文档库 最新最全的文档下载
当前位置:文档库 › 数学分析课后答案

数学分析课后答案

数学分析课后答案
数学分析课后答案

第一章 实数集与函数

§1实数

1、设a 为有理数,x 为无理数,试证明:

⑴x a +是无理数.

⑵当0≠a 时,ax 是无理数.

证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.

⑵假设ax 是有理数,则x a

ax =为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.

1、 试在数轴上表示出下列不等式的解:

⑴ 0)1(2>-x x ;⑵

2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =.

证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <;

若b a >,则又由绝对值定义知:b a b a -=-.

令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾;

若b a <,则又由绝对值定义知:a b b a -=-.

令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾;

从而必有b a =.

3、 设0≠x ,证明21≥+x

x ,并说明其中等号何时成立. 证:因x 与x

1同号,从而21211=?≥+=+x x x x x x , 等号当且仅当x x 1=

,即1±=x 时成立.

4、 证明:对任何R x ∈,有

⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x

证: ⑴因为21111-=+-≤--x x x , 所以121≥-+-x x . ⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x

5、 设a 、b 、

+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222 证:对任意的正实数a 、b 、c 有)(22

222c b a bc a +≤,

两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+ bc c a b a a 2))((2222222-≤++-,

两端再同加22c b +,则有c b c a b a -≤+-+2222

其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边.

当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立

6、 设0,0>>b x ,且b a ≠,证明

x b x a ++介于1与b a 之间. 证:因为x b a b x b x a +-=++-1,)

()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, b

a x

b x a <++<

1; 当b a <时, 1<++

b x a b a ; 故x b x a ++总介于1与b a 之间.

7、 设p 为正整数,证明:若p 不是完全平方数,则

p 是无理数 证:假设p 是有理数,则存在正整数m 、n 使n m p =

,且m 与n 互素. 于是22m p n =.可见n 能整除2m .

由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .

从而m mnv u m =+2

因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故

p 是无理数

8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解:

⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2. 解: ⑴原不等式等价于11<---b

x b a 这又等价于20<--b x b a b x 220或?

??->->+>>b a b a x b x 2或???????<+<

a b a x b x 2 故当b a >时,不等式的解为2

b a x +> 当b a <时,不等式的解为2

b a x +< 当b a =时,不等式无解.

⑵原不等式等价于???-<->b x a x b x 且?

??-<->b x x a b x 即???>>b a b x 且??

???+>>2b a x b x 故当b a >时,2

1b x +>; 当b a ≤时,不等式无解.

⑶当0≤b 时,显然原不等式无解,

当0>b 时原不等式等价于b a x b a +<<-2 因此①当0≤+b a 或0≤b 时,无解 ②当0>+b a 且0>b 时,有解

Ⅰ 如果b a ≥,则解为b a x b a +<

<- 即b a x b a +<<-或b a x b a +>>--

Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-

华东师大数学分析习题解答2

《数学分析选论》习题解答 第 二 章 连 续 性 1. 设n y x ? ∈,,证明: )|| |||| ||(2|| ||||||2 2 2 2 y x y x y x +=-++. 证 由向量模的定义, ∑∑==-+ += -++n i i i n i i i y x y x y x y x 1 2 12 2 2 ) () (|||||| || ∑=+=+=n i i i y x y x 1 2 2 22 )|| |||| ||(2)(2 . □ 2*. 设n n x S ?∈??点,到集合S 的距离定义为 ),(inf ),(y x S x S y ρ=ρ∈. 证明:(1)若S 是闭集,S x ?,则0),(>S x ρ; (2)若d S S S ?=( 称为S 的闭包 ),则 {}0 ),(|=ρ? ∈= S x x S n . 证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈?,使得 ,2,1,1 ),(=< ρn n y x n . 因 S x ?,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ. (2)S x ∈?.若S x ∈,则0),(=ρS x 显然成立.若S x ?,则d S x ∈(即x 为S 的聚点),由聚点定义,?≠?ε>ε?S x U );(,0 ,因此同样有 0),(),(inf =ρ=ρ∈S x y x S y . 反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正

数0ε,使?=?εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x S y ,与0),(=ρS x 相 矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ?∈d ;若x 为孤立点, 则S S x ?∈.所以这样的点x 必定属于S . 综上,证得 { } 0),(|=ρ?∈=S x x S n 成立. □ 3.证明:对任何n S ? ?,d S 必为闭集. 证 如图所示,设0x 为d S 的任一聚点, 欲证∈0x d S ,即0x 亦为S 的聚点. 这是因为由聚点定义,y ?>ε?,0,使得 d S x U y ?ε∈);(0 . 再由y 为S 的聚点,);();(0ε?δ?x U y U ,有 ?≠?δS y U );( . 于是又有?≠?εS x U );(0 ,所以0x 为S 的聚点,即∈0x d S ,亦即d S 为闭 集. □ 4.证明:对任何n S ? ?,S ?必为闭集. 证 如图所示,设0x 为S ?的任一聚点,欲证S x ?∈0,即0x 亦为S 的界点. 由聚点定义,y ?>ε?,0,使 S x U y ??ε∈);(0 . 再由y 为界点的定义,);();(0ε?δ?x U y U , 在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ?必为闭集. □ *5.设n S ??,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1 x 的直线段必与S ?至少有一交点. 0x );(δy U );(0εx U S S ? );(δy U );(0εx U S d S 0x

数学分析课本(华师大三版)-习题及答案4

1.按定义证明下列函数在其定义域连续:()||.f x x = 2. 指出下列函数的间断点,并说明其类型: (1).()[|cos |];f x x = (2) ()sgn(cos );f x x = (3),();,x x f x x x ?=?-?为有理数 为无理数 1,77(4) (), 71 1(1)sin ,11x x f x x x x x x ?-∞<<-?+?=-≤≤??-<<+∞?-? 3.延拓下列函数,使其在R 上连续. (1) 38();2 x f x x -=- (2) 21();cox f x x -= (3) 1()cos .f x x x = 4. 证明:若f 在点0x 连续,则2||,f f 也在0x 连续.又问:若2 ||,f f 都在I 连续,那么f 在I 上是否必连续. 5. 设,f g 在点0x 连续,证明: (1) 若00()(),f x g x >则存在0(;),U x δ使在其内有()();f x g x > (2) 若在某00()U x 内有()(),f x g x >则()(),f x g x >则00()().f x g x ≥ 6.设,f g 在区间I 上连续。记()max{(),()},()min{(),()}.F x f x g x G x f x g x ==证明F 和G 都在I 连续。 7.设f 为R 上连续函数,常数0,c >记 ,()()(),|()|,,()c f x c F x f x f x c c f x c -<-??=≤??>? 若若若 证明()F x 在R 上连续。 提示:()max{,min{,()}}.F x c c f x =- 8.设,0()sin ,(),,0 x x f x x g x x x ππ-≤?==?+>?证明:复合函数f g 在0x =连续,但g 在0x =不连续。 证:因00 lim ()lim (),x x g x x ππ++→→=+=00lim ()lim (),x x g x x ππ--→→=-=-00lim ()lim (),x x g x g x +-→→≠故()g x 在0x =不连续。 当0x ≤时,(())sin()sin ,f g x x x π=-=-当0x >时,(())sin()sin ,f g x x x π=+=-故(())sin f g x x =-在0x =连续。

数学分析课本(华师大三)习题及答案第二十章

第十章 曲线积分 一、证明题 1.证明:若函数f 在光滑曲线L:x=x(t),y=y(t)(β≤≤αt )上连续,则存在点()L y ,x 00∈,使得,()?L ds y ,x f =()L y ,x f 00? 其中L ?为L 的长。 二、计算题 1.计算下列第一型曲线积分: (1) ()?+L ds y x ,其中L 是以0(0,0),A(1,0)B(0,1)为顶点的三角形; (2) ()?+L 2122ds y x ,其中L 是以原点为中心,R 为半径的右半圆周; (3) ?L xyds ,其中L 为椭圆22a x +22 b y =1在第一象限中的部分; (4) ?L ds y ,其中L 为单位圆22y x +=1; (5) () ?++L 222ds z y x ,其中L 为螺旋线x=acost,y=asinr, z=bt(π≤≤2t 0)的一段; (6) ?L xyzds ,其中L 是曲线x=t,y=3t 232,z=2t 2 1 ()1t 0≤≤的一段; (7) ?+L 22ds z y 2,其中L 是222z y x ++=2a 与x=y 相交的圆周. 2.求曲线x=a,y=at,z=2at 21(0a ,1t 0>≤≤)的质量,设其线密度为a z 2=ρ, 3.求摆线x=a(t -sint),y=a(1-cost)(π≤≤t 0)的重心,设其质量分布是均匀的. 4.若曲线以极坐()θρ=ρ()21θ≤θ≤θ表示,试给出计算 ()?L ds y ,x f 的公式.并用此公式计算下列曲线积分.

(1)? +L y x ds e 22,其中L 为曲线ρ=a ??? ??π≤θ≤40的一段; (2)?L xds ,其中L 为对数螺线θ=ρx ae (x>0)在圆r=a 内的部分. 5.设有一质量分布不均匀的半圆弧,x=rcos θ,y=rsin θ(π≤θ≤0),其线密度θ=ρa (a 为常数),求它对原点(θ,0)处质量为m 的质点的引力. 6.计算第二型曲线积分: (1) ?-L ydx xdy ,其中L 为本节例2的三种情形; (2) ()?+-L dy dx y a 2,其中L 为摞线x=a(t-sint),y=a(1-cost)(π≤≤2t 0)沿t 增加方向的 一段; (3) ?++-L 22y x ydy xdx ,其中L 为圆周222a y x =+,依逆时针方向; (4)?+L xdy sin ydx ,其中L 为y=sinx(π≤≤x 0) 与x 轴所围的闭曲线,依顺时针方向; (5)?++L zdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段. 7.质点受力的作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a,0)沿椭圆移动到(0,b),求力所作的功. 8.设质点受力的作用,力的方向指向原点,大小与质点到xy 平面的距离成反比,若质点沿直线x=at,y=bt,z=ct(0c ≠) 从M(a,b,c)到N(2a,2b,2c),求力所作的功. 9.计算沿空间曲线的第二型曲线积分: (1) ?L xyzddz ,其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8卦限; (2) ()()() ?-+-+-L 222222dz y x dy x z dx z y ,其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zx 平面部分 .

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章 曲面积分 一、证明题 1.证明:由曲面S 所包围的立体V 的体积等于 V= ()??+β+αS ds r cos z cos y cos x 31其中αcos ,βcos , cpsr 为曲面S 的外法线方向余弦. 2.若S 为封闭曲面,L 为任何固定方向,则 ()??S ds L ,n cos =0 其中n 为曲面S 的外法线方向. 3. 证明 公式 ???V r dx dydz =()??S ds n ,r cos 21 其中S 是包围V 的曲面,n 为S 的外法线方向. r=222z y x ++,r=(x,y,z). 4.证明: 场A=()(z y x 2yz ++,()z y 2x zs ++, ())z 2y x x y ++是有势场并求其势函数. 二、计算题 1.计算下列第一型曲面积分: (1) ()??++S ds z y x ,其中S 为上半球面 222z y x ++=2a 0z ≥; (2) () ??+S 22ds y x ,其中S 为主体1z y x 22≤≤+的边界曲面; (3) ?? +S 22ds y x 1,其中S 为柱面222R y x =+被平面Z=0,Z=H 所截取的P 分; (4) ??S xyzds ,其中S 为平面在第一卦限中的部分.

2.计算??S 2ds z ,其中S 为圆锥表面的一部分. S:?? ???θ=θ?=θ?=cos r z sin sin r y sin cos r x D:???π≤?≤≤≤20a r 0 这里θ为常数(0<θ<2 π). 3.计算下列第二型曲面积分 (1) ()?? -S dydz z x y +dzdx x 2+()dx dy x z y 2+,其中S 为x=y=z=0,x=y=z=a 平成所围成的正方体并取处侧为正向; (2)()()()??+++++S dxdy x z dzdx z y dydz y x ,其中S 是以原点中心,边长为2的正方体 表面并取外侧正向; (3)??++S zxdxdy yzdzdx xydydz ,其中S 是由平面x=y=z=0和x+y+z=1所围的四面体 表面并取外侧为正向; (4) ??S yzdzdx ,其中S 是球面,222z y x ++=1的上半部分并取外侧为正向; (5)?? ++S 222dxdy z dzdx y dydz x ,其中S 是球面()2a x - +()2b y -+()2c x -=R 2并取外侧为正向. 4.设某流体的流速为V=(x,y,0),求单位时间内从球面x 2+y 2 +z 2=4的内部流过球面的流量 5.计算第二型曲面积分 I=()??S dydz x f +()dzdx y g +()dx dy z h 其中S 是平行分面体(a x 0≤≤,b y 0≤≤,c z 0≤≤)表面并取外侧,f(x),g(y),h(z)为S 上的连续函数, 6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x 2+y 2 +z 2=a 2,z=0的磁通量, 7.应用高斯公式计算下列曲面积分: (1) ??++S sydxdy zxdzds yzdydz ,其中S 为单位球面x 2+y 2+z 2=1的外侧; (2) ??++S 222dxdy z dzds y dydz x ,其中S 是立方体≤0x,y,z a ≤的表面取外侧; (3) ??++S 222dxdy z dzds y dydz x ,其中S 为锥面x 2+y 2 =z 2与平面z=h 所围的空间区域(h z 0≤≤)的表面方向取外侧; (4) ??++S 332dxdy z dzds y dydz x ,其中S 是单位球面x 2+y 2+z 2=1的外侧; (5) ??++S dxdy 2ydzds xdydz ,其中S 为上半球面Z=222y x a --的外侧.

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理及其应用 一、 填空题 1.若0,0>>b a 均为常数,则=??? ? ? ?+→x x x x b a 3 2 lim ________。 2.若2 1 sin cos 1lim 0 =-+→x x b x a x ,则=a ______,=b ______。 3.曲线x e y =在0=x 点处的曲率半径=R _________。 4.设2442 -+=x x y ,则曲线在拐点处的切线方程为 ___________。 5.= -+→x e x x x 10 )1(lim ___________。 6.设) 4)(1()(2 --=x x x x f ,则0)(='x f 有_________个根, 它们分别位于________ 区间; 7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的 __________=ξ; 8.函数3 )(x x f =与2 1)(x x g +=在区间[]2,0上满足柯西定 理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数 2 )(x e x f x =的单调减区间是__________; 11.函数x x y 33 -=的极大值点是______,极大值是

_______。 12.设x xe x f =)(,则函数) () (x f n 在=x _______处取得 极小值_________。 13.已知bx ax x x f ++=23 )(,在1=x 处取得极小值2-, 则=a _______,=b _____。 14.曲线2 2)3(-=x k y 在拐点处的法线通过原点,则 =k ________。 15.设)2,1()1()(Λ=-?=n x n x f n ,n M 是)(x f 在[]1,0上的最 大值,则=∞ →n n M lim ___________。 16.设)(x f 在0 x 可导,则0)(0 ='x f 是)(x f 在点0 x 处取得 极值的______条件; 17.函数x bx x a x f ++=2 ln )(在1=x 及2=x 取得极值,则 ___ ___,==b a ; 18. 函数 3 2 2 3 )(x x x f -=的极小值是_________; 19.函数x x x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在?? ??? ?2,0π上的最大值为______, 最小值为_____; 21. 设点 ) 2,1(是曲线 b a x y +-=3)(的拐点,则 ______ _____,==b a ; 22. 曲线x e y =的下凹区间为_______,曲线的拐点为

复旦大学 数学分析课后习题解 陈纪修

第一章 第1节 4.(1){}32|≤<-x x ; (2){}00|),(>>y x y x 且; (3){}Q x x x ∈<<且10|; (4)? ?? ???∈+=Z k k x x ,2|π π. 7.(1)不正确。B x A x B A x ?????或者; (2)不正确。B x A x B A x ?????并且. 第2节 2.(1)]1,0[],[:→b a f .a b a x y x --= (2)),()1,0(:+∞-∞→f ])21 t a n [(π-x x 3.(1))3(log 2 -=x y a ,定义域:()()+∞-∞-,33, ,值域:),(+∞-∞; (2)x y 3arcsin =,定义域:(]0,∞-,值域:?? ? ?? 2,0π; (3)x y tan =,定义域:??? ??+-∈2,2π πππk k Z k ,值域: [)+∞,0; (4)11 +-=x x y ,定义域:()[)+∞-∞-,11, ,值域:[)()+∞,11,0 . 5.(1)定义域:()ππ)12(,2+∈k k Z k ,值域:(]0,∞-; (2)定义域:?? ? ???+-∈22,22ππππk k Z k ,值域:[]1,0;

(3)定义域:[]1,4-,值域:??? ???25,0; (4)定义域:()()+∞∞-,00, ,值域:??? ????+∞ ,2233. 7.(1)9777212)(23-+-=x x x x f ; (2)141 2)(-+=x x x f 。 8.(1)21)(++=x x x f f ; 3 22 )(++=x x x f f f ; 5 332)(++=x x x f f f f 。 9.2) ()()(x f x f x f -+= 2) ()(x f x f --+,2)()(x f x f -+是偶函数,2)()(x f x f --是奇 函数. 10.[](](]???????∈+-∈-∈+-=4,3823,1252 31,03 4x x x x x x y 11.[](] ?????? ?∈-+-∈=2,112212,12122x x x x x y 12.[](](]?????∈-∈-∈=11,92.112118.13329,598 985,04.78)(x x x x x x x P 13.???-=为无理数为有理数x x x x x f 1)(

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

数学分析课本(华师大三版)-习题及答案第四章

第四章 函数的连续性 一、填空题 1.设??? ? ???>+=<=0 11sin 0 0 sin 1 )(x x x x k x x x x f ,若函数)(x f 在定义域内连续,则 =k ; 2.函数?? ?≤>-=0 sin 0 1)(x x x x x f 的间断点是 ; 3.函数x x f =)(的连续区间是 ; 4.函数3 21 )(2--= x x x f 的连续区间是 ; 5.函数) 3(9 )(2--=x x x x f 的间断点是 ; 6.函数) 4)(1(2 )(+++= x x x x f 的间断点是 ; 7.函数) 2)(1(1 )(-+= x x x f 的连续区间是 ; 8.设?????=≠-=-0 0 )(x k x x e e x f x x 在0=x 点连续,则 =k ; 9.函数?? ? ??≤≤+-<≤+-<≤-+=3x 1 31x 0 101 1)(x x x x x f 的间断点是 ; 10.函数0b a 0 )(0 )(2 ≠+?? ?<++≥+=x x x b a x b ax x f .则)(x f 处处连续的充要条件是 =b ; 11.函数?????=≠=-0 0 )(2 1x a x e x f x ,则=→)(lim 0 x f x ,若)(x f 无间断点,则=a ; 12.如果?????-=-≠+-=1 1 11)(2x a x x x x f ,当=a 时,函数)(x f 连续

二、选择填空 1.设)(x f 和)(x ?在()+∞∞-,内有定义,)(x f 为连续函数,且0)(≠x f ,)(x ?有间断点,则( ) A.[])(x f ?必有间断点。 B.[]2 )(x ?必有间断点 C.[])(x f ?必有间断点 D. ) () (x f x ?必有间断点 2.设函数bx e a x x f += )(,在()∞∞-,内连续,且)(lim x f x -∞→0=,则常数b a ,满足( ) A.0,0<>b a C.0,0>≤b a D.0,0<≥b a 3.设x x e e x f 11 11)(-+=,当,1)(;0-=≠x f x 当0=x ,则 A 有可去间断点。 B 。有跳跃间断点。 C 有无穷间断点 D 连续 4.函数n n x x x f 211lim )(++=∞→ A 不存在间断点。 B 存在间断点1-=x C 存在间断点0=x D 存在间断点1=x 5.设????? =≠=???=≠=0 10 1sin )(;0 00 1)(x x x x x g x x x f ,则在点0=x 处有间断点的函数是 A )}(),(max{x g x f B )}(),(min{x g x f C )()(x g x f - D )()(x g x f + 6.下述命题正确的是 A 设)(x f 与)(x g 均在0x 处不连续,则)(x f )(x g 在0x 处必不连续。 B 设)(x g 在0x 处连续,0)(0=x f ,则0 lim x x →)(x f )(x g =0。 C 设在0x 的去心左邻域内)(x f <)(x g ,且-→0 lim x x )(x f =a , -→0 lim x x )(x g =b ,则必有a

数学分析课本-习题及答案01

第一章 实数集与函数 习题 §1实数 1、 设a 为有理数,x 为无理数。证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。 2、 试在数轴上表示出下列不等式的解: (1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。 3、 设a 、b ∈R 。证明:若对任何正数ε有|a-b|<ε,则a = b 。 4、 设x ≠0,证明|x+x 1|≥2,并说明其中等号何时成立。 5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。 6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。证明 |22b a +-22c a +|≤|b-c|。 你能说明此不等式的几何意义吗 7、 设x>0,b>0,a ≠b 。证明x b x a ++介于1与b a 之间。 8、 设p 为正整数。证明:若p 不是完全平方数,则p 是无理数。 9、 设a 、b 为给定实数。试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|0(a ,b ,c 为常数,且a

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分 §1 二重积分的概念 1.把重积分 ??D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0?,并用直线网x=n i ,y=n j (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点. 2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界. 3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积. 4.设D 为矩形区域,试证明二重积分性质2、4和7. 性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且 ()?+D g f =??+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ??≤D D g f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得 ()D ,f f D ?ηξ=?. 5.设D 0、D 1和D 2均为矩形区域,且 210D D D Y =,?=11D int D int I , 试证二重积分性质3. 性质3(区域可加性) 若210D D D Y =且11D int D int I ?=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且 ?0D f =??+2 1D D f f , 6.设f 在可求面积的区域D 上连续,证明: (1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D >?; (2)若在D 内任一子区域D D ?'上都有 ?' =D 0f ,则在D 上()0y ,x f ≡。 .

7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得 ()()??D dxdy y ,x g y ,x f =()ηξ,f ()??D dxdy y ,x g . 8.应用中值定理估计积分 ?? ≤-++10y x 22y cos x cos 100dxdy 的值 §2 二重积分的计算 1.计算下列二重积分: (1)()??-D dxdy x 2y ,其中D=[][]2,15,3?; (2) ??D 2dxdy xy ,其中(ⅰ)D=[][]3,02,0?,(ⅱ)D=[]3,0 []2,0?; (3)()??+D dxdy y x cos ,其中D=[]π???????π,02,0; (4) ??+D dx dy x y 1x ,其中D=[][]1,01,0?. 2. 设f(x,y)=()()y f x f 21?为定义在D=[]?11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且 ?D f =???1122 b a b a 21f f .

华东师大数学分析试题

华东师大2019年数学分析试题 一、(24分)计算题: (1) 求011lim()ln(1)x x x →-+; (2) 求32cos sin 1cos x x dx x +?g (3) 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数, 试求grad z 。 二、(14分)证明: (1)11(1)n n +??+???? 为递减数列: (2) 111ln(1),1,21n n n n <+<=+???? 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之 一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导, '()f x K ≤ (K 为正常数) ,(,)x a b ∈ 证明:f 在点a 右连续,在点b 左连续。 四、(14分)设1 20(1)n n I x dx =-?,证明: 五、(12分)设S 为一旋转曲面,它由光滑曲线段

绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为: 2(b a A f x π=? 六、(24分)级数问题: (1) 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧, “死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。设 sin ,01,0()x x x x f x ≠=?=??{}[]() x a,b ()()11()()n n n f x f x f x f x f x ∈? ?,求 ()(0),1,2,k f k =L (2) 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教 谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师

最新数学分析选讲刘三阳-部分习题解答

第一讲 习题解答 习题1-1 1 计算下列极限 ① ()1lim 11,0p n n p n →∞ ?? ??+->?? ??????? 解:原式=()1111110lim lim 110 p p p n n n n n n →∞→∞???? +-+-+ ? ?????=-()()0110lim 0p p n x x →+-+=-()() 01p x x p ='=+= ② () sin sin lim sin x a x a x a →-- 解:原式=()()()()sin sin sin sin lim lim sin x a x a x a x a x a x a x a x a →→---?=---=()sin cos x a x a ='= ③ 1x →,,m n 为自然数 解:原式 = 1 1 x x n m →=' == ④ ( ) lim 21,0n n a →∞ > 解:原式( ) () 10 ln 21lim ln 21 1lim ln 1 lim n x n x a e a n n x n e e e →∞ →?? ??- ? ??-→∞ === =()( ) ()()0ln 21ln 21 ln 21lim 2ln 20 x a a x x a a x x e e e a ---→' -==== ⑤ lim ,0x a x a a x a x a →->- 解:原式=lim x a a a x a a a a x x a →-+--lim lim x a a a x a x a a a x a x a x a →→--=---()()x a x a x a a x ==''=-()ln 1a a a =- ⑥ lim ,0x a a x x a x a a a a a x →->-

数学分析课本(华师大三版)-习题及答案10

习 题 十 1. 求下列曲线所围图形的面积. (1) y x x x y = ===1 14,,,0=; (2) 轴; y x y y ==3 8,, (3) ; y e y e x x x ==?,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2 380,,=1; (6) y x y y x y =+===14,,,;3 (7) ; y x x y 2 24=?=, (8) . x y y x =?=2 10(), 2. 求抛物线以及在点y x x =?+?2 4(,)03?和处的切线所围图形的面积. (,)30 3. 设曲线与直线y x x =?2y ax =,求参数,使该曲线与直线围图形面积为 a 92 . 4. 曲线与相交于原点和点f x x ()=2 g x cx c ()=>3 0()(,)11 2 c c ,求的值,使位于区间c [,01 c 上,两曲线所围图形的面积等于 23. 5. 求星形线所围图形的面积(a ). x a t y a t t ==?????≤≤cos sin 3 3 02 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积. (1) 三叶玫瑰线r =83sin θ; (2) 心形线r =?31(sin )θ; (3) r =+1sin θ与r =1; (4) r =2与r =4cos θ. 7. 证明:球的半径为R 、高为的球冠的体积公式为: h V h R = ?13 32 π()h

8. 计算圆柱面与所围立体(部分)的体积. x y a 22+=2 2 x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积. x y a 2 2 +=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为. h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积. (1) ; y x x =≤sin () 0π≤;(2) y x x y ===2 20,,(3) y x y x == 2,; (4) ; y x x e =≤ln () 1≤3 (5) . y x y x ==2 2 , 12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体 积. 13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =?3 2y x =2 y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长. (1) ; y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38; (3) x y y y = ?≤≤141 2 12ln (),e ; (4) r a a =>≤≤θθ ,()003; (5) r a =≤sin ()3 3 03≤θ θπ,; (6) . x a t t t y a t t t t =+=?≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2 2 20+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密 度x a y a ==cos sin 3 θ,3 θρ为常数) . 17. 计算下列曲线所围图形的质量中心. (1) ax ; y ay x a ==>2 2 0, () (2) x a y b x a y b 222 2100+=≤≤≤≤,,(); (3) 轴,()y a x x =sin ,01≤≤x ; 18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3 (c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功. 20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,

数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学 一、证明题 1. 证明函数 ?? ???=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微. 2. 证明函数 ?? ???=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222 在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微. 3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续. 4. 试证在原点(0,0)的充分小邻域内有 xy 1y x arctg ++≈x+y. 5. 试证: (1) 乘积的相对误差限近似于各因子相对误差限之和; (2) 商的相对误差限近似于分子和分母相对误差限之和. 6.设Z=() 22y x f y -,其中f 为可微函数,验证 x 1x Z ??+y 1y Z ??=2 y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明: x Z ?? sec x + y Z ??secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换 x=u cos θ-v sin θ, y=u sin θ+v cos θ 之下.()2x f +()2 y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ). 则必有()2x f +()2y f =()2u g +()2 v g .(其中旋转角θ是常数) 9.设f(u)是可微函数,

相关文档 最新文档