里叶变换变换、性质和频域滤波

实验三二维傅里叶变换变换、性质和频域滤波 一、实验目的 1、了解图像傅里叶变换的物理意义; 2、掌握频域滤波原理; 3、熟悉傅里叶变换的基本性质; 4、熟练掌握FFT的变换方法及应用; 5、通过实验了解二维频谱的分布特点; 二、实验平台 计算机和Matlab语言环境 三、实验内容 1、数字图像二维傅里叶变换及其对数显示 2、频域滤波器处理图像 3、二维傅里叶变换的性质(比例变换性、旋转、可分性) 四、实验步骤 1、二维傅里叶变换的性质 1> 二维傅里叶变换 构造一幅图像,在64×64的黑色背景中产生一个5个白条纹,对其进行傅里叶变换 f = zeros(64,64); for j=1:5 f(:,j*10:j*10+1)=1; end F=fft2(f);Fc=fftshift(F); subplot(1,2,1),imshow(f,[ ]);title('原始图像'); subplot(1,2,2),imshow(abs(Fc),[ ]);title('图像傅里叶变换'); 2> 比例变换性 将图像扩大到原来的2倍后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 fresize=imresize(f,2); fresize=fresize(31:94,31:94);

Fresize=fft2(fresize);Fc1=fftshift(Fresize); subplot(1,2,1),imshow(fresize,[ ]);title('图像扩大2倍'); subplot(1,2,2),imshow(abs(Fc1),[ ]);title('图像扩大2倍后傅里叶'); 3> 旋转 将图像旋转45度后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 frotate=imrotate(f,45);%图像旋转 Frotate=fft2(frotate);Fc2=fftshift(Frotate);%图像旋转后做傅里叶变换subplot(1,2,1),imshow(frotate,[ ]);title('图像旋转'); subplot(1,2,2),imshow(abs(Fc2),[ ]);title('图像旋转后傅里叶'); 4> 可分性 首先沿着图像的每一行计算一维变换,然后沿着中间结果的每一列计算一维变换,以此计算二维傅里叶 for i=1:64 fft_row(i,:)=fft(f(i,:));%沿着图像的每一行计算一维变换 end for j=1:64 fft_col(:,j)=fft(fft_row(:,j));%沿着中间结果的每一列计算一维变换 end Fc3=fftshift(fft_col); figure,imshow(abs(Fc3),[ ]);title('两次fft');

快速傅里叶变换与卷积

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

卷积与傅里叶变换攻略

Only for DM07 大家都知道,傅里叶和卷积之间变换和证明的题目是图像处理中最难的一块,我这里写一下我的心得以及收集的一些例题。 首先第一个问题,定义公式太多,而且又很复杂。其实呢,真正有用的公式只有4个。 课本里的公式只是同一个公式在离散空间、连续空间、一维空间、二维空间的不同应用。我们理解哪一个?只要理解离散二维空间中的傅里叶变换公式: 很多人又奇怪了,为什么有的公式里有三角函数?其实是因为应用了一个欧拉代换,朝姐姐讲到这个代换的时候总是一句话带过,还真以为我们高中学过了。 也就是说,有了上面三个公式,我们就可以在所有傅里叶定义之间切换,但是实际做证明题的时候也只需要这三个公式。 接着记住,傅里叶只有一个性质——平移性质。期中考最后一题我就是因为当时还没认识到这个性质的使用。 上面那个0是属于x的,x0,这是一维的,找不到二维的公式,但因为XY方向是无关的,所以如果同时移动x和y方向只要将再乘多一个上去。注意这里j的符号,以及将x替换为y,M替换为N,u替换为v。

最后的最后还要知道一个大前提,那就是卷积定理,证明一般从它开始。 漏了一个常用的傅里叶变换——二阶二维拉普拉斯算子变换,虽然可以通过以上公式推导,但是记住它可以节省较多的时间。 课本210页要折起来,全部公式都在里面。 期中试题最重要,这里做多一遍: 1.设仅利用像素点(x,y)的4-近邻像素(不用点(x,y))组成一个低通滤波器。 (1)给出它在频域的等价滤波器H(u,v); (2)证明所得结果确实是一个低通滤波器。 已知:f(x,y)*h(x,y) = 1/4[f(x-1,y) + f(x+1,y) + f(x,y+1) + f(x,y-1)] F(u,v)*H(u,v) = 1/4[F(u,v)e j2πu/M +F(u,v) e-j2πu/M +F(u,v) e-j2πv/N+F(u,v) e j2πv/N] =F(u,v)*1/4[cos(2πu/M)+j*sin(2πu/M)+ cos(2πu/M)-j*sin(2πu/M)+ cos(2πv/N)+j*sin(2πv/N)+ cos(2πv/N)-j*sin(2πv/N)] =F(u,v)*1/4[2 cos(2πu/M)+2 cos(2πv/N)] =F(u,v)*1/2[cos(2πu/M)+ cos(2πv/N)] 等式两边同除以F(u,v),得H(u,v)= 1/2[cos(2πu/M)+ cos(2πv/N)] 可见,当u=v=0,即取中心点时,H(u,v)取最大值1,所以是低通滤波器。

(整理)小波变换与傅里叶变换.

百度空间 | 百度首页 | 登录 在狂风中摇曳 我的学习BLOG 主页博客相册个人档案好友 查看文章 [转]小波变换与傅里叶变换 2009-09-22 09:59 如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。 一、一、基的概念 我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。

二、二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。 下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。 也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。 一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。 第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以

傅立叶变换

傅里叶变换 ●傅里叶变换 ?傅里叶变换及其反变换 ?傅里叶变换的性质 ?快速傅里叶变换(FFT)

傅里叶变换 ?可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通 ?滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ?可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导 ?一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行

● 一维连续傅里叶变换及反变换 ?单变量连续函数f(x)的傅里叶变换F(u)定义为 其中,?给定F(u),通过傅里叶反变换可以得到f(x) ?∞ ∞-=f u F )(1 -=j ?∞ ∞-=x f )(

● 二维连续傅里叶变换及反变换 ?二维连续函数f(x,y)的傅里叶变换F(u,v)定义为 ?给定F(u,v),通过傅里叶反变换可以得到f(x,y) () dy dx e y x f v u F vy ux j ??∞∞-∞∞-+-=π2),(),(() dv du e v u F y x f vy ux j ??∞∞-∞∞-+=π2),(),(傅里叶变换

● 一维离散傅里叶变换(DFT)及反变换?单变量离散函数f(x)(x=0,1,2,..,M-1)的傅里叶变换F(u)定义为 u=0,1,2,…,M-1?给定F(u),通过傅里叶反变换可以得到f(x) x=0,1,2,…,M-1∑-==1 1 )(M x f M u F ∑-==1 0)(M u x f

● 一维离散傅里叶变换及反变换 ?从欧拉公式()(∑-=-=1 2cos(1 M x x f M θcos e j =()∑-=-=1 )2(1)(M x ux j e x f M u F π()(∑-==1 02cos 1 M x x f M π

傅里叶变换与拉普拉斯变换的比较研究

目录 1 傅里叶变换与拉普拉斯变换简介 (1) 1.1 傅里叶变换 (1) 1.1.1 傅里叶变换的历史由来 (1) 1.1.2 傅里叶变换的定义 (1) 1.1.3 傅里叶变换与逆变换的性质 (2) 1.2 拉普拉斯变换 (3) 1.2.1 拉普拉斯变换的历史由来 (4) 1.2.2 拉普拉斯变换的定义 (4) 1.2.3 拉普拉斯变换与逆变换的性质 (5) 1.3 小结 (6) 2 傅氏变换与拉氏变换的比较研究 (6) 2.1 两种积分变换在求解广义积分中的应用 (6) 2.2 两种积分变换在求解积分、微分方程中的应用 (9) 2.3 两种积分变换在求解偏微分方程中的应用 (11) 2.4 两种积分变换在电路理论中的应用 (15) 3 总结 (19) 附录:本文所用到的拉普拉斯变换简表 (22) 参考文献 (23)

1 傅里叶变换与拉普拉斯变换简介 人们在处理与分析工程实际中的一些问题时,常常采取某种手段将问题进行转换,从另一个角度进行处理与分析,这就是所谓的变换。在数学、物理、工程技术等领域中应用最多的是傅里叶变换与拉普拉斯变换。下面我们对傅氏变换与拉氏变换进行简单的介绍。 1.1 傅里叶变换 1.1.1 傅里叶变换的历史由来 17世纪和18世纪,在牛顿和莱布尼茨等科学巨人的推动下,数学获得了飞速的发展。随着函数、极限、微积分和级数理论的创立,法国数学家傅里叶在研究热传导问题时发表了《热的解析理论》的论文[1],提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶变换的理论基础。其后,泊松、高斯等人最早把这一成果应用到电学中去。时至今日,傅里叶分析法不仅广泛应用与电力工程、通信和控制领域中,而且在力学、光学、量子物理和各种线性系统分析等许多有关数学、物理和工程技术领域中都得到了广泛而普遍的应用。 1.1.2 傅里叶变换的定义 由《数学物理方法》课程的知识可知,对于(),-∞+∞上的非周期函数()f t 有如下的傅里叶积分定理[2]: 设()f t 在(),-∞+∞上有定义,且 ①在任一有限区间上满足狄利克雷条件[3](即连续或有有限个第一类间断点,并且只有有限个极值点); ②在无限区间(),-∞+∞上绝对可积,即 ()f t +∞ -∞ <+∞? 则有傅里叶积分公式 1 ()()2i i t f t f e d e d ωτωττωπ +∞ +∞--∞ -∞??= ???? ? ? (1-1) 在()f t 的连续点x 处成立,而在()f t 的第一类间断点0x 处,右边的积分应以 ()001 0(0)2 f x f x ++-????代替。

常用函数傅里叶变换

附录A 拉普拉斯变换及反变换 .

.

. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

相关文档