文档库 最新最全的文档下载
当前位置:文档库 › (完整版)高中数学归纳法大全数列不等式精华版

(完整版)高中数学归纳法大全数列不等式精华版

(完整版)高中数学归纳法大全数列不等式精华版
(完整版)高中数学归纳法大全数列不等式精华版

§数学归纳法

1.数学归纳法的概念及基本步骤

数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:

(1)验证:n=n0 时,命题成立;

(2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.

根据(1)(2)可以断定命题对一切正整数n都成立.

2.归纳推理与数学归纳法的关系

数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时,

需要特别注意:

(1)用数学归纳法证明的对象是与正整数n有关的命题;

(2)在用数学归纳法证明中,两个基本步骤缺一不可.

1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1.

2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在

由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题

形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法.

3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数

有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须

依题目的要求严格按照数学归纳法的步骤进行,否则不正确.

4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有

某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行

严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确.

6.在学习和使用数学归纳法时,需要特别注意:

(1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的

正整数n 都成立;

(2)在用数学归纳法证明中,两个基本步骤缺一不可.

数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通

过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,

是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题

对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两

步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证

明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是

假命题.

证明:12+122+123+…+12

n -1+12n =1-12n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=12,等式成立.

(2)假设当n =k (k ≥1)时,等式成立,即

12+122+123+…+12k -1+12k =1-1

2k ,

那么当n =k +1时,

左边=12+122+123+…+12k -1+12k +12

k +1 =1-12k +12k +1=1-2-12k +1=1-12

k +1=右边. 这就是说,当n =k +1时,等式也成立.

根据(1)和(2),可知等式对任何n ∈N +都成立.

用数学归纳法证明:1-12+13-14+…+12n -1-12n

=1n +1+1n +2

+…+12n . [证明] ①当n =1时,左边=1-12=12=11+1

=右边, ∴当n =1时,等式成立.

②假设n =k 时等式成立,即

1-12+13-14+…+12k -1-12k =1k +1+1k +2

+…+12k . 则当n =k +1时,

左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2

=(1k +1+1k +2+…+12k )+12k +1-12k +2

=(1k +2+…+12k +12k +1)+(1k +1-12k +2

) =1k +2+…+12k +12k +1+12k +2

=右边. ∴n =k +1时等式成立.

由①②知等式对任意n ∈N +都成立.

[点评] 在利用归纳假设论证n =k +1等式成立时,注意分析n =k 与n =k +1的两个等式的差别.n =k +1时,等式左边增加两项,右边增加一项,而且右式的首项由1k +1变到1k +2.因此在证明中,右式中的1k +1应与-12k +2

合并,才能得到所证式.因此,在论证之前,把n =k +1时等式的左右两边的结构先作一下分析是有效的.

证明不等式

用数学归纳法证明:对一切大于1的自然数n ,不等式

?

????1+13? ????1+15…? ????1+12k -1>2n +12成立. [证明] ①当n =2时,左=1+13=43,右=52,左>右,

∴不等式成立.

②假设n =k (k ≥2且k ∈N *)时,不等式成立,

即? ????1+13? ????1+15…? ??

??1+12k -1>2k +12, 那么当n =k +1时,

? ????1+13? ????1+15…? ????1+12k -1[1+12k +1-1]>2k +12·2k +22k +1

=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1

=2k +3·2k +12·2k +1=2k +1+12,

∴n =k +1时,不等式也成立.

∴对一切大于1的自然数n ,不等式成立.

[点评] (1)本题证明n =k +1命题成立时,利用归纳假设并对照目标式进行了

恰当的缩小来实现,也可以用上述归纳假设后,证明不等式k +12k +1

>2k +1

+12成立.

(2)应用数学归纳法证明与非零自然数有关的命题时要注意两个步骤:

? 第①步p (n 0)成立是推理的基础;

? 第②步由p (k )?p (k +1)是推理的依据(即n 0成立,则n 0+1成立,n 0+2成立,…,从而断定命题对所有的自然数均成立).

? 另一方面,第①步中,验证n =n 0中的n 0未必是1,根据题目要求,有时可为2,3等;第②步中,证明n =k +1时命题也成立的过程中,要作适当的变形,设法用上上述归纳假设 .

(2013·大庆实验中学高二期中)用数学归纳法证明:

1+122+132+…+1n 2<2-1n (n ≥2).

[分析] 按照数学归纳法的步骤证明,由n =k 到n =k +1的推证过程可应用放缩技巧,使问题简单化.

[证明] 1°当n =2时,1+122=54<2-12=32,命题成立.

2°假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k

当n=k+1时,1+1

22+

1

32+…+

1

k2+

1

k+12

<

2-1

k+

1

k+12

<2-

1

k+

1

k k+1

=2-

1

k+

1

k-

1

k+1

=2-

1

k+1

命题成立.

由1°、2°知原不等式在n≥2时均成立.

证明整除问题

用数学归纳法证明下列问题:

(1)求证:3×52n+1+23n+1是17的倍数;

(2)证明:(3n+1)·7n-1能被9整除.

[分析](2)先考察:f(k+1)-f(k)=18k·7k+27·7k,因此,当n=k+1时,(3k+4)7k+1=(21k+28)·7k-1=[(3k+1)·7k-1]+18k·7k+27·7k.

[证明](1)当n=1时,3×53+24=391=17×23是17的倍数.

假设3×52k+1+23k+1=17m(m是整数),

则3×52(k+1)+1+23(k+1)+1=3×52k+1+2+23k+1+3

=3×52k+1×25+23k+1×8

=(3×52k+1+23k+1)×8+17×3×52k+1

=8×17m+3×17×52k+1

=17(8m+3×52k+1),

∵m、k都是整数,∴17(8m+3×52k+1)能被17整除,

即n=k+1时,3×52n+1+23n+1是17的倍数.

(2)令f(n)=(3n+1)·7n-1

①f(1)=4×7-1=27能被9整除.

②假设f(k)能被9整除(k∈N*),

∵f(k+1)-f(k)=(3k+4)·7k+1-(3k+1)·7k=7k·(18k+27)=9×7k(2k+3)能被9整除,

∴f(k+1)能被9整除.

由①②可知,对任意正整数n,f(n)都能被9整除.

[点评]用数学归纳法证明整除问题,当n=k+1时,应先构造出归纳假设的条件,再进行插项、补项等变形整理,即可得证.

(2014·南京一模)已知数列{a n}满足a1=0,a2=1,当n

∈N+时,a n

+2=a n

+1

+a n.求证:数列{a n}的第4m+1项(m∈N+)能被

3整除.

[证明](1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=(a2+a1)

+2a2+a1=3a2+2a1=3+0=3.

即当m=1时,第4m+1项能被3整除.故命题成立.

(2)假设当m=k时,a4k+1能被3整除,则当m=k+1时,

a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2

=2(a4k

+2

+a4k+1)+a4k+2=3a4k+2+2a4k+1.

显然,3a4k

+2

能被3整除,又由假设知a4k+1能被3整除.

∴3a4k

+2

+2a4k+1能被3整除.

即当m=k+1时,a4(k

+1)+1

也能被3整除.命题也成立.

由(1)和(2)知,对于n∈N

,数列{a n}中的第4m+1项能被3整除.

几何问题

平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点.求证:这n个圆把平面分成n2-n+2个部分.[分析]用数学归纳法证明几何问题,主要是搞清楚当n=k+1时比n=k时,分点增加了多少,区域增加了几块.本题中第k+1个圆被原来的k个圆分成2k条弧,而每一条弧把它所在的部分分成了两部分,此时共增加了2k个部分,问题就容易得到解决.

[解析] ①当n=1时,一个圆把平面分成两部分,12-1+2=2,命题

成立.

②假设当n=k时命题成立(k∈N*),k个圆把平面分成k2-k+2个部

分.当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,每条弧把它所在部分分成了两个

部分,这时共增加了2k个部分,即k+1个圆把平面分成( k2-k+2)+2k

=(k+1)2-(k+1)+2个部分,即命题也成立.由①、②可知,对任意

n∈N*命题都成立.

[点评]利用数学归纳法证明几何问题应特别注意语言叙述准确清楚,一定要

讲清从n=k到n=k+1时,新增加量是多少.一般地,证明第二步时,常用的

方法是加一法.即在原来k的基础上,再增加1个,也可以从k+1个中分出1

个来,剩下的k个利用假设.

[分析] 找到从n =k 到n =k +1增加的交点的个数是解决本题的关键.

[证明] (1)当n =2时,两条直线的交点只有一个.

又f (2)=12×2×(2-1)=1,

∴当n =2时,命题成立.

(2)假设n =k (k ≥2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),

那么,当n =k +1时,

任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k -1),

l 与其他k 条直线交点个数为k .

从而k +1条直线共有f (k )+k 个交点,

即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1)=12(k +1)[(k +1)

-1],

∴当n =k +1时,命题成立.

由(1)(2)可知,对n ∈N +(n ≥2)命题都成立.

[点评] 关于几何题的证明,应分清k 到k +1的变化情况,建立k 的递推关系.

探索延拓创新

归纳—猜想—证明

(2014·湖南常德4月,19)设a >0,f (x )=

ax a +x

,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式;

(2)用数学归纳法证明你的结论.

[解析] (1)∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a

;a 4=f (a 3)

=平面内有n (n ∈N +,n ≥2)条直线,其中任何两条不平

行,任何三条不过同一点,证明交点的个数f (n )=n (n -1)2.

a 3+a . 猜想 a n =a n -1+a (n ∈N +). (2)证明:(ⅰ)易知,n =1时,猜想正确.

(ⅱ)假设n =k 时猜想正确,

即a k =a k -1+a

, 则

a k +1=f (a k )=a ·a k a +a k =a ·a k -1+a a +a k -1+a =a k -1+a +1=a

[k +1-1]+a

. 这说明,n =k +1时猜想正确. 由(ⅰ)(ⅱ)知,对于任何n ∈N +,都有a n =a

n -1+a

已知数列{x n }满足x 1=12,x n +1=11+x n

,n ∈N +. (1)猜想数列{x 2n }的单调性,并证明你的结论;

(2)证明:|x n +1-x n |≤16 ? ??

??25n -1. [解析] (1) 解: 由x 1=12及x n +1=11+x n

,得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6,猜想数列{x 2n }是单调递减数列.

下面用数学归纳法证明:

①当n =1时,已证明x 2>x 4,命题成立.

②假设当n =k 时,命题成立,即x 2k >x 2k +2.

易知x n >0,那么,当n =k +1时,

x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3

=x 2k +3-x 2k +11+x 2k +11+x 2k +3 =x 2k -x 2k +21+x 2k 1+x 2k +11+x 2k +21+x 2k +3>0,

即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立.

综合①和②知,命题成立.

(2)证明:当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立.

当n ≥2时,易知0

∴1+x n -1<2,x n =11+x n -1

>12. ∴(1+x n )(1+x n -1)=?

????1+11+x n -1(1+x n -1)=2+x n -1≥52. ∴|x n +1-x n |=?

?????11+x n -11+x n -1=|x n -x n -1|1+x n 1+x n -1

≤25|x n -x n -1|≤? ??

??252|x n -1-x n -2|≤…≤ ? ??

??25n -1|x 2-x 1|=16? ????25n -1. 易错辨误警示

判断2+4+…+2n =n 2+n +1对大于0的自然数n 是否都成立?若成立请给出证明.

[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1.

即当n =k +1时,等式也成立.

因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立.

[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1.

即当n =k +1时,等式也成立.

因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立.

? [正解] 不成立.当n =1时,左边=2,右边=12+1+1=3,左边≠右边,所以不成立.

[点评] 用数学归纳法证明命题的两个步骤是缺一不可的.特别是步骤

(1),往往十分简单,但却是不可忽视的步骤.本题中,虽然已经证明了:如果n =k 时等式成立,那么n =k +1时等式也成立.但是如果仅根据这一步就得出等式对任何n ∈N +都成立的结论,那就错了.事实上,当n

=1时,上式左边=2,右边=12+1+1=3,左边≠右边.而且等式对任何n 都不成立.这说明如果缺少步骤(1)这个基础,步骤(2)就没有意义了.

用数学归纳法证明

1

2×4

1

4×6

1

6×8

+…+

1

2n(2n+2)

n

4(n+1)

(n∈N+).

[误解](1) 略.

(2) 假设当n=k(k≥1,k∈N+)时等式成立,那么当n=k+1时,直接使用裂项相减法求得

1

2×4+

1

4×6+

1

6×8+…+

1

2k2k+2

1

2k+22k+4

=1

2??

?

?

?

??

?

?

?

?

1

2-

1

4+?

?

?

?

?

1

4-

1

6+…+?

?

?

?

?

1

2k-

1

2k+2+?

?

?

?

?

1

2k+2

1

2k+4

=1

2?

?

?

?

?

1

2-

1

2k+4=

k+1

4[k+1+1]

,即n=k+1时命题成立.

[正解](1)当n=1时,左边=1

2×4=

1

8,右边=

1

8,等式成立.

(2)假设当n=k(k≥1,k∈N+)时,

1 2×4+

1

4×6

1

6×8

+…+

1

2k(2k+2)

k

4(k+1)

成立.

那么当n=k+1时,

1 2×4+

1

4×6

1

6×8

+…+

1

2k(2k+2)

1

(2k+2)(2k+4)

k

4(k+1)

1

4(k+1)(k+2)

k(k+2)+1 4(k+1)(k+2)

(k+1)2

4(k+1)(k+2)

k+1

4(k+2)

k+1

4[(k+1)+1]

.

所以当n=k+1时,等式成立.

由(1)(2)可得对一切n∈N

等式都成立.

[点评]这里没有用归纳假设,是典型的套用数学归纳法的一种伪证.

用数学归纳法证明1+1

2+

1

3+…+

1

2n>

n+1

2(n∈N+).

[误解] (1)当n =1时,左边=1+12=32,右边=1+12=1.显然左边>右边,

即n =1时命题成立.

(2)假设当n =k (k ≥1,k ∈N +)时命题成立,即1+12+13+…+12k >k +12.

[正解] (1)略.

(2)假设当n =k (k ≥1,k ∈N +)时不等式成立,即1+12+13+…+12k >k +12,

则当n =k +1时,

1+12+13+…+12k +12k +1+12k +2+…+12k +1>k +12+12k +1+12k +2

+… +1

2k +1>k +12+12k +1+12k +1+…+12k +1 =k +12+2k 2

k +1=k +12+12=(k +1)+12, 即n =k +1时不等式也成立.由(1)(2)可得对一切n ∈N +不等式都成立.

[点评] 从n =k 到n =k +1时,增加的不止一项,应为

12k +1+12k +2+…+12k +2k ,共有2k 项,并且k +12+12k +1>k +12+12也是错误的.

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

高中数学竞赛专题讲座---数列与和式不等式(1)

数列与和式不等式 数列与和式不等式的解题方法需要同学们深入了解,在解题过程中,往往要利用一些恒等式、变换法等方法对数列和式进行变形,并结合数列求和等相关知识,灵活运用各种技巧.尤其当涉及到整数命题的证明,有时候也可以考虑用归纳法进行证明,当然在证明过程中,解题方法并非千篇一律,而是灵活多变,根据具体题意可以寻找恰当的解法,二者之间的紧密结合,也在竞赛中作为考察学生的重要题型之一,下面通过例题简要介绍几种解题方法与技巧: 例1 已知i x R ∈(1,2,,,2)i n n =≥ ,满足 1 1 ||1,0n n i i i i x x ====∑∑.求证: 1 1122n i i x i n =≤-∑ 证:设 1 1 ,n n i i i i x x A B a b i ===+=+∑∑ ,其中,A a 为正项之和,,B b 为负项之和,由题意知, 0,1A B A B +=-=,得12A B =-= ,因为,A B a A B b n n ≤≤≤≤,所以A B B a b A n n +≤+≤+, 即111 11()2222n i i x n i n =--≤≤- ∑,也就是11122n i i x i n =≤-∑ 说明:本题通过设元,将数列拆分成正负两部分,然后运用不等式相关知识,很自然过渡到绝对值不 等式. 例2 设1112n a n =+ ++ ,*n N ∈,求证:对2n ≥,有2 322()23n n a a a a n >+++ . 证:22 2212 2211111111(1)(1)2(1)22121 1211 ()2.n n n n a a n n n n n a a n n n n n --=+++-+++=+?+++--=+-=?- 故22 321222111 2( )()2323n n a a a a a n n -=+++-+++ .所以 2 332222233221111112( )(1)2()(1)2323231223(1)1 2()2(). 2323n n n n n a a a a a a a n n n n n a a a a a a n n n =++++---->++++----??-=++++>+++ 说明:本题若通过n a 表达式来证明将非常复杂,可以考虑通过建立递推关系,使问题很容易得到解决. 例3 无穷正实数列{}n x 有以下性质:011,(0)i i x x x i +=≤≥ (1) 试证:对具有上述性质的任一数列,总能找到一个1n ≥,使下式成立22 201112 3.999n n x x x x x x -+++≥ (2) 寻找这样一个数列,使得下列不等式22 2011124n n x x x x x x -+++< 对任一n 成立. 证:(1)

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

高中三角函数和数列部分公式

公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 推导:cos(2α)=cos(α+α)=cosαcosα-sinαsinα=cos^2(α)-sin^2(α)……① 在等式①两边加上1,整理得:cos(2α)+1=2cos^2(α) 将α/2代入α,整理得:cos^2(α/2)=(cosα+1)/2 在等式①两边减去1,整理得:cos(2α)-1=-2sin^2(α) 将α/2代入α,整理得:sin^2(α/2)=(1-cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2) =sin(α/2)/cos(α/2) =[2sin(α/2)cos(α/2] /2cos(α/2)^2 =sinα/(1+cosα) =(1-cosα)/sinα 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练 1.如图,曲线2 (0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。 w.w.w.k.s.5.u.c.o.m 2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有2 1,,n n n a b a +成等差数列, 2211,,n n n b a b ++成等比数列. (1)试问{}n b 是否成等差数列?为什么? (2)如果111,2a b ==,求数列1n a ?? ???? 的前n 项和n S . 3. 已知等差数列{n a }中,2a =8,6S =66. (Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥1 6 .

4. 已知数列{n a }中5 3 1=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-= n n a b (+∈N n ) (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求 )1(lim -∞→n b n n . 5. (Ⅰ (Ⅱ (Ⅲn 项的 6. (1(2 7. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意* ∈N n ,都有 n n pa p S p -=?-)1((p 为大于1的常数),并记 n n n n n n n S a C a C a C n f ??++?+?+=21)(2211 .

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

(浙江专版)2019版高考数学大一轮复习第七章数列与数学归纳法第2节等差数列及其前n项和学案理

第2节 等差数列及其前n 项和 最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系. 知 识 梳 理 1.等差数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N * ,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2 . 2.等差数列的通项公式与前n 项和公式 (1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N * ). (2)等差数列的前n 项和公式 S n =n (a 1+a n )2 =na 1+n (n -1)2 d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的有关性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N * ),则有a m +a n =a p +a q . (2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当 d =0时,{a n }是常数列. (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N * )是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系 S n =d 2 n 2+? ?? ??a 1-d 2n .

高中数学:数列与不等式测试题新课标人教A版必修5

数 列 与 不 等 式 测 试 题 班级:___________ 姓名:___________ 得分:___________ 一、选择题:(每小题5分,共50分) 1、数列95 ,74,53,32, 1的一个通项公式n a 是( ) A 、12+n n B 、12-n n C 、32-n n D 、3 2+n n 2、已知等比数列{}n a 的公比为正数,且2 4282a a a =,11=a 则=2a ( ) A 、2 B 、2 C 、 2 2 D 、21 3、已知等差数列{}n a 前n 项和为n S 且0>n a 已知02 564=-+a a a 则=9S ( ) A 、17 B 、18 C 、19 D 、20 4、已知)1,0(,21∈a a ,记21a a M =,121-+=a a N 则M 与N 的大小关系( ) A 、MN C 、M=N D 、不确定 5、若011<+><+中 正确的是( ) A 、(1)(2) B 、(2)(3) C 、(1)(3) D 、(3)(4) 6、不等式 121 3≥--x x 的解集是 ( ) A 、??????≤≤243x x B 、??????<≤243x x C 、??? ? ??≤>432x x x 或 D 、{}2>b a 三个结论:①22b a b a ab +≤+,②,2 22 2b a b a +≤+ ③b a b a a b +≥+2 2,其中正确的个数是( ) A 、0 B 、1 C 、2 D 、3 9、目标函数y x z +=2,变量y x ,满足?? ? ??≥<+≤+-125530 34x y x y x ,则有 ( ) A 、3,12min max ==z z B 、,12max =z z 无最小值 C 、z z ,3min =无最大值 D 、z 既无最大值,也无最小值 10、在R 上定义运算).1(:y x y x -=??若不等式1)()(<+?-a x a x 对任意实数x 成 立,则( ) A 、11<<-a B 、20<

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

高中数学集合逻辑函数向量数列不等式立体几何综合

高中数学集合、逻辑、函数、向量、数列、不等式、立体 几何 综合测试题 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上. 1. 若非空集合}5,4,3,2,1{?S ,且若S a ∈,则必有S a ∈-6,则所有满足上述条件的集合S 共有 A .6个 B .7个 C .8个 D .9个 2. 命题P :若函数()f x 有反函数,则()f x 为单调函数;命题Q : 111 222 a b c a b c == 是不等式21110a x b x c ++>与2 2220a x b x c ++>(121212a a b b c c ,,,,,均不为零)同解的充要条件,则以下是真命 题的为 A .P ?且Q B .P 且Q C .P ?或Q D .P 或Q 3. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a = A . 42 B .22 C .41 D .2 1 4. 如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ?是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为 C. 32 D. 3 5. 已知函数bx x x f +=2 )(的图象在点))1(,1(f A 处的切线l 与直线0223=+-y x 平行,若数列}) (1 { n f 的前n 项和为n S , 则2012S 的值为 A .20102009 B .20112010 C .20122011 D .2013 2012 6. 若m b a m a f 2)13()(-+-=,当]1,0[∈m 时,1)(≤a f 恒成立,则b a +的最大值为 A . 31 B .32 C .35 D .3 7 7. 已知a 、b 是不共线的向量,()AB AC R λμλμ=+=+∈u u u r u u u r , ,a b a b ,那么A B C 、、三点共线的充要条件为 A .1λμ= B .1λμ=- C .1=-μλ D .2λμ+= 8. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-?-+AC AB DA DC DB 则ABC ?的形状是 A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形 9. 设函数()(sin cos )(02011),x f x e x x x π=-≤≤则函数()f x 的各极大值之和为 A.20122(1) 1e e e πππ -- B. 1006(1)1e e e πππ-- C. 10062(1)1e e e πππ-- D.20102(1) 1e e e πππ -- 10. ()x f y =的定义域为R ,且()(),22x f x f -=+()()x f x f -=+77在[]7,0上只有()()031==f f ,则()x f 在

相关文档
相关文档 最新文档