文档库 最新最全的文档下载
当前位置:文档库 › RNA干扰论文:RNA干扰真核表达载体hTERT基因大肠癌

RNA干扰论文:RNA干扰真核表达载体hTERT基因大肠癌

RNA干扰论文:RNA干扰真核表达载体hTERT基因大肠癌
RNA干扰论文:RNA干扰真核表达载体hTERT基因大肠癌

RNA干扰论文:RNA干扰真核表达载体 hTERT基因大肠癌

【中文摘要】构建含有小发夹RNA (shRNA)的针对hTERT基因的重组真核质粒pGPU6/GFP/Neo-hTERT-shRNA,并探讨RNA干扰人端粒酶逆转录酶(human telomerase reverse transcriptase, hTERT)的表达对大肠癌SW480细胞凋亡的影响。方法设计合成3条针对hTERT 基因的siRNA,将筛选出最有效的siRNA合成shRNA寡核苷酸片段插入到真核质粒pGPU6/GFP/Neo中,进行酶切和测序鉴定。将构建好的重组真核质粒pGPU6/GFP/Neo-hTERT-shRNA,采用脂质体法转染人大肠癌SW480细胞。在荧光显微镜下观察细胞转染效率及细胞形态学变化。RT-PCR法检测不同转染时间SW480细胞中hTERTmRNA的表达水平。TRAP-PCR-ELISA法检测转染48小时后SW480细胞的端粒酶活性。免疫组化法检测SW480细胞中hTERT蛋白的表达。流式细胞仪检测转染后细胞周期分布。TUNEL法检测转染后细胞凋亡状况。激光共聚焦显微镜观察细胞线粒体跨膜电位(MMP)的变化。透射电镜观察转染后细胞超微结构。结果将筛选出干扰效率较好的的...

【英文摘要】Part I:Constuction of shRNA recombinant eukaryotic expression vector and the effect on apoptosis of colorectal cancer SW480 cells To construct the recombinant eukaryotic plasmid containing small hairpin RNA (shRNA) targeting hTERT and investigate the effect of RNA-mediated interference hTERT (human telomerase reverse

transcriptase,hTERT) expression on the biological behaviour of

基因表达载体构建教学设计

“基因表达载体的构建”教学设计

专题1 1.2基因工程的基本操作程序之基因表达载体的构建 一、目的基因和运载体的连接 二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1: 附件2:

【教学反思】 基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。本节课用微课和模型成功地化解了难点。 一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达“最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。 另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。学生像科学家一样思考问题、解决问题,获得成功的体验。由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。学生获得的体验是:基因工程这么高深的原理原来我也能想得到。学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。 总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。

真核基因不同水平上的表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。但是,最经济、最主要的调控环节仍然是在转录水平上。(一)DNA水平的调控 DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。这一类的调控机制包括基因的扩增、重排或化学修饰。其中有些改变是可逆的。 1、基因剂量与基因扩增 细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。组蛋白基因是基因剂量效应的一个典型实例。为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。 基因剂量也可经基因扩增临时增加。两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。在基因扩增后,rRNA基因拷贝数高达2×106。这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。 在基因扩增之前,这500个rRNA基因以串联方式排列。在发生扩增的3 周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。目前对这种基因扩增的机制并不清楚。 在某些情况下,基因扩增发生在异常的细胞中。例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。 2.基因丢失 在一些低等真核生物的细胞分化过程中,有些体细胞可以通过丢失某些基因,从而达到调控基因表达的目的,这是一种极端形式的不可逆的基因调控方式。如某些原生动物、线虫、昆虫和甲壳类动物在个体发育到一定阶段后,许多体细胞常常丢失整条染色体或部分染色体,而只有在将来分化生殖细胞的那些细胞中保留着整套的染色体。在马蛔虫中,个体发育到一定阶段后,体细胞中的染色体破碎,形成许多小的染色体,其中有些小染色体没有着丝粒,它们因不能在细胞分裂中正常分配而丢失,在将来形成生殖细胞的细胞中不存在染色体破碎现象。但是,基因丢失现象在高等真核生物中还未发现。 3.DNA重排(基因重排) 基因重排(gene rearrangement)是指DNA分子中核苷酸序列的重新排列。这些序列的重排可以形成新的基因,也可以调节基因的表达。这种重排是由基因组中特定的遗传信息决定的,重排后的基因序列转录成mRNA,翻译成蛋白质。 尽管基因组中的DNA序列重排并不是一种普通方式,但它是有些基因调控的重要机制,在真核生物细胞生长发育中起关键作用。

转基因生物的利弊分析

转基因生物的利弊分析 第二临床医学院2012101061 黄俊霖 内容摘要:转基因生物指经遗传基因修饰了的生物体。转基因生物包括转基因 动物、转基因工程药物和转基因作物,用转基因生物材料制成的食品称为转基因食品。转基因生物及其产品是现代生物技术或基因工程技术的产物,是当代科学技术的进步与成功。但它也与科学技术一样是柄“双刃剑”,福祸相依,如何趋利避害、化险为夷,在于对其正反两方面的关系和机制有充分的认识,要掌握得法、监管适宜、运用得当。必须加强转基因生物安全监管,给公众以充分信息,让公众从非理性的恐慌和迷茫中明智地走出来。 关键词:转基因生物、食品安全、基因经济、人类环境与健康 20世纪以来,生物技术以前所未有的速度迅速发展,并在医药、农业及食品工业等领域获得广泛的应用,取得了巨大的经济效益和社会效益。转基因技术作为生物技术的核心, 是指利用分子生物学手段将人工分离和修饰过的基因导入生物体基因组中,使其生物性状或机能发生部分改变。这一技术称为转基因技术,在中国亦称为“遗传工程”、“基因工程”。经转基因技术修饰的生物体常被称为“遗传修饰过的生物体”(genetically modifiedorganism,简称GMO)。 目前, 转基因作物在一些发达国家像美国、阿根廷逐渐推广,上市的转基因食品已达几千种,转基因动物的研究给疾病的治疗、新药的制造带来了新的契机。总之,转基因技术的发展与应用给农业、医药的发展与之,转基因技术的发展与应用给农业、医药的发展与疾病的治疗提供了崭新的空间,将给人类带来巨大的利益。毫无疑问,转基因技术将成为近期内发展最快、应用潜力最大的生物技术领域之一。 一、转基因生物的优点 1、转基因植物 1.1抗除草剂转基因植物 杂草是农作物生产的大害,将抗除草剂基因转入栽培作物,可以有效地使用除草剂除治田间杂草,保护作物免受药害,从而增产增收。抗除草剂基因植物是最先进入田间生产的转基因植物,也是当前种植面积最大的一类转基因作物。 1.2抗虫转基因植物 害虫是农业生产的另一大患害。全世界每年用于化学杀虫的费用高达数十亿美元。杀虫剂大量使用既增加农业成本又造成环境污染,特别是难降解、亲脂性的农药,其不但残留高,还可以通过食物链逐级富集放大,破坏生态平衡。因此,将各种抗虫基因导入栽培作物,由植物自身合成杀虫剂具有重大的经济和环境效益。2、转基因动物 利用DNA重组技术将特定的外源基因导入动物染色体,使其发生整合并能遗传,这将产生新的动物个体或品系。这些转基因动物作为医学研究的模型,用于疾病的病因、发病机制和治疗等方面的研究。研究转基因动物的重要目的之一是用它来培养人体器官,解决人体器官移植供体短缺问题,也可利用这种动物“生产”获得所需的药物,因为某种药品无法或极难用人工合成的方法来获得,只能从生

真核基因表达调控的特点

真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。 真核基因表达调控的环节更多 如前所述:基因表达是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在细胞核(线粒体基因的转录在线粒体内),翻译则多在胞浆,两个过程是分开的,因此其调控增加了更多的环节和复杂性,转录后的调控占有了更多的分量。 图中标出了真核细胞在分化过程中会发生基因重排(gene rearrangement),即胚原性基因组中某些基因会再组合变化形成第二级基因。例如编码完整抗体蛋白的基因是在淋巴细胞分化发育过程中,由原来分开的几百个不同的可变区基因经选择、组合、变化、与恒定区基因一起构成稳定的、为特定的完整抗体蛋白编码的可表达的基因。这种基因重排使细胞可能利用几百个抗体基因的片段,组合变化而产生能编码达108种不同抗体的基因,其中就有复杂的基因表达调控机理。 此外,真核细胞中还会发生基因扩增(gene amplification),即基因组中的特定段落在某些情况下会复制产生许多拷贝。最早发现的是蛙的成熟卵细胞在受精后的发育程中其rRNA 基因(可称为rDNA)可扩增2000倍,以后发现其他动物的卵细胞也有同样的情况,这很显然适合了受精卵其后迅速发育分裂要合成大量蛋白质要求有大量核糖体的需要。又如MTX (methotrexate)是叶酸的结构类似物,能竞争性抑制细胞对叶酸的还原利用,因而对细胞有毒性,但当缓慢提高MTX浓度时,一些哺乳类细胞会对含有利用叶酸所必需的二氢叶酸还原酶(dihydrofolate reductase,DHFR)基因的DNA区段扩增40-400倍,使DHFR的表达量显著增加,从而提高对MTX的抗性。基因的扩增无疑能够大幅度提高基因表达产物的量,但这种调控机理至今还不清楚。 真核基因的转录与染色质的结构变化相关 真核基因组DNA绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中DNA和组蛋白的结构状态都影响转录,至少有以下现象: 染色质结构影响基因转录细胞分裂时染色体的大部分到间期时松开分散在核内,称为常染色质(euchromatin),松散的染色质中的基因可以转录。染色体中的某些区段到分裂期后不像其他部分解旋松开,仍保持紧凑折叠的结构,在间期核中可以看到其浓集的斑块,称为异染色质(hetrochromatin),其中从未见有基因转录表达;原本在常染色质中表达的基因如移到异染色质内也会停止表达;哺乳类雌体细胞2条X染色体,到间期一条变成异染色质者,这条X染色体上的基因就全部失活。可见紧密的染色质结构阻止基因表达。 组蛋白的作用早期体外实验观察到组蛋白与DNA结合阻止DNA上基因的转录,去除组蛋白基因又能够转录。组蛋白是碱性蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用;染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的阻遏,起到特异性的去阻遏促转录作用。 发现核小体后,进一步观察核小体结构与基因转录的关系,发现活跃进行基因转录的染色质区段常有富含赖氨酸的组蛋白(H1组蛋白)水平降低、H2A、H2B组蛋白二聚体不稳定性增加、组蛋白乙酰化(acetylation)和泛素化(obiquitination)、以及H3组蛋白巯基等现

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞将

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

原核&真核表达载体构建

原核、真核表达载体构建 真核表达载体和原核表达载体的区别:主要是因为原核和真核表达系统所需的表达元件不同。 比如说启动子,终止子在两种表达系统中是不一样的。 带有真核表达元件的是真核载体,能在真核生物内表达; 带有原核表达元件的是原核载体,能在原核生物内表达。两者都具有的为穿梭载体。 ㈠原核表达载体指:能携带插入的外源核酸序列进入原核细胞中进行复制的载体。 原核表达载体调控原件 1.启动子 启动子是DNA链上一段能与RNA聚合酶结合并起始RNA合成的序列,它是基因表达不可缺少的重要调控序列。没有启动子,基因就不能转录。由于细菌RNA聚合酶不能识别真核基因的启动子,因此原核表达载体所用的启动子必须是原核启动子。原核启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。在转录起始点上游5~10 bp处,有一段由6~8个碱基组成,富含A和T的区域,称为Pribnow 盒,又名TATA 盒或-10区。来源不同的启动子,Pribnow 盒的碱基顺序稍有变化。在距转录起始位点上游35 bp 处,有一段由10 bp组成的区域,称为-35区。转录时大肠杆菌RNA聚合酶识别并结合启动子。-35区与RNA聚合酶s亚基结合,-10区与RNA聚合酶的核心酶结合,在转录起始位点附近DNA被解旋形成单链,RNA聚合酶使第一和第二核苷酸形成磷酸二酯键,以后在RNA聚合酶作用下向前推进,形成新生的RNA 链。原核表达系统中通常使用的可调控的启动子有Lac(乳糖启动子)、Trp(色氨酸启动子)、Tac(乳糖和色氨酸的杂合启动子) 、lPL (l噬菌体的左向启动子)、T7噬菌体启动子等。 2. SD序列 1974年Shine和Dalgarno首先发现,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3~9 bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3¢末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。以后将此序列命名为Shine-Dalgarno序列,简称SD序列。它与起始密码子AUG之间的距离是影响mRNA转录、翻译成蛋白的重要因素之一,某些蛋白质与SD序列结合也会影响mRNA与核糖体的结合,从而影响蛋白质的翻译。另外,真核基因的第二个密码子必须紧接在ATG 之后,才能产生一个完整的蛋白质。 3.终止子 在一个基因的3¢末端或是一个操纵子的3'末端往往有特定的核苷酸序列,且具有终止转录功能,这一序列称之为转录终止子,简称终止子(terminator)。转录终止过程包括:RNA聚合酶停在DNA模板上不再前进,RNA的延伸也停止在终止信号上,完成转录的RNA从RNA聚合酶上释放出来。对RNA聚合酶起

动物转基因技术及其应用

动物转基因技术及其应用 摘自(作者:幸宇云任军江西农业大学来源:《百名专家谈转基因》) 转基因是指利用现代分子生物学技术,将某些生物的基因导入到其他物种中,由于导入基 因的表达,引起这些物种性状发生可遗传的变化。转基因动物就是利用转基因技术获得的、具 有正常表达和可稳定遗传外源基因的动物。自1982年第一只转基因动物——一只因导入大鼠 生长激素基因而使生长速度倍增的转基因鼠诞生以来,各种转基因动物,如鱼、兔、猪、牛、 羊等先后问世,1997年,举世轰动的“多莉”克隆羊的诞生使转基因克隆动物成为现实,转 基因动物研究得到了进一步发展。 生产转基因动物的方法有很多,如:显微注射法、精子载体法、逆转录病毒载体法、胚胎 干细胞介导法、体细胞克隆介导法、人工染色体介导的基因转移法等,这些方法各有其优缺点,在转基因动物生产中有着不同程度的应用。 显微注射法是动物转基因技术中最早使用的方法。1982年,美国人Gordon就是利用这种 方法获得了名噪一时的转基因鼠。其基本原理是在显微镜下直接将目的基因注射到受精卵细胞 的原核内,在目的基因与胚胎基因组融合后进行体外培养,最后移植给受体母畜“借腹怀胎”。这种方法的优点是:可靠性高,重复性好,目的基因的整合效率相对较高,导入基因片段的大 小和类型不受限制,转基因在世代之间可以稳定遗传。该方法也有其缺点,主要体现在导入基 因整合的随机性和不可见性,这样会导致基因表达不稳定及可能出现不希望的插入突变。该方 法成功的范例很多,如:美国科学家Hammer等在1985年获得一批转基因兔、绵羊和猪;荷兰 科学家KrimPenfort等于1991年获得了转基因牛;1985年,我国朱作言院士等成功获得了世 界上首例转基因鱼;由中国农业大学李宁院士领导的课题组于2008年获得了一头导入人CD20 抗体基因的转基因奶牛——贝贝。 有的学者另辟蹊径,创立了精子载体转基因法。该方法是将精子与目的DNA进行预培养后,使精子具有携带目的基因进入卵子的能力,精子与卵子结合后,该基因被整合到受精卵的DNA 中。同显微注射法相比,该方法有几个明显的优点:无需显微注射操作,不会对胚胎造成损伤,整合率高,成本很低,不需要对动物进行胚胎移植手术处理等。但该方法成功率不高、效果不 稳定,有待科研人员进一步探索和改进。与显微注射法相比,该方法成功的例子不多。1989 年意大利Lavitrano等首次报道利用精子载体法获得转基因鼠;1996年意大利Sperandio科 研小组报道了采用该方法生产转基因牛和猪。 谈到病毒,人们往往面容失色,殊不知病毒在科学上有很多妙用。逆转录病毒是一种RNA 病毒,在转基因技术中有着独特的应用。人们将目的基因结合到逆转录病毒上,通过病毒感染 可将目的基因插入到宿主基因组中去。该方法具有可同时感染大量胚胎、不需要昂贵的显微注 射设备等优点,但也存在插入外源DNA大小有限、外源基因易发生重排和丢失、逆转录病毒的 序列可能干扰转基因表达等缺点。应用该方法,美国人Salter等(1987)生产出转基因鸡; 德国学者Hofmann等获得绿色荧光蛋白转基因猪(2003),随后又生产出转基因牛(2005); 来自冷泉港实验室的Michael获得能够发荧光的山羊(2006)。 胚胎干细胞是生命体中保留的未成熟细胞,具有再分化形成其他细胞和组织器官的潜力, 被称为“万能细胞”。利用胚胎干细胞生产转基因动物的原理是将外源基因导入分离好的胚胎 干细胞,然后将转基因的胚胎干细胞注射于受体动物胚胎后,参与宿主的胚胎融合形成嵌合体,从而得到转基因动物。这一方法的优点是可以对胚胎干细胞进行特定选择。缺点是目前只有小 鼠干细胞系比较成熟,而家畜干细胞系还未完全建立,有不少问题尚待解决。 体细胞克隆介导的转基因是动物转基因技术中的“高级版本”。说到体细胞克隆,很多人都会想到一位“动物明星”——多莉羊,它是于1997年由英国Wilmut等获得的杰作。转基因 克隆技术是转基因技术和动物克隆技术的有机结合,其基本原理是将目的基因导入动物体细胞

转基因的利弊

基因改造生物带给人类收益还是危害 5月16日消息:通过基因改造的生物是否会打破自然界的生态平衡,从而导致对环境的危害?面对基因改造生物可以带给人类的巨大收益和可能带来的危害,人类该何去何从?昨天,在由国家环保总局主办,由加拿大食品检验署、南京环境科学研究所等单位协办的生物安全培训班上,到会的各路专家再次把关注的目光投到了转基因作物的安全性上。 国家环保总局自然司柏成寿告诉记者,通过基因方式对生物体进行改良取得了很大的成效。很多物种在改良后产量有了增加,也增强了防御自然灾害及病虫害的能力。但值得注意的是,改良后的品种可能会对环境产生一定危害。 他举例说,像“抗虫棉”,这种棉花经过一定的基因转化后,可以使自然界中原来危害棉花的害虫死去,但它也可以使很多非目标的有益昆虫死去。还有一些农作物被注入一种抗除草剂基因,当农田中施加除草剂时,所有的杂草都会死去,只保留下农作物本身。但在某种情况下,这种抗除草剂的农作物会和杂草出现杂交,这种杂草就被称为“超级杂草”,消灭起来就非常困难。 北京大学生命科学院许崇任和国家环保总局南京环境科学研究所的刘标还列举了近年来引起社会广泛关注的转基因作物事件,包括:将巴西豆的基因转入大豆,虽然可以改良大豆营养组成,但可能会引起部分人群发生过敏反应。转Bt基因玉米可以提高有益昆虫绿草蛉的死亡率和延长发育时间。用食转基因马铃薯的蚜虫饲喂瓢虫,会影响瓢虫的生殖力及存活。而蚜虫是温带作物中重要的害虫,瓢虫是其天敌。 通过基因改造的生物是否会打破自然界的生态平衡,从而导致对环境的危害?面对基因改造生物可以带给人类的巨大收益和可能带来的危害,人类该何去何从?昨天,在由国家环保总局主办,由加拿大食品检验署、南京环境科学研究所等单位协办的生物安全培训班上,到会的各路专家再次把关注的目光投到了转基因作物的安全性上。 国家环保总局自然司柏成寿告诉记者,通过基因方式对生物体进行改良取得了很大的成效。很多物种在改良后产量有了增加,也增强了防御自然灾害及病虫害的能力。但值得注意的是,改良后的品种可能会对环境产生一定危害。 他举例说,像“抗虫棉”,这种棉花经过一定的基因转化后,可以使自然界中原来危害棉花的害虫死去,但它也可以使很多非目标的有益昆虫死去。还有一些农作物被注入一种抗除

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

生物《转基因的利与弊》

转基因食品的优点 可增加作物单位面积产量;可以降低生产成本;通过转基因技术可增强作物抗虫害、抗病毒等的能力;提高农产品的耐贮性,延长保鲜期,满足人民生活水平日益提高的需求;可使农作物开发的时间大为缩短;可以摆脱季节、气候的影响,四季低成本供应;打破物种界限,不断培植新物种,生产出有利于人类健康的食品。 转基因食品也有缺点 所谓的增产是不受环境影响的情况下得出的,如果遇到雨雪的自然灾害,也有可能减产更厉害。且多项研究表明,转基因食品对哺乳动物的免疫功能有损害。更有研究表明,试验用仓鼠食用了转基因食品后,到其第三代,就绝种了。 全球人口的迅猛增长,耕地面积的不断减少,粮食问题成为世界许多国家面临的一个十分辣手的问题。要满足人们的食品供应,提高食品供应质量,必须依靠科学技术。目前转基因技术在食品生产中的应用,已取得明显的成效,转基因食品也已悄然走上人们的餐桌。1 转基因食品的发展状况转基因食品(Genetically modified food)就是以转基因生物为原料加工生产的食品。世界上最早的转基因作物诞生于1983年,是1种含有抗生素类抗体的烟草。直到10年以后,第1种市场化的转基因食品才在美国出现。它是1种可以延迟成熟的西红柿。到了1996年,由其制造的番茄酱才得以允许在超市出售。据统计,1997年全世界转基因作物的播种面积约为1100万hm2,1998年上升到2780万hm2,1999年将近达到4000万hm2。全球转基因农作物销售额1995年为7500万美元,1996年达2.35亿美元,1997年达6.7亿美元,1998年跃升为16亿美元。预计到2000年,全世界的转基因农产品市场可达到30亿美元以上,2010年将达到250亿美元,转基因动物产品可达到75亿美元美国是转基因技术采用最多的国家,20世纪80年代初,美国最早进行转基因食品的研究。从1983年转基因作物诞生,到1997年,美国已能生产34种转基因作物,如土豆、西葫芦、玉米、番茄、木瓜、大豆等,并形成了可观的产业规模。转基因作物播种的面积已占大豆播种总面积的55%,占玉米播种面积的40%。阿根廷是继美国之后大量采用转基因技术的第2个国家,1997年,阿根廷转基因作物的播种面积仅140万hm2,1998年增加到550万hm2,其中75%的大豆播种面积采用了经过改变基因的豆种。加拿大也是转基因农业生产发展迅速的国家,它的转基因作物播种面积已从1997年的130万hm2增加到2000年的280万hm2,2001年51%的大豆和玉米采用了经过基因处理的种子、除上述3个国家外,世界上应用转基因技术比较多的国家还有澳大利亚、墨西哥、西班牙、法国和南非等。中国是90年代初进入商业型转基因农业生产的第1个发展中国家,在21世纪,我国的转基因食品会得到很快的发展,一方面因为我国的生物技术研究越来越接近世界水平,甚至有些方面已达到世界水平,为其发展提供了可靠的技术支持;另一方面,我国对转基因食品的市场需求很大,我国人均耕地面积少,不可能完全依靠扩大耕地面积来满足人们的食品需求,只能走高科技发展之路,生物技术无疑是其中1个重要手段,亦是提高食品质量的1种重要方式。如果我们自己不发展,这个潜在的市场就会被国外的转基因食品所抢占。2 有利的方面2.1 过去改变植物的品种主要是通过育种,这种传统的育种方式需要的时间长,杂交出的品种不易控制,目的性差,其后代可能高产但不抗病,也可能抗病但不高产,也许是高产但品质差,所以必需一次一次地进行选育。而转基因技术就不同了,可以选择任何1个目的基因转进去,就可得到1个相应的新品种,不用再花那么长的时间筛选了。2.2 传统的

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体 标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统 摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。 在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。 为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是: ①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制; ②能诱导基因高效表达,可达105倍,为其他系统所不及; ③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。 因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。 1.酵母表达系统 最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。以Pichia Pastoris应用最多。

相关文档