文档库 最新最全的文档下载
当前位置:文档库 › TVOCs挥发性有机废气处理技术汇总大全

TVOCs挥发性有机废气处理技术汇总大全

TVOCs挥发性有机废气处理技术汇总大全
TVOCs挥发性有机废气处理技术汇总大全

TVOCs有机废气处理技术汇总

吸附技术、催化燃烧技术和热力焚烧技术是传统的有机废气治理技术,也仍然是目前应用最广泛的VOCs实用治理技术。

催化燃烧技术

催化燃烧装置(RCO)

催化燃烧装置(RCO):首先通过除尘阻火系统。然后进入换热器,再送到加热室,使气体达到燃烧反应温度,再通过催化床的作用,使有机废气分解成二氧化碳和水,再进入换热器与低温气体进行热交换,使进入的气体温度升高达到反应温度。如达不到反应温度,加热系统科通过自控系统实现补偿加热。利用催化剂做中间体,使有机气体在较低的温度下,变成无害的水和二氧化碳气体,即:

产品性能特点:

①操作方便,设备工作时,实现自动控制,安全可靠。

②设备启动,仅需15~30分钟升温至起燃温度,能耗低。

③采用当今先进的贵金属钯、铂浸渍的蜂窝状陶瓷载体催化剂,比表面积大,阻力小,净化率高。

④余热可返回烘道,降低原烘道中消耗功率;也可作其它方面的热源。

⑤使用寿命长,催化剂一般两年更换,并且载体可再生。

应用范围

1苯、醇、酮、醛、酯、酚、醚、烷等混合有机废气处理。

2适用于化工、塑料、橡胶、制药、印刷、农药、制鞋等行业的有机废气净化。

催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 +MOX (M:过渡族金属) +贵金属制成的催化剂用于治理甲硫醇废气, Pt + Pd + Cu催人剂用于治理含氮有机醇废气。

由于有机废气中常出现杂质 ,很容易引起催化剂中毒 ,导致催化剂中毒的毒物 (抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂 ,增大催化剂有效面积 ,使催化剂具有一定机械强度 ,减少烧结 ,提高催化活性和稳定性的作用。能

作为载体的材料主要有 AL2O3、铁钒、石棉、陶土、活性炭、金属等 ,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。蓄热式焚烧炉(RTO)

RTO(Regenerative Thermal Oxidizer,蓄热室氧化器),其工作原理是在高温下(800℃左右)将有机废气氧化生成CO2和H2O,从而净化废气,并回收分解。安居乐RTO工艺示意图:

产品性能特点:

①可实现全自动化控制,操作简单,运行稳定,安全可靠性高。

②VOC的分解效率99%以上;

③采用多项先进技术,使设备简化,易于维修,并降低了运行成本。

④废气在炉内停留时间长,炉内无死区;

⑤不产生NOX等二次污染。

⑥操作费用低,超低燃料费。有机废气浓度在500PPM以上时,RTO装置基本不需添加辅助燃料。

热氧化法可分为三种: 热力燃烧式、间壁式和蓄热式。它们的主要区别在于热量回收方式的不同。三种方法都可以和催化法结合起来以降低反应温度。

a. 热力燃烧式热氧化器。热力燃烧式热氧化器一般指的是气体焚烧炉。它由助燃剂、混合区和燃烧室组成。助燃剂(天然气、石油等) 作为辅助燃料, 燃烧产生的热在混合区对VOC 废气进行预热,燃烧室为预热后的废气提供足够大的空间和足够长的时间以完成最终的氧化反应。

在供氧充足的前提条件下, 氧化反应的程度(影响最终的VOC 去处率)取决于“三T条件” :反应温度(Temperature)、驻留时间(Time)、湍流混合情况(Turbulence)。这“三T条件”是互相联系的,在一定范围内改善一个条件可使另外两个条件降低。热力燃烧式热氧化器的一个最大缺点是辅助燃料价格太高, 致使装置的操作费用很高。

b. 间壁式热氧化器。间壁式热氧化是指在热氧化装置中加入间壁式热交换器, 热交换器把从燃烧室排出的高温气体所带的热量传递给氧化装置进口处的低温气体, 预热后发生氧化反应。

由于目前的间壁式热交换器最高可获得85%的热回收率,所以极大地降低了辅助燃料的消耗。

间壁式热交换器通常设计成管式、壳式或板式。由于通常的热氧化温度要保持在800℃—1000℃, 所以间壁式热交换器必须由耐热、耐腐蚀的不锈钢或合金材料制成。这就使得间壁式热交换器的造价很高, 这是间壁式热氧化器的一个缺点。同时材料的热应力也不易消除, 这是间壁式热氧化器的另一个缺点。

c. 蓄热式热氧化器。蓄热式热氧化器(Regenerative Thermal Oxidizer , 以下简称RTO), 是在热氧化装置中加入蓄热式热交换器, 预热VOC 废气,再进行氧化反应。

随着蓄热材料的发展,目前蓄热式热交换器的热回收率已能达到95%以上, 而且占用空间越来越小。这样辅助燃料的消耗很少(甚至不用辅助燃料,且当VOC 的浓度达到一定值以上时, 还可从RTO 输出热量)。同时, 由于目前的蓄热材料都选用陶瓷填料, 所以可处理腐蚀性或含有颗粒物的VOC 废气。

RTO装置又可分为阀门切换式和旋转式。

阀门切换式RTO是最常见的一种RTO。其由两个或多个陶瓷填充床, 通过阀门的切换, 改变气流的方向, 从而达到预热VOC 废气的目的。图 1 是典型的两床式RTO示意图及工作原理。

两床式RTO主体结构由燃烧室、两个陶瓷填料蓄热床和两个切换阀组成。当VOC 废气由引风机送入蓄热床1后, 该床放热, VOC 废气被加热, 在燃烧室氧化燃烧,气体通过蓄热床2, 该床吸热, 燃烧后的洁净气被冷却, 通过切换阀后排放。在达到规定的切换时间后,

阀切换, VOC 废气从蓄热床 2 进入, 蓄热床2放热, VOC废气被氧化燃烧, 气体通过蓄热床1, 该床吸热, 燃烧后的洁净气被冷却, 通过切换阀后排放。如此周期性切换, 就可连续处理VOC 废气。

近年来, 国外又研制开发出旋转式RTO。该装置由一个燃烧室、一个圆柱形分成几瓣独立区域的陶瓷蓄热床和一个旋转式转向器组成。通过旋转式转向器的旋转, 就可改变陶瓷蓄热床不同区域的气流方向, 从而连续地预热VOC 废气, 在燃烧室氧化燃烧后就可去除VOC。

相对于阀门切换式RTO,旋转式RTO由于只有一个活动部件(旋转式转向器) , 所以运行更可靠, 维护费用更低, 但缺点是旋转式转向器不易密封,泄露量大, 影响VOC的净化率。

RTO设备的特点:

1)产品设计考虑客户的生产工艺,重视前端控制和末端治理的结合;

2)净化效率高,旋转RTO可达到99%以上;

3)对余热进行综合利用,产生经济效益;

4)优化设计的结构、通风系统,确保最好的处理效果和使用体验;

5)充分考虑系统的安全与防护,为客户提供安全可靠的后抽离设备与技术。

RTO设备应用范围:

含苯系物、酚类、醛类、酮类、醚类、酯类等有机成分的石油、化工、塑料、橡胶、制药、印刷、农药、制鞋、电力电缆生产行业等。有机废气浓度在100PPM—20000PPM之间。

光催化净化技术(一般与预处理技术合用)

光催化净化处理技术一般采用生物喷淋进行预处理,再进入光催化净化装置,在催化剂的作用下,常温下使有机废气转化为CO2和H2O的一种环保设备。目前,此装置已被国内外用户广泛使用,均取得良好的净化效果。

光催化剂技术的主要成分是锐钛型二氧化钛(TiO2),光催化是利用TiO2作为催化剂的光催化过程,反应条件温和,光解迅速,产物为CO2和H2O或其它,而且适用范围广,包括烃、醇、醛、酮、氨等有机物,都能通过TiO2光催化清除。其机理如下:

低温等离子体技术

低温等离子体净化技术是近年来发展起来的废气治理新技术。等离子体被称为物质的第4种形态,由电子、离子、自由基和中性粒子组成。低温等离子体有机气体净化就是利用介质放电所产生的等离子体以极快的速度反复轰击废气中的异味气体分子,去激活、电离、裂解废气中的各种成分,通过氧化等一系列复杂的化学反应,打开污染物分子内部的化学键,使复杂的大分子污染物转变为一些小分子的安全物质(如二氧化碳和水),或使有毒有害物质转变为无毒无害或低毒低害物质。

实际上,要将不同的化学键打开,需要的能量不同,如C-H、C-O、C-N、C-S、O-H、S-H等等。当功率较低,放电所产生的活性粒子能量不足时,一些大分子物质只是被击碎,形成一些小分子化合物,并没有被彻底氧化。特别是对于混合气体的净化,有些分子容易被破坏并被彻底氧化,而有些分子则不易被破坏或者只是降解而未被彻底氧化。研究表明,

C-S和S-H键比较容易被打开,因此低温等离子体技术对于臭味的净化具有良好的效果,并且在橡胶废气、食品加工废气等的除臭中得到了应用。对于苯系物的净化,研究表明在等离子体发生系统的能量匹配时,也具有一定的效果,当甲苯浓度为300mg/m3以下时,净化效率可以达到60%~70%。因此,在低浓度喷涂废气净化中也可以得到一定的应用。

低温等离子体用于废气的净化具有很多的优势。1)由于等离子体反应器几乎没有阻力,系统的动力消耗非常低;2)装置简单,反应器为模块式结构,造价低,并且容易进行搬迁和安装;3)由于不需要任何的预热时间,所以该装置可以即时开启与关闭;4)所占空间比现有的其他技术更小;5)抗颗粒物干扰能力强,便于维护。

低温等离子体治理技术的关键在于等离子体发生器的设计是否合理。作为一项新技术,

目前人们对于其作用机理的研究还不够充分,对于不同化合物如何有针对性地进行等离子体发生器的设计,目前还没有形成规律性的认识。总体上该技术对有机化合物的净化效率还比较低,一般低于70%,如果反应器设计不当,则净化效率会更低,因而限制了它的实际应用。

生物法净化技术

生物处理工艺主要分为生物过滤床、生物洗涤床和生物滴滤床三种形式。生物过滤床是一种在其中填入具有吸附性滤料的过滤净化装置,在过滤床中加入pH调节剂和N、P、K 等营养元素,当具有一定湿度的废气进入过滤床时,通过生物填料层,填料层中的微生物将有机物捕获并消化降解。

生物洗涤床通常由一个洗涤塔和一个再生池组成,在洗涤塔中,循环液通过喷淋或鼓泡的形式将废气中的污染物和氧气转入液相,实现质量传递。吸收了废气成分的洗涤液流入再生池,通入空气充氧后再生,在再生池中污染物被消化分解。

生物滴滤床中使用的是各种不具有吸附能力的填料,在填料的表面形成一层生物膜,废气由滴滤床底部进入,回流液从上部喷淋并沿填料上的生物膜滴流而下,溶解于水中的有机物被生物膜中的微生物吸收分解。

生物洗涤床适用于风量小、浓度较高、易溶解且生物代谢速率较慢的废气净化;对于大风量、低浓度的废气则采用生物过滤床;对于负荷较高,且降解后产生酸性物质的废气则宜采用生物滴滤床。

生物法在今后将会成为有机废气治理的主要技术之一。

吸附浓缩技术

沸石转轮吸附浓缩技术

沸石转轮吸附浓缩技术在今后将会成为国内低浓度VOCs治理的关键技术。沸石转轮吸附浓缩技术就是针对低浓度VOCs的治理而发展起来的一种新技术,与焚烧技术(催化燃烧或高温焚烧)或冷凝技术进行组合,形成了“沸石转轮吸附浓缩+焚烧技术”和“沸石转轮吸附浓缩+冷凝回收技术”。

低浓度、大风量的VOCs排放在目前我国的有机废气污染中占了很大的比例,吸附浓缩技术是低浓度废气治理中最为经济有效的技术途径,从一些大型和较大型企业的经营情况分析,吸附浓缩-催化燃烧集成技术所占比例最大,占到全部项目数量的50%以上。之前主要采用的是“固定床吸附浓缩+催化燃烧技术”,近十多年来在我国的工业VOCs净化中占有主导地位,但经过多年来的运行实践,该工艺存在一些明显的缺陷:1)之前主要采用活性

炭材料(蜂窝活性炭、颗粒活性炭和活性碳纤维)作为吸附剂,而活性炭材料在采用热气流再生时的安全性较差,当再生热气流的温度达到100℃以上时,吸附床容易着火。2)采用热气流吹扫再生活性炭,因为再生温度低,当脱附周期完成后部分高沸点化合物不能彻底脱附,会在活性炭床层中积累而使其吸附能力下降。由于存在安全性问题,通常的再生温度不能超过120℃。因此对于沸点高于120℃的有机物,如三甲苯等则不能利用该工艺进行净化。3)通常活性炭具有很强的吸水能力,当废气湿度较高(超过60%)时,对有机物的净化能力将会迅速下降,在处理高湿度的废气时床层的净化效率较低。

鉴于以上存在的问题,在吸附浓缩工艺中,国外主要采用疏水型蜂窝分子筛(蜂窝沸石)作为吸附剂,移动式的沸石转轮作为吸附装置。与“固定床吸附浓缩+催化燃烧装置”相比,具有一些明显的优势:1)采用沸石作为吸附剂,安全性能好,采用热气流再生时不易发生着火现象;2)采用沸石作为吸附剂,再生温度可以提高,适用于从低沸点到高沸点各种VOCs 的净化;3)设备阻力低,运行成本低;4)吸附后尾气中有机污染物的浓度稳定,便于控制;5)设备体积和占地面积小。

硅铝分子筛本身是一类强极性物质,对空气中的水分具有极强的选择性吸附能力。采用沸石作为吸附剂,关键在于沸石的疏水改性技术可以提高其对有机化合物的选择性吸附能力。经过近年来的不断努力,我国在疏水型蜂窝分子筛的生产技术上已经取得了突破,打破了美、日等国家在该技术上的垄断。由于我国的应用市场广泛,因此沸石转轮吸附浓缩技术在今后将会成为国内低浓度VOCs治理的关键技术。

吸附浓缩+ 氮气保护再生回收技术

吸附回收技术利用固体吸附材料选择吸附废气中的VOCs,吸附饱和的材料在氮气保护下经高温脱附工艺处理,进而回收处理VOCs。该工艺主要包括预处理、吸附段和脱附段等,预处理后的废气进入吸附装置中吸附净化后经烟囱排放,吸附饱和后用热氮气脱附再生。氮气保护再生技术采用了氮气作为脱附气体被导入吸附床层,对吸附饱和的吸附材料床层进行吹扫,形成惰性气体和有机气体的混合气体,气体在冷凝器中冷却液化回收有机溶剂,分离后的有机溶剂进行储存,氮气循环利用。氮气脱附技术最大的优点是安全性好,避免了热空气再生时活性炭的着火隐患;相对于水蒸气再生,回收的溶剂中含水量低,易于分离提纯和回收利用。氮气保护再生回收技术可用于含高沸点有机废气的净化处理。

目前,TVOCs治理技术通常涉及到上述多种技术工艺的组合,如:吸附浓缩+ 燃烧技术;吸附浓缩+ 冷凝回收技术;等离子体+ 光催化复合净化技术等。

国内主要从事有机废气治理的企业

(1)燃烧技术:加拿大科迈科(杭州)环保设备公司、恩国环保企业公司、上海东华环保公司、扬州恒通环保公司、苏州苏净环保工程公司等。

(2)吸附+燃烧技术:嘉园环保工程公司、北京绿创环保工程公司、中机工程(西安)启源工程公司、广州怡森环保设备公司、中弘环境工程(北京)公司、广州朗洁环保公司、上海申榕环保设备公司等。

(3)吸附回收技术:中节能天辰环保公司、广州黑马科技公司、福建立邦环境工程公司、泉州天龙环保公司、海湾环境科技公司、河北中环环保设备公司、武汉旭日华科技公司、石家庄天龙环保科技公司、清本环保工程(杭州)公司、广州恒晨环保科技公司等。

(4)等离子体技术:山东派力迪环保公司、宁波兴达环保设备厂、安徽中维环保科技公司等。

(5)生物技术:浙江工业大学环境工程研究中心、青岛金海晟环保设备公司、凯天环保科技公司等。

(6)功能材料(催化剂、炭材料、分子筛)企业:宁夏华辉活性炭公司、景德镇佳奕新材料公司、江苏苏通碳纤维公司、淄博正轩稀土功能材料技术公司等。

以上企业在2013年都取得了较好的业绩,有一些企业开展了有关新技术与新工艺的研发,取得了比较好的效果,如广州黑马的“分子筛转轮吸附回收DMAc技术”、山东派力迪公司的“适用于大风量的介质阻挡放电低温等离子体技术”等。

有机废气处理介绍

有机废气处理是指在工业生产过程中产生的有机废气进行吸附、过滤、净化的处理工作。通常有机废气处理有甲醛有机废气处理、苯甲苯二甲苯等苯系物有机废气处理、丙酮丁酮有机废气处理、乙酸乙酯废气处理、油雾有机废气处理、糠醛有机废气处理、苯乙烯、丙烯酸有机废气处理、树脂有机废气处理、添加剂有机废气处理、漆雾有机废气处理、天那水有机废气处理等含碳氢氧等有机物的空气净化处理。

处理原理

冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现, 利用冷凝的办法能使废气得到很高程度的净化但是高

的净化要求往往是室温下的冷却水所不能达到的。

热回收式焚烧系统( TNV )

热回收式焚烧系统(又称热回收式热能氧化器)可以充分利用分解有机废气时所放出的热能,因而可降低整个系统的能源消耗,并省却或缩小系统原来的加热系统以降低设备投资和能耗。所以 TNV 是当生产过程需要大量的热量时处理高浓度有机废气和废液的最高效和理想的处理方式。

热回收式热能氧化器的特点有:

可以达到 99 %以上的有机废气分解率

氧化温度为 750-820℃

使用二级热回收供生产使用

热回收率可达 40 ~ 75 %

设备的使用寿命很长,

燃烧器输出的调节比则可达 26 : 1

有机废气在燃烧室的逗留时间为 1-2 秒

热力焚烧,热交换一体炉

催化焚烧系统(CO)

一般来说,采用钯/铂作为催化剂可将大多数有机废气的氧化温度降到320℃左右,因而降低了氧化装置的运行费用。

最适宜于使用催化式氧化系统的情形是当用户需要回收适量的二级能源并要求较低的运行成本的时候。

有机废气中的某些元素或化合物会使催化剂“ 中毒” 失效,这些元素或化合物主要有:硅,磷,卤素(尤其是氯),铅和硫等。

如果氧化反应的温度超过560℃,催化剂就会被焦化而失效。

有机废气处理能力为 53 , 000 Nm3/h CO 系统

蓄热式焚烧系统(RTO)

蓄热式焚烧系统(RTO)的原理是利用陶瓷蓄热体来储存有机废气分解时产生的热量,并用陶瓷蓄热体储存的热能来分解未被处理的有机废气,从而达到很高的热效率,氧化温度一般在810℃ 到980℃ 之间。蓄热式焚烧系统主要用于有机废气浓度较低而废气量较大的场合,在有机废气中含有腐蚀性和对催化剂有毒的物质,以及需要较高温度氧化某些臭气时也非常适用。

通常适用于以下情形:

有机废气的浓度较低 较大的有机废气处理量 有机废气需要较高的氧化温度 废气含有对催化剂有毒性的物质 不需要大量回收热能

通常不适用于以下情形:

有机废气流量在 5,000 Nm3/h 以下 有机废气的温度在大约 300℃ 以上

五室RTO

净化程度高,无需缓冲罐(>98.5%)

提升阀密封好 停留时间长 炉内死区小

生产成本低

压力损失小(17到29mbar) 热效率高(>97%)

维修少,密封件和易损件更换简便 在线远程维修

由奥地利CTP 公司设计和建造的紧凑型RTO

选择性催化处理的催化焚烧系统(SCR )

选择性催化处理的催化焚烧系统(SCR )是专门用于处理含氮氧化物尾气的催化焚烧系统, 其原理是含NOx的气体,在350 ℃~420 ℃和催化剂的作用下,与还原剂(氨)发生反应,将氮氧化物还原为氮气和水。

还原反应式为: 4NH3+6NO==5N2+6H2O 8NH3+6NO2==7N2+12H2O

●热效率可达到 75%

● 净化效率可达 90~95%

●应用领域为处理硝酸、氮肥和硝酸盐生产厂的 "黄龙"

上图里的催化焚烧系统( SCR )每可处理含氮氧化物尾气的流量为: 4.000 Nm 3 /h

转轮浓缩系统(Rotary Concentrator)

高浓度易爆废气处理(ATEX)

高浓度易爆气体处理(ATEX)标准是欧盟在2003年设立并于2006年开始实行的针对尾气中含有高浓度易爆气体的处理标准(ATEX)

金属纤维地面火炬:

●采用金属纤维燃烧器,不会回火

●新型火炬,高架火炬换代产品

●能处理高于低爆极限的有机易爆废气

●焚烧效率高达99.99%

●无可见火焰,无烟,无味

●Co<10PPM,NOx<15PPM,CxHy<10PPM

化学储罐的废气处理:

如何选择有机废气处理系统

为了给特定的应用选择最合适型号的有机废气处理系统,必须知道以下的资料: ? 有机废气的排放流量 ? 有机废气的排气温度 ? 有机污染物质浓度水平 ? 有机污染物质的类型 ? 微粒散发的水平

?需要达到的污染物控制水平

一般来说,您可以基于上述的原则选择适合您的有机废气处理系统,如果两种或更多型式的氧化器都适合您使用,您可以联系广州市优能燃烧系统有限公司,让我们为您做一个基于一次型投资成本和设备的运行成本(催化剂、燃料和电力费用)的详细经济分析,以帮助你做出最好的选择。

有机废气的排放流量

如果待处理有机废气的流量是在5,000 Nm 3 /h 以下,蓄热式系统(RTO)大体来说是不适用的。这是因为与热回收式焚烧系统来比较,蓄热式氧化器(RTO)的高成本大体上是不足以抵消它在节省燃料和电力消耗所带来好处。流量大于50,000 Nm 3 /h 时,热回收热力焚烧系统有严重的经济缺点,这是因为他们会产生非常高的燃料费用。然而,如果工艺需要大量的热能时,二级的热回收锅炉可以用来抵消高昂的燃料费用,另一个例外是每年很少运作,需处理大流量废气的应急系统。

有机废气的排气温度

如果待处理有机废气的温度在大约300℃以上时,是不适合采用蓄热式系统(RTO)的,这是因为高温的待处理有机废气会大大降低换向阀的可靠性和寿命; 另外,在这样高的温度时, 建造RTO的高成本也不足以抵消在节省燃料和电力消耗所带来好处。如果待处理有机废气的温度超过500℃,采用热回收式焚烧系统不如采用直燃式焚烧系统,因为在燃料消耗的差距太小,不足以抵消增加的热回收器带来的投资成本。

污染物质浓度水平

待处理有机废气的有机物浓度是影响选择废气处理系统选择的主要因素。

直燃式氧化器能够处理最大浓度范围的碳氢化合物,从十亿分之一的浓度水平到纯碳氢化合物蒸气。如果有机废气浓度超过25%,特别考虑要执行措施来防止从氧化器到废气来源的回火。这种能处理大浓度范围的弹性能力的代价是这种型式氧化器的高燃料成本。

蓄热式和热回收式的氧化器都限制被处理有机废气的浓度必须少于25%:对于蓄热式系统,此限制是由于存在热失控的危险。对于热回收式系统,是怕热回收器被损坏。解决方法可以是往有机废气中掺入空气以降低浓度或做更多的热回收。

污染物质的类型

当有机废气中含有高浓度的可转化有机酸的物质(如氯,氟,硫和卤素)时必须特别小心。他们会对设备造成严重的腐蚀或令催化剂中毒。

微粒散发的水平

当有机废气中含有微小颗粒时也必须特别小心。例如,当废气中含有油雾颗粒时,它们会聚集在管道和氧化器较冷的部位,那这个设备就需要经常清理。

有机废气控制技术选择表

技术名称设备设计和运行典型应用典型优 /缺点

热回收式热力焚烧系统( TNV)

通常设计的废气氧化温度为

750-820℃, 停留时间为1秒左右。

通常采用不锈钢材质的管式换热器

做热回收。

系统的热效率一般为40% 到75%, 有机

物净化率可达99%以上。

-有机废气流量为1,000 ~

50,000 Nm 3 /h

-废气浓度为15%到40%

-用于生产过程中需要大

量热能的场合

例如:汽车涂装、彩钢板

生产、化工生产、热移印

刷和药物生产等。

优点:

-适中的一次性投资

-在处理高和中浓度

的有机废气时,运行成

本较低

缺点:

-在处理低浓度有机

废气时,运行成本较高

—管式热交换器只是

在连续运行时,才有较

长的寿命

催化式焚烧系统(CO)通常设计的废气氧化温度为260-350℃。

通常采用翅板式对流换热器来预热待处

理有机废气。

系统的热效率一般为50% 到80%, 典型

的有机物净化率为98%左右。

-有机废气流量为1,000

~10 0,000 Nm 3 /h

-废气浓度为5%到15%

-常用于生产过程中需要

少量热能的场合

例如:转轮印刷、食品烘

烤、化工生产等

优点:

-较低的一次性投资

-在处理较低浓度的

有机废气时,运行成本

较低-维护费用较低

缺点:

-适合处理有机废气

浓度在20%以下的有

机废气

-催化剂有中毒的可

蓄热式焚烧系统 (RTO)通常设计的废气氧化温度为810-980℃。

采用陶瓷蓄热体来预热待处理有机废气。

系统的热效率一般为80% 到95%, 三室

RTO有机物净化率为99%以上,二室RTO

有机物净化率为95%左右。

-有机废气流量为5,000

~200 ,000 Nm 3 /h

-废气浓度为1%到10%

-常用于生产过程中不需

要或需要少量热能的场合

例如:转轮印刷、食品处

理、表面涂装生产等

优点:

-在处理大流量低浓

度的有机废气时,运行

成本非常低

缺点:

-较高的一次性投资

-不适合处理高浓度

的有机废气

-有很多运动部件,需

要较多的维护工作。

VOC废气处理技术

VOC废气处理技术 目前,中国的工业发展进入到一个新阶段,环境问题的昌益突出影响到了 从们的正常工作和生活,环境问题越来越受到人们的关注。所以在这种形势下,必须控制工业等生产领域有害气体的排放,减少其对大气环境的污染。东盛VOC 废气处理技术,主要包括冷凝处理法、氧化处理法、液体吸附法、生物处 理法各吸附法等。 众所周知,工业生产过程中会产生大量对大气环境有危害的有机气体。当前,中国的大气环境已受到严重污染,北方许多地区出现了严重雾霾天气。在这种 情况下,必须加大有机废气处理技术的研发力度,通过提高废气处理技术来降 低其对大气环境的危害。本文从VOC气体的危害入手,分析了其相关处理技术。 挥发性的有机化合物,简称为VOC(Volatile Organic Compounds)),在工业 生产中,通常作为溶剂来使用,使用之后便散发到大气中。现阶段,其应用比 较广泛的领域包括石油化工、印刷、人造革及电子元器件、烤漆和医药等。 从化学物质的性质来看,在工业生产等领域,一般用作溶剂的主要包括脂肪 族化合物、卤代烃和芳香族化合物等。这些有机溶剂如果挥发到大气环境中, 不仅会对大气环境造成严重污染,而且人体呼入被污染的气体后,对人体健康 产生危害。比如苯,它常常被当作一种溶剂来使用,作为溶剂挥发到大气环境中,不仅可以被人体的皮肤所吸收,而且还可通过呼吸系统进入人体内部,造 成慢性或急性中毒,不过人体的大部分中毒均是由于呼入有毒气体造成的。 苯类化合物不仅会对人体的中枢神经造成一定的损害,而且还可能造成神经 系统的障碍,进入人体后还会危害血液和造血器官,如果情况比较严重,甚至 会有出血症状或患上败血症。氧化作用下,苯在生物体内可氧化成苯酚,从而 造成肝功能异常,对骨骼的生长发育十分不利,诱发再生障碍性贫血。如果苯 蒸汽浓度过高,生物可能因急性中毒而死亡。因此,ACGIH把苯列为潜在致 癌物质。卤代烃类化合物会引发神经症候群和血小板的减少、肝脾肿大等不良 状况,而且很有可能致癌。所以,必须控制VOC的排放,这不仅是对环境负责,也是对我们的生命健康负责。 1、生物处理法 从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的 生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。这是一种无害的有机废气处理方式。

精细化工废气处理实用工艺

8.1 废气防治措施评述 8.1.1 有组织排放废气防治措施及评述 拟建项目有组织废气主要包括工艺废气(G1~G6),溶剂回收车间生产过程产生的废气(G7),废水处理废气(G8、G9),危废暂存库收集的无组织废气(G10)。 拟建项目还在各生产车间及溶剂回收车间建有完善的无组织废气收集系统,干燥、离心等生产过程产生的无组织废气经集气罩收集后,送往相应的处理设施处理;将危废暂存库中能密封的设备和空间尽量密闭,减少废气产量,拟采取各项措施减少危险废物暴露面,从而减少废气扩散空间,对已产生的废气采用负压收集并通过“碱喷淋洗涤+活性炭吸附”处理后排放;废水处理站的收集池、中间水池、混凝沉淀池、厌氧水解池、A/O生化池、二沉池等大部分构筑物均加盖并进行废气收集,与废水蒸发产生的不凝气,通过“碱喷淋洗涤+活性炭吸附”处理后排放;易挥发液体储罐均采用氮封,罐区槽车装卸过程加装气相平衡管,密闭装车,在天气炎热时对储罐进行喷淋降温,有效减少储罐的“呼吸排放”。以上措施最大程度上将厂无组织废气收集后转变成有组织废气进行处理。 上述废气中成分复杂,有乙酸、环己酮、环己醇、甲苯、二乙二醇单乙醚、氯戊烯、丙酮、丙酮聚合物、四氢呋喃、噻吩、石油醚、乙酸乙酯、甲醇、二氯甲烷、乙腈、羟基丙酮、丙酮基磷酸甲酯、氯乙酸甲酯、亚磷酸二甲酯、甲醇、三氟化硼乙醚、乙醚、乙醛、HCl、三聚乙醛二氯亚砜等有机组分污染物,还有HCl、氨、SO2、氯气等无机组分污染物,治理难度大。 8.1.1.1 废气处理措施选择 目前,工业有机废气的处理技术主要有冷凝法、吸收法(水法、有机溶剂法)、吸附法(活性炭颗粒吸附法、活性炭纤维吸附法)、燃烧法(催化燃烧法、蓄热燃烧法、焚烧法)等,相关技术要点比较见表8.1-1。 表8.1-1 有机废气常见处理技术比较

(完整版)TVOCs挥发性有机废气处理技术汇总大全分解

TVOCs有机废气处理技术汇总 吸附技术、催化燃烧技术和热力焚烧技术是传统的有机废气治理技术,也仍然是目前应用最广泛的VOCs实用治理技术。 催化燃烧技术 催化燃烧装置(RCO) 催化燃烧装置(RCO):首先通过除尘阻火系统。然后进入换热器,再送到加热室,使气体达到燃烧反应温度,再通过催化床的作用,使有机废气分解成二氧化碳和水,再进入换热器与低温气体进行热交换,使进入的气体温度升高达到反应温度。如达不到反应温度,加热系统科通过自控系统实现补偿加热。利用催化剂做中间体,使有机气体在较低的温度下,变成无害的水和二氧化碳气体,即:

产品性能特点: ①操作方便,设备工作时,实现自动控制,安全可靠。 ②设备启动,仅需15~30分钟升温至起燃温度,能耗低。 ③采用当今先进的贵金属钯、铂浸渍的蜂窝状陶瓷载体催化剂,比表面积大,阻力小,净化率高。 ④余热可返回烘道,降低原烘道中消耗功率;也可作其它方面的热源。 ⑤使用寿命长,催化剂一般两年更换,并且载体可再生。 应用范围 1苯、醇、酮、醛、酯、酚、醚、烷等混合有机废气处理。 2适用于化工、塑料、橡胶、制药、印刷、农药、制鞋等行业的有机废气净化。 催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 +MOX (M:过渡族金属) +贵金属制成的催化剂用于治理甲硫醇废气, Pt + Pd + Cu催人剂用于治理含氮有机醇废气。 由于有机废气中常出现杂质 ,很容易引起催化剂中毒 ,导致催化剂中毒的毒物 (抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂 ,增大催化剂有效面积 ,使催化剂具有一定机械强度 ,减少烧结 ,提高催化活性和稳定性的作用。能

有机废气处理技术

当气体中含有较多的有回收价值的有机气态污染时,通过冷凝回收这些污染物是最好的方法。当尾气被水饱和时,为了消灭反烟,有时也用冷凝的方法将水蒸气冷凝下来,单纯通过冷凝往往不能将污染物脱除至规定的要求,除非使用冷冻剂。一般使用室温水作为冷却剂的冷凝器是吸附或燃烧的很好的预处理装置。 一、冷凝原理 1.冷凝 自然界的冷凝现象诸如:盛夏季节,清晨所见到的花草上的露珠;厨房自来水管外面一层湿漉漉的水膜;外出归来人室后眼镜上的水雾等。 所谓冷凝就是当热流体放出热量时,温度没有变化,而使流体从气相变为液相。冷凝回收的方法就是将蒸气从空气中冷却凝成液体,并将液体收集起来,加以利用。从空气中冷凝蒸气的方法,可以是移去热量即冷却,也可以是增加压力,使蒸气在压缩时凝出来。而在空气净化方面通常只用冷却的方法,很少使用压缩的方法。 2.饱和蒸气压与温度的关系 所谓蒸气压就是物质从液相逃逸到气相中的能力。蒸气压与蒸气物质本身的性质、温度及蒸气的浓度有关。以冷却的方法将空气中的蒸气凝成液体,其极限就是指冷却温度下的饱和蒸气,而饱和蒸气压就是指纯物质在指定温度下逃逸到气相中的最大能力。如图13—1所示,是某些物质的饱和蒸气压与温度的关系曲线。

图13-1 某些物质的饱和蒸气压与温度的关系曲线 不同温度下的饱和蒸气压p0可按下式计算: (13—1) 式中p0——指定开尔文温度T下的饱和蒸气压,×133.322Pa; T——有机溶剂的温度,K; A,B——与物质性质有关的常数。表13—1是一些常见有机溶剂的A,B值。

[例1] 求苯、甲苯和二硫化碳在室温为20℃时的饱和蒸气压。 解由式(13—1) 可算出 苯:由表13—1,A=1731,B=7.783 所以p0=75×133.322Pa(75mmHg) 查图13—1可知,两种方法得出的数值相近。 甲苯:由表13—1,A=1901,B=7.837 所以p0=22×133.322Pa(22mmHg) 查图13—1与甲苯曲线对照,数值相近。 二硫化碳:查表13—1,A=1446,B=7.410 所以p0=298×133.322Pa(298mmHg) 查图13—1与二硫化碳曲线对照数值相近。 由于蒸气的温度愈高,则其对应的饱和蒸气压愈高,通过降低温度把热量移去,可使气相回到液相。可见冷凝作用的极限是饱和蒸气压下的温度。 二、冷凝回收的极限与适用范围 1.蒸气压与蒸气浓度的关系

废气处理办法

精心整理江苏某某实业股份有限公司 车间生产废气处理工程

目录 第一章项目概况.............................................................................................. 错误!未指定书签。第二章工程设计内容...................................................................................... 错误!未指定书签。 2.1工程范围........................................................................................... 错误!未指定书签。 2.2 技术规范.......................................................................................... 错误!未指定书签。 2.3 设计依据.......................................................................................... 错误!未指定书签。 2.4 设计原则.......................................................................................... 错误!未指定书签。 第八章质量保证计划与措施.......................................................................... 错误!未指定书签。 8.1 质量保证计划.................................................................................. 错误!未指定书签。 8.2 质量保证措施.................................................................................. 错误!未指定书签。

VOC废气处理技术

VOC废气处理技术 VOC(Volatile Organic Compounds),中文全称挥发性有机化合物。在现代化工业生产中,通常将其作为一种溶剂,使用过程中便会挥发排放到大气中。在石油化工、印刷、人造皮革、电子行业、涂料和医药等行业应用比较广泛。普通意义上的VOC就是指挥发性有机物;但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物。目前VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 一、热破坏法 热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏是目前应用比较广泛也是研究较多的有机废气处理方法,特别是对低浓度有机废气处理效果比较好。有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。 催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度,是高浓度、小流量有机废气净化的首选技术。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5+ MOX(M:过渡族金属) + 贵金属制成的催化剂用于治理甲硫醇废气,Pt + Pd + Cu催人剂用于治理含氮有机醇废气。 由于有机废气中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有Al2O3铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。 二、吸附法 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。实践证明,这种处理方法值得推广应用。 但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。所以,使用此方法处理废气的关键在于吸附剂。当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。 此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。 三、生物处理法

VOC废气处理技术工艺详解

VOC废气处理技术工艺详解 现在,我们知道,挥发性有机化合物,简称为VOC(Volatile Organic Compounds)),在工业生产中,通常作为溶剂来使用,使用之后便散发到大气中。现阶段,其应用比较广泛的领域包括石油化工、印刷、人造革及电子元器件、烤漆和医药等。这里就涉及到今天我们要谈到的话题——VOC废气处理技术! VOC废气处理技术工艺详解 当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 一、VOC废气处理技术——热破坏法 热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC 的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。这种方法主要分为两种,即直接火焰燃烧和催化燃烧。直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。这种方法比直接燃烧用时更少,但是如果离开催化剂辅助,则无法发挥作用。现阶段,可作为催化剂使用的大都是金属、金属盐。这两种催化剂的催化效果虽说比较好,技术也已经相当成熟,但是其价格却比较高,所以处理成本也就比较高。近年来,催化剂研制多集中在非贵金属催化剂方向,取得了比较大的进展。 此外,在催化有机废气过程中,还需要有催化剂的载体,其起着提高催化活性和稳定性的重要作用。当前,多以陶瓷作为催化剂载体,但在未来的催化剂研究当中,应加快研发高效活性催化剂及其载体。 二、VOC废气处理技术——吸附法 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。实践证明,这种处理方法值得推广应用。

挥发性有机物(VOCs)废气危害与治理方法

森羽鹏腾 挥发性有机物(VOCs)废气危害与治理方法 VOCs:是指挥发性有机化合物,由于挥发性有机物活性强,在温度高、强光照射下,极易与氮氧化物发生光化学反应,让细粒子污染渐趋严重,是灰霾天气频发的“元凶”之一。 一、挥发性有机物(VOCs)废气危害: 在短时间内人们感到头痛、恶心、呕吐、四肢乏力;严重时会抽搐、昏迷、记忆力减退。VOCs伤害人的肝脏、肾脏、大脑和神经系统。 二、挥发性有机物(VOCs)废气的种类: 烷类、芳烃类、烯类、卤烃类、酯类、醛类、酮类和其他。 三、挥发性有机物(VOCs)废气主要来源: (1)有机溶液,如油漆.含水涂料,黏合剂.化妆品.洗涤剂等。 (2)建筑材料,如人造板.泡沫隔热材料.塑料板材等。 (3)室内装饰材料,如壁纸。其他装饰品等。 (4)纤维材料,如地毯.挂毯和化纤窗帘。 (5)办公用品,如油墨.复印机.打印机等。 (6)设计和使用不当的通风系统等。 (7)家用燃料和烟叶的不完全燃烧。 (8)人体排泄物。 (9)来自室外的工业气体.汽车尾气.光化学烟雾等等 四、挥发性有机物(VOCs)废气的种类: 具有容易燃烧、容易爆炸、有毒害、不能够溶解在水里面、能够溶解在有机溶剂里面、处理困难程度比较大的特点。 五、挥发性有机物(VOCs)废气治理方法: 光催化纳米离子法除味技术:“紫外光催化纳米离子活性氧废气净化设备”。该设备采用光催化纳米离子法除味技术,结合了活性氧技术。利用高能非平衡等离子体脉冲放电技术,可在瞬间迅速使空间内产生高浓度的活性氧、自由基、臭氧,在组合阵列极的空间内形成活化区。当有机分子通过活化区时其分子键被活化区内的离子迅速松动,高能非平衡等离子体脉冲放电方式使空间内产生巨大的压强,分子突然获得“爆炸”式的巨大能量瞬间猛增了自由基使分子全部处于活化状态将动能转化为分子内部势能,打开了旧的化学键,使一个或几个分子键断裂。在定向反应作用下产生新的单一原子组成的气体分子和固态单质微粒。这也称之为电化学反应。 森羽鹏腾

有机废气处理技术方案

(润华环保设备制造商) 1、净化目标 汽车零部件行业在产品生产中,发泡成型、焊接、及烘干工序,塑料材质在高温情况下会挥发非甲烷总烃等VOCs,现在为了保护环境及工人工作环境,我们的目的就是把各部分产生非甲烷总烃等有机挥发气体收集后经光触媒技术光氧催化氧化设 备处理后,设备对含苯、甲苯、 二甲苯及非甲烷总烃等挥发性 有机物进行光催化氧化分解后, 再经活性炭吸附后排放达到国 家工业排放标准;《大气污染物 综合排放标准》二级排放标准; 2、设计内容 有机废气处理系统设计内容 包括:发泡成型工序、焊接工序、 真空复合工序、烘干工序产生的挥发性有机物的处理设施(工艺、设备、电气、控制系统)的工程设计、安装与调试。 3、设计规范 (1)严格遵守国家环境保护的政策和地方政府相关的法律法规、规范和标准。 (2)按照业主方的要求,通过分析比较和调查研究,选用符合实际的工艺方案,以期获得较大的社会效益、经济效益和环境效益。 (3)遵照国家对环境质量的总体要求,与环境协调发展,减少废气污染物

排放,维护和改善周边环境,提倡清洁生产,顺应我国经济建设与环境保护协调发展的总体要求。 (4)采用先进可靠的废气治理工艺,选用安全可靠的废气处理系统和工程材料,提高防御自然灾害风险的能力,确保废气治理工艺和装置的技术上的先进性、经济上的合理性和操作上的可靠性。 (5)结合本项目的特点,按照区域不同浓度的废气的不同情况和治理需求,采用与之相应的废气治理工艺技术,在确保实现治理目标的同时,以降低废气治理系统综合运行费用和节约能耗,使治理后的废气排放的影响降到环境可接受程度,满足国家对环境保护的总体要求,为方案设计的出发点和实现目标。 (6)妥善处理废气处置过程中产生的废水及固体废物,杜绝二次污染。(7)努力提高和保证供电、仪表、自动控制系统安全可靠性。 (8)全面贯彻节能减排、环保、安全、卫生、防火原则。 2.3 主要污染物:VOCs 苯、甲苯、二甲苯、非甲烷总烃 2.4 通风量及设备选型: 1、根据现场实际情况分析,现采取废气处理措施: 将各工位产生的有机废气,在排风机作用下,经收集管道体进入光触媒催化氧化设备,光触媒催化氧化设备对废气分子进行吸附分解转化,再经活性炭吸附,最后通过15米排风管道达标排放。 2、根据客户提供数据要求,此方案按照风量进行设计。 废气产生位置及风量工况情况 发泡间:首先将主要原料多元醇、异氰酸酯、水以及少量助剂,从贮罐(或贮桶)经泵送入计量系统,计量准确送入机械混合头(在混合过

VOCs常见废气处理工艺方案

1.生物除臭工艺 BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42— 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细

菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) BCE系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。 设备操作简单实现自动控制 工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。排放产物人畜无害,属环境友好性技术,无二次污染。 2.低温等离子体技术 低温等离子体除臭设备适用行业

废气处理工艺设计方案

综合废气工艺设计 编制依据 公司有关领导的情况介绍和我方技术人员实地考察。 《中华人民共和国环境保护法》。 《中华人民共和国大气污染防治法》。 《环境空气质量标准》(GB3095-1996)。 《大气污染物排放标准》(GB16297-1996)。 《建筑结构荷载规范》(GBJ9-87)。 《通用设备安装工程质量检验评定标准》(TJ305-79) 工艺流程选择 针对废气排放所含物质,治理方案考虑采用填料喷淋塔进行处理。喷淋塔是利用吸收的原理来达到处理废气的目的。吸收法处理是利用液态吸收剂处理气体混合物以除去其中某一种或几种气体的过程。在这过程中会发生某些气体在溶液中溶解的物理作用,这是物理吸收。也有气液中化学物质之间发生化学反应,这是化学吸收。吸收作用常用于气体污染物的处理与回收。 吸收法的特点是既能吸收有害气体,又能除掉排气中的粉尘,吸收法分为物理吸收和化学吸收两种。物理吸收是用液体吸收有害气体和蒸气时纯物理溶解过程。它适用于在水中溶解度比较大的有害气体和蒸气,一般吸收效率较低。化学吸收是在吸收过程中伴有明显的化学反应,不是纯溶解过程。化学吸收效率较高,是目前应用较多的有害气体处理方法。本工艺采用的方法就是利用物理与化学的

方法处理废气的,化学吸收过程采用NaOH 溶液做吸收剂。 反应原理: 吸收是中和反应,尾气中的二氧化硫被氢氧化钠溶液吸收.在吸收塔内化学反应方程为: SO2+2NaOH=Na2SO3+H2O SO3+2NaOH=Na2SO4+H2O 应用碱液吸收有害气体时,碱液浓度的高低对化学吸收的传质速度有很大的影响。当碱液的浓度较低时,化学传质的速度较低;当提高碱液浓度时,传质速度也随之增大;当碱液浓度提高到某一值时,传质速度达到最大值,此时碱液的浓度称为临界浓度;当碱液浓度高于临界浓度时传质速度并不增大。 工艺流程的说明 用吸收法处理有害气体在真空泵房上设密闭罩,密闭罩上部设排风口将房内产生的废气排出,保持房内一定负压,废气排出后进入填料喷淋吸收塔。废气进入吸收塔,塔体上部喷淋碱性吸收液,下部进入塔体的有害气体与喷淋液呈逆流流动,废气由风机压入净化塔内的匀压室,经过不等速迂回式的二道喷雾处理,进入净化塔内筒处理器,废气穿过有填料组成的填料层,再经过二道喷雾处理,使气液两相充分接触发生吸收反应,达到高效净化之目的。经处理后的废气再经过脱水器脱液处理,然后排入大气。净化后的废气达到排放标准。吸收了废气后的吸收液流入塔底循环碱液槽中,用耐腐蚀的碱液泵抽出重新送进吸收塔,这样循环往复,不断地对废气

VOC废气处理工艺汇总

目录 1.生物除臭工艺 (2) 2.低温等离子体技术 (3) 3.有机废气处理工艺 (5) 4.高能离子技术 (8) 5.吸附催化燃烧 (10) 6.RTO蓄热式氧化炉 (10) 7.光催化氧化工艺 (12) 8.化学吸收工艺 (14) 9.植物液除臭工艺 (14)

1.生物除臭工艺 BCE 系列生物除臭设备适用行业 楚天科技BCE 系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯 乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO 32— 、SO 42— 。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH 4+ 、NO 2— 、NO 3— ,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H 2S 时,专性的自养型硫氧化菌会在一定的条件下将H 2S 氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H 2S,然后H 2S 再由自养型微生物氧化成硫酸根。 H 2S+O 2+自养硫化细菌+CO 2 → 合成细胞物质+SO 42— +H 2O CH 3SH→CH 4+H 2S→CO 2+H 2O+SO 4 2— 当恶臭气体为NH 3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化: NH 3+O 2→HNO 2+H 2O HNO 2+O 2→HNO 3+H 2O 反硝化:HNO 3→HNO 2→HNO→N 2O→N 2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)

挥发性有机废气处理技术及前景展望论文

挥发性有机废气处理技术及前景展望摘要:有机废气处理问题,是当前工业废气处理的难点、热点问题。本文介绍了目前国内外处理有机废气的几种技术方法:包括氧化法、生物法、冷凝法、吸附法、膜分离法等,并对有机废气发展趋势进行了展望。 关键词:有机废气处理破坏法回收法 abstract: organic waste gas treatment problem, is the current industrial waste gas processing the difficulty, the hot issue. this paper introduces the organic waste gas treatment at home and abroad and several kinds of technical methods: including oxidation method, biological method, condensation method, adsorption, membrane separation, etc, and on the organic waste gas development trends are also prospected. keywords: organic waste gas treatment failure method of recovery 中图分类号:x701 文献标识码:a 文章编号: abstract:the organic waste gases treatment problem is the difficult and hot problem of current industrial waste gases. in this paper, we discussed several domestic and foreign technology and methods of disposing organic waste gases,

8种有机废气处理技术的优缺点

8种有机废气处理技术的优缺点 1 VOC及其危害概述 (本文由双尼环保整理提供) 1.1 VOC概述 挥发性的有机化合物,简称为VOC(VolatileOrganic Compounds)),在工业生产中,通常作为溶剂来使用,使用之后便散发到大气中。现阶段,其应用比较广泛的领域包括石油化工、印刷、人造革及电子元器件、烤漆和医药等。 1.2 VOC危害概述 从化学物质的性质来看,在工业生产等领域,一般用作溶剂的主要包括脂肪族化合物、卤代烃和芳香族化合物等。这些有机溶剂如果挥发到大气环境中,不仅会对大气环境造成严重污染,而且人体呼入被污染的气体后,对人体健康产生危害。比如苯,它常常被当作一种溶剂来使用,作为溶剂挥发到大气环境中,不仅可以被人体的皮肤所吸收,而且

还可通过呼吸系统进入人体内部,造成慢性或急性中毒,不过人体的大部分中毒均是由于呼入有毒气体造成的。 苯类化合物不仅会对人体的中枢神经造成一定的损害,而且还可能造成神经系统的障碍,进入人体后还会危害血液和造血器官,如果情况比较严重,甚至会有出血症状或患上败血症。氧化作用下,苯在生物体内可氧化成苯酚,从而造成肝功能异常,对骨骼的生长发育十分不利,诱发再生障碍性贫血。如果苯蒸汽浓度过高,生物可能因急性中毒而死亡。因此,ACGIH把苯列为潜在致癌物质。卤代烃类化合物会引发神经症候群和血小板的减少、肝脾肿大等不良状况,而且很有可能致癌。所以,必须控制VOC的排放,这不仅是对环境负责,也是对我们的生命健康负责。 2 VOC废气处理技术 当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 2.1热破坏法

VOC处理技术综述

VOC处理技术综述 VOC是挥发性有机化合物(volatile organic compounds)的缩写。普通意义上的VOC就是指挥发性有机物;但是环保意义上是指会产生危害的那一类挥发性有机物。VOC室外主要来自燃料燃烧和交通运输;室内主要来自燃煤和天然气等燃烧产物,吸烟、采暖和烹调等烟雾,建筑和装饰材料、家具、家用电器、清洁剂和人体本身的排放等。 当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 一、热破坏法(直接燃烧和催化燃烧) 热破坏法是指直接和辅助燃烧有机气体voc,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。这种方法主要分为两种,即直接火焰燃烧和催化燃烧。直接火焰燃烧处理效率相对较高,可达到99%。而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。 二、吸附法(即活性炭吸附) 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,处理效率高,而且可以彻底净化有害有机废气。实践证明,吸附法值得推广应用。 但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂。当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。 此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。

挥发性有机污染物废气整治绩效评估方案报告

挥发性有机污染物废气整治绩效评估报告 ****木业有限公司 ***环保科技有限公司 二〇一六年

目录 第一章总论 (1) 1.1项目背景 (1) 1.2设计依据 (1) 1.3编制目的 (2) 1.4设计原则。 (2) 第二章企业基本情况 (3) 2.1企业简介 (3) 2.2生产工艺流程4 2.3原辅材料4 2.4主要生产设备 (4) 第三章整治前企业有机废气治理情况 (6) 3.1废气来源 (6) 3.2废气风量 (6) 3.3废气浓度 (6) 3.4废气温度。6 3.5治理措施 (6) 3.6存在的问题 (6) 第四章整改过程 (7) 第五章整改绩效评估 (10) 5.1整治要求符合性评估 (10) 5.1.1源头控制符合性分析 (10)

5.1.2过程控制符合性分析 (11) 5.1.3废气收集符合性分析 (11) 5.1.4废气处理符合性分析 (11) 5.1.5监督管理符合性分析 (12) 5.1.6子行业分类要求符合性分析 (12) 5.1.7小结·13 第六章评估结论 (16) 第七章附图 (17) 附图1企业所在地地理位置图 (17) 附图2厂区平面布置图 (18) 附图3厂区照片 (19) 第八章附件 (20) 附件1环评批复 (20) 附件2企业涂料说明 (22) 附件3:企业VOCs治理设备日常运行记录 (27) 附件4:固废处理协议 (29) 附件5:环保管理制度 (31) 附件6:企业公示材料·36 附件7:检测报告39

挥发性有机污染物废气整治绩效评估报告 第一章总论 1.1项目背景 为优化产业布局,加强源头控制和污染治理,综合治理挥发性有机物(简称VoCs,下同)污染,全面改善区域空气质量。浙江省环保厅于2013年11月下发了《浙江省挥发性有机物污染整治方案》,将化工、涂装、合成革、纺织印染、橡胶塑料制品、印刷包装、化纤、木业、制鞋、生活服务业、储运、建筑装饰、电子信息等13个主要VOCs污染行业全部纳入整治范围。 ****木业有限公司(以下简称****木业)位于浙江湖州****经济开发区,是一家专业从事生产木质地板等家居产品的公司。项目生产使用的油漆为UV面漆及UV底漆。在生产过程中产生一定量的VOCs废气,影响大气环境,为响应国家VOCs减排要求,公司决定建设配套环保设施对该废气进行处理。 我公司承接过多项同类工程,在这些项目实施过程中积累了丰富的经验,为客户提供整套专业的技术解决方案,使废气达标排放的同时,为客户减少投资与设备运行成本。 1.2设计依据 1)****木业提供的资料; 2)《浙江省挥发性有机物污染整治方案》浙环函(2013)54号; 3)《浙江省涂装行业挥发性有机物污染整治规范》; 4)《关于印发2016年浙江省大气污染防治实施计划的通知》浙环函【2016】145;5)《关于印发浙江省工业污染防治2016年度实施方案的通知》浙环函【2016】;

有机废气处理技术16.4

有机废气治理项目 技 术 方 案 有限公司 2016年 4月 二、执行标准 (1)《中华人民共和国环境保护法》; (2)《大气污染物综合排放标准》(GB16297-1996);

(3)《恶臭污染物排放标准》(GB14554-1993); (4)《环境空气质量标准》(GB3095-1996); (5)《工厂企业厂界噪声标准及其测量方法》(GB12348~12349-90); (6)《工作场所有害因素职业接触限值》(GBZ 2-2002); (7)《工业企业设计卫生标准》(GBZ 1-2002); (8)《建设项目环境保护条例》中华人民共和国国务院令第253号 1998 排放标准: 三、有机废气简说

四、几种处理技术介绍 VOCs有机废气处理技术汇总

吸附技术、催化燃烧技术和热力焚烧技术是传统的有机废气治理技术,也仍然是目前应用最广泛的VOCs实用治理技术。 催化燃烧技术: 一、催化燃烧装置(RCO) 1、净化原理 热氧化处理技术是把废气加热到280℃以上,在催化剂的作用下使废气中的VOCs氧化分解成CO?和 H?O,氧化产生的高温气体经过换热器时,预热后续进入的有机废气,从而节省废气升温燃料消耗的处理技术。 本装置是利用催化剂做中间体,使有机气体在较低的温度下,变成无害的水和二氧化碳。 首先通过除尘阻火系统。然后进入换热器,再送到加热室,使气体达到燃烧反应温度,再通过催化床的作用,使有机废气分解成二氧化碳和水,再进入换热器与低温气体进行热交换,使进入的气体温

度升高达到反应温度。如达不到反应温度,加热系统科通过自控系统实现补偿加热。利用催化剂做中间体,使有机气体在较低的温度下,变成无害的水和二氧化碳气体,即: RCO设备可直接应用于中高浓度(1000mg/m3-10000 mg/m3)的有机废气净化;RCO设备也可应用于活性炭吸附浓缩催化燃烧系统,用于替代催化燃烧和加热器部分。 2、选型及注意事项: 废气成分中,不含下列物质: 有高粘性的油脂类。 磷、铋、砷、锑、汞、铅、锡。 高浓度的粉尘 3、产品性能特点: ①操作方便,设备工作时,实现自动控制,安全可靠。 ②设备启动,仅需15~30分钟升温至起燃温度,能耗低。 ③采用当今先进的贵金属钯、铂浸渍的蜂窝状陶瓷载体催化剂,

VOCs常见废气处理工艺方案

1. 生物除臭工艺 BCE 系列生物除臭设备适用行业 海德利尔 (站八 石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等 生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、 氨、甲烷、三 甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成 分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配, 以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后, 通过离心风机的抽送,被直接导入洗 涤一生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰 值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气 液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S 、S03—、S04—。硫黄氧化菌的作用是清除硫化 氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成 NH4+ NO —、 NO —,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为 H2S 时, 专性的自养型硫氧化菌会在一定的条件下将 H2S 氧化成硫酸根;当恶臭气体为有 机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成 H2S 然后H2S 再由 自养型微生物氧化成硫酸根。 H2S+O2自养硫化细菌+C03合成细胞物质 +SO42-+H20 CH3SH> CH4+H2&CO2+H2O+SO —2 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细 塑料 制药 安革L 食品厂 纺织L

菌和硝酸细菌的硝化作用转为硝酸, 在兼性厌氧条件下,硝酸盐还原细菌将硝酸 盐还原为氮气。 硝化:NH3+gHNO2+H2O HN02+8HN03+H20 反硝化:HNgHNgHNO> N2O> N2 后段过滤床根据废气源条件可选配,以强化处理。 (如活性炭吸附除臭、植物液 除臭等) BCE 系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小 及良好的布气布水等特性,使用寿命可达 8-10年。 设备操作简单实现自动控制 工艺运行按PLC 设置实现完全自动、运行稳定、无人管理,可24小时连续运行, 也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物 腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95鸠上,任何季节、 气候条件下都能满足各地最严格的除臭环保要求。 排放产物人畜无害,属环境友 好性技术,无二次污染。 2. 低温等离子体技术 低温等离子体除臭设备适用行业 电子制遗 印剧 轮胎 制药 化工 化纤

挥发性有机物治理方案

挥发性有机物治理方案 为贯彻落实《大气污染防治行动计划》,大力推进我市重点行业挥发性有机物(简称VOCS,下同)综合治理,降低VOCs的排放总量,切实改善环境空气质量,制订本方案。 一、工作思路及目标 坚持突出重点、分步推进,注重过程控制与末端治理相结合,分阶段完成全市VOCs污染整治任务,大幅减少重点行业VOCs排放,促进环境空气质量改善。化工企业通过源头控制、工艺改进、设备泄漏检测与修复(LDAR)、生产环节和废水废液废渣系统密闭性改造、罐型和装卸方式改进等措施,表面涂装企业通过改用环境友好型涂料、提高喷涂效率、安装末端废气处理设施等措施,包装印刷企业通过改用环境友好型油墨、在末端建立密闭废气收集系统、有机溶剂回收利用等措施,全过程控制和减少VOCs排放。到2016年底,基本完成化工、表面涂装、包装印刷等行业VOCs污染治理,企业工艺装备、污染治理水平和环境监管能力大幅提升,重点治理项目全部完成,已建成治理设施稳定运行,稳定达到相关控制标准和要求。 二、重点治理行业 重点治理化工、表面涂装、包装印刷行业。 三、治理标准及要求 (一)化工行业 产生VOCs污染的企业均应采用密闭化的生产系统,封闭一切不必要的开口,尽可能采用环保型原辅料、生产工艺和装备,从源头控制VOCs废气的产生和无

组织排放。治理后橡胶制品行业达到《橡胶制品工业污染物排放标准》(GB27632-2011)要求,其它化工企业达到《大气污染物排放标准》(GB16297-1996)要求。 1.全面推行“泄漏检测与修复(LDAR)”。建立“泄漏检测与修复”管理体系,细化工作程序、检测方法、检测频率、泄漏浓度限值、修复要求等关键要素,对泵、压缩机、阀门、法兰等易发生泄漏的设备与管线组件,设置编号和标识,定期检测、及时修复,防止或减少跑、冒、滴、漏。 2.加强有组织工艺废气排放控制。工艺废气应优先考虑生产系统内回收利用,难以回收利用的,应采用催化燃烧、热力焚烧等方式净化处理后达标排放。采取适当措施尽可能回收排入火炬系统的废气;火炬应按照相关要求设置规范的点火系统,确保通过火炬排放的VOCs点燃,并尽可能充分燃烧。 3.严格控制储存、装卸损失。挥发性有机液体储存设施应在符合安全等相关规范的前提下,采用压力罐、低温罐、高效密封的浮顶罐或安装顶空联通置换油气回收装置的拱顶罐,其中苯、甲苯、二甲苯等危险化学品应在采用内浮顶罐基础上安装油气回收装置等处理设施。挥发性有机液体装卸应采取全密闭、液下装载等方式,严禁喷溅式装载。汽油、石脑油、煤油等高挥发性有机液体和苯、甲苯、二甲苯等危险化学品的装卸过程应优先采用高效油气回收措施。运输相关产品应采用具备油气回收接口的运输工具。 4.加强废水废液废渣系统逸散废气治理。废水废液废渣收集、储存和处理处置过程中,应对逸散VOCs和产生异味的主要环节采取有效的密闭与收集措施,确保废气经收集处理后达到相关标准要求,禁止稀释排放。 5.加强非正常工况污染控制。制定开停车、检维修、生产异常等非正常工况的操作规程和污染控制措施,非正常工况下生产装置排出的含挥发性有机物的物料、废气和检维修前清扫气应接入回收或净化处理装置。

相关文档
相关文档 最新文档