文档库 最新最全的文档下载
当前位置:文档库 › K20 在65%DMSO 溶液中的Gromacs 模拟流程

K20 在65%DMSO 溶液中的Gromacs 模拟流程

K20 在65%DMSO 溶液中的Gromacs 模拟流程
K20 在65%DMSO 溶液中的Gromacs 模拟流程

K20在65%DMSO溶液中的Gromacs模拟流程

1.将PDB文件转换成相应的GRO文件,选择pH10.0条件

pdb2gmx_mpi-f K20.pdb-o K20.gro-p K20.top-i K20.itp-water spc-ignh-ss-ter-lys-asp-glu-his-missing 构建模拟盒子,选择距离蛋白质表面为3.0nm,采用十二面体模拟盒子;先向盒子中添加DMSO分子;之前要按分子比例计算出要添加DMSO的分子数:

(阿伏伽德罗常数)6.02Х110(DMSO密度)Х657.579(在所见盒子里面所占的体积65%-1011.66)Х10-27/78(DMSO分子量)Х10-3

editconf_mpi-f K20.gro-o K20_box.gro-d3.0-bt dodecahedron

(首先删除体系中原有水分子)。添加DMSO分子数

genbox_mpi-cp K20_box.gro–cs DMSO.gro-o K20_sol.gro-p K20.top

改变d的大小以调整DMSO的分子数合适计算的DMSO分子数

editconf_mpi–f DMSO.gro–o DMSO.gro–d0.18

genbox_mpi-cp K20_box.gro–cs DMSO.gro-o K20_sol.gro-p K20.top

添加H2O分子

genbox_mpi-cp K20_sol.gro–cs-o K20_sol2.gro-p K20.top

更改K20_sol2.gro和K20.top和DMSO.gro和DMSO.itp,以符合加了DMSO分子(如图1);添加离子,中和电荷(电荷数根据实际情况添加)

图1文件内容的更改

grompp_mpi-f em.mdp-c K20_sol2.gro-p K20.top-o K20_sol2.tpr

genion_mpi-s K20_sol2.tpr-o K20_sol3.gro-g K20_genion.log-p K20.top-np10-pq1

2.采用最速下降法降低体系能量,优化过程中采用了PME。添加NA+后要更改K20.top,以符合加了NA+

分子(如图2)

图2K20.top文件的更改

grompp_mpi-f em.mdp-c K20_sol3.gro-p K20.top-o em.tpr-maxwarn100

mdrun_mpi-nice0-s em.tpr-o em.trr-c after_em.gro-e em.edr-g em.log

3.固定蛋白质位置,进行md计算。采用了PME。在pr.mdp文件中要加入NA+离子;加入PME文件;更

改运行温度与实验温度一致,本实验为310K..如图3

pr.mdp,温度310K,运行10ps,注意此时选择top中”1DTE.itp”等文件加入(这个不用改,卢老师已经改好!)图3pr.mdp文件中更改的内容

grompp_mpi-f pr.mdp-c after_em.gro-p1DTE.top-o pr.tpr

mpirun-n8nohup mdrun_mpi-nice0-v-s pr.tpr-o pr.trr-c after_pr.gro-e pr.edr-g pr.log>&logpar.job&

4.不固定蛋白质位置,进行md计算,目的得到310K下平衡态结构。在full.mdp文件中要加入NA+离子;

加入PME文件;更改运行温度与实验温度一致,本实验为310K.。在K20.top文件中要把固定蛋白质的命令修改为不固定的命令。如图3

图3K20.top和full.mdp文件中更改的内容

注意1DTE.top文件的性质。

grompp_mpi-f full.mdp-c after_pr.gro-p K20.top-o full.tpr

mpirun-n8nohup mdrun_mpi-nice0-v-s full.tpr-o full.trr-c after_full.gro-e full.edr-g full.log>&full.job

&

****注意:

1.、mpirun–n8为并行命令(8个CUP同时运算)

2、nohup为后台运算命令

3、top命令可以置顶看后台运算情况。

4.、命令tail full.job可以看后台运算进展情况

5、vi文件名.后缀名显示文件内容命令

6、ls显示文件夹内容命令

7、用editconf命令把md.gro文件转换成.pdb文件,可视化操作

editconf–f**.md.gro–o**.pdb

8、在命令后加-h,显示命令内容及格式。

9、命令:chmod777*.*更改权限,可以在FTP中对文件内容进行修改。

10、命令:kill-9加当前运算进程数;可以终止Grmomacs的后台全部运算。

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点 化学工艺09级1班 摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本 文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus 2.1 Aspen Plus简述 “如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争 力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过

油藏数值模拟

名词解释 油藏模拟油藏数值模拟数学模拟物理模型数值模型质量守恒定律适定问题初始条件黑油模型组分模型网格节点块中心网格点中心网格离散化有限差分法显示差分 隐式差分前差分后差分中心差分点交替排列格式交替对角排列格式标准排列格式 对角排列格式隐式差分格式差分方程稳定性截断误差松弛法IMPES方法历史拟合 动态预测灵敏度实验 选择题 由于油藏各点的渗透率不同,束缚水饱和度不同,因而需要对相对渗透率曲线进行归一化处理 以X方向为例,传导系数为 块中心网格是用()来表示小块坐标的 A网格块中心B节点C网格块边缘D网格块夹角 下述表达式表示定产量内边界条件的是 认识油田的主要方法有直接观察法和模拟法 相对渗透率取值一般取上游权的处理方法 IMPES方法是()的求解方法 A隐式压力B隐式饱和度C全隐式 历史拟合在含水拟合时主要是对()的修改 A孔隙度B相对渗透率曲线C渗透率D地层厚度 在隐式差分格式中,有多个未知数,当已知第n时刻的值P i n时,为了求出第n+1时刻的P i n+1,需要() A解n个方程B解一个线性代数方程组C直接求解D解一个方程 根据每一组分的质量守恒建立的渗流数学模型称为()模型 A热采B化学驱C黑油D组分 一维径向模拟时r=10cm,r=40cm,那么可以推断r s的大小是 A120 B200 C400D 640 下列哪一种方法不属于迭代求解方法 A雅克比法B超松弛法CLU分解法D交替方向隐式法 对于二位6*4网络系统,如果按行标准排列,气半带宽W= A6 B4 C12 D8 克兰克?尼克森差分格式的截断误差为() 块中心网格和点中心网格的差分方程相比较,结果() A一样的B有半个网格的误差C相差流动项系数D维数不同 三.判断题2分*10 1.黑油模型中水相与其他两相不发生质量转移,气可以从油中出入,但不能汽化液相 2.离散化的核心是把整体分为若干单元来处理,它是油藏对象的空间离散 3.显式差分格式是有条件收敛的 4.差分方程组的直接解法的特点是计算工作量小,精确度较高,计算程序简单 5.差分方程组的迭代解法主要用于处理系数矩阵阶数较高的问题 6.相对渗透率取值一般取上游权的处理方法 7.油藏模拟的基础在于油藏描述和生产动态,若油层参数和生产数据不准确,通过数值模 拟的算法也可以消除 8.显示差分格式的稳定条件是△t/△x2≤0.5 9.有限差分法就是用差商来代替微商

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

《化工流程模拟实训—Aspen-Plus教程(孙兰义主编)》配套PPS课件第3章-物性方法

第3章物性方法作者:毕欣欣孙兰义

物性方法 3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分

系统数据库?是Aspen Plus的一部分,适用于每一个程序的运行,包括PURECOMP、SOLIDS、AQUEOUS、INORGANIC、BINARY等数据库 内置数据库?与Aspen Plus的数据库无关,用户自己输入,用户需自己创建并激活 用户数据库?用户需要自己创建并激活,且数据具有针对性,不是对所有用户开放

PURECOMP ?常数参数。例如绝对温度、绝对压力。 ?相变的性质参数。例如沸点、三相点。 ?参考态的性质参数。例如标准生成焓以及标准生成吉布斯自由能。 ?随温度变化的热力学性质参数。例如饱和蒸汽压。 ?传递性质的参数,例如粘度。 ?安全性质的参数。例如闪点、着火点。 ?UNIFAC模型中的集团参数。 ?状态方程中的参数。 ?与石油相关的参数。例如油品的API值、辛烷值、芳烃含量、氢含量及

?IDEAL SYSOP0 理想模型?Lee 方程、PR 方程、RK 方程 状态方程模 型?Pitzer 、NRTL 、UNIFAC 、UNIQUAC 、VANLAAR 、WILSON 活度系数模 型?AMINES 、BK-10、STEAM-TA 特殊模型

?Aspen Plus提供了含有常用的热力学模型的物性方法。 ?物性方法与模型选择不同,模拟结果大相径庭。如精馏 塔模拟的例子。相同的条件计算理论塔板数,用理想方法得到11块,用状态方程得到7块,用活度系数法得42块。显然物性方法和模型选择的是否合适,也直接影响模拟结果是否有意义。 ?《Aspen plus物性方法和模型》 理想模型 理想物性方法K值计算方法 IDEAL Ideal Gas/Raoult's law/Henry's law SYSOP0Release8version of Ideal Gas/Raoult's law

化工流程模拟软件大全

工流程模拟软件大全 -------------------------------------------------------------------------------- 1 概要目前,国内主要的化工流程模拟软件美国SimSci-Esscor公司的PRO/II,美国AspenTech公司的Aspen Plus,Hysys,英国PSE公司的gPROMS,美国Chemstations公司ChemCAD和美国WinSim Inc. 公司的Design II,加拿大Virtual Materials Group的VMGSim。现将这几种软件简介归纳如下,供参考学习之用。 2 CHEMCAD, PROII, ASPEN的比较简单总结以下七点: 1 一般认为,PROII在炼油工业应用更为准确些,因其数据库中有不少经验数据;而ASPEN在化工领域表现更好,Aspen Plus与之比较有其它软件不可比拟的优点它基本上覆盖了以上各软件的所有优点。有人比喻:PROII是经验派,ASPEN 是学院派。 2. 学习aspen plus必备 1化工原理;讲化工过程得单元操作 2热力学方法;讲述物性计算方法; 3化工系统工程;讲述如何对化工系统进行建模,分析、求解如果简单掌握, 1、2就可以了,如果想进一步深入,还需看看3,另外有一个有经验得老师辅导也是很重要的。 3.HYSYS主要用于炼油。动态模拟是它的优势。 ASPEN是智能型的,用于化工领域流程模拟,比较大或长的流程,而且数据库比较全,开方式的。它和HYSYS 现在是一家。 PRO/II可以用于设备核算,流程短,或精馏核算。 chemcad由于物性较少,使用不方面,相对较差,网上到处都可以下载,设计院不太使用,高校中有一定市场。 4. 我觉得aspen plus的计算是最精确的,数据库的建设也是最完善的。不过我对它的操作不太适由于它考虑的方面非常全面,所以让我感觉学起来比较费劲。chemcad的界面操作让人感觉非常简单,使用起来比较顺手。但是数据库不是太大,我用的 5.0版本,就只有2000中常用物质的物性数据。PRO/II在这两方面都在中间。 5. 从易收敛性上看,chemcad>hysys>proii。 6. 从贴近工业实际看,proii>hysys>chemcad四个都是工程模拟仿真软件,其中Aspen、PRO/II, HYSYS为国内绝大多数设计院所使用。感觉Aspen适应范围最广,电解质、固体、燃烧等模块是其它软件难以比拟的;PRO/II在石化上应用较多,积累了丰富的经验;HYSYS则在油气工程领域就有着极高的精度和准确性。青岛科技大学(原青岛化工学院)开发了个ECSS,对它的评价只能是“国货”,青岛科技大学自己也不使用它的。 7. 版本介绍: aspen好用的版本是10.2和11.1,其中10.2在winXP上使用会

油藏数值模拟方法

第一章油藏数值模拟方法分析 油藏数值模拟 油藏数值模拟简述 油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律 的数学模型,并利用计算机求得数值解来研究其运动变化规律。其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。其基础理论是基于达西渗流定律。 油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模 拟实际的油田开采的一个过程。基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。这组流动方程组由运动方程、状态方程和连续方程所组成。油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。 油藏数值模拟技术从50年代的提出到90年代间历经40年的发展,日益成熟。现在进入另外一个发展周期。近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用 非常广泛。 油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模 拟研究,且可重复、周期短、费用低。

图1油藏数值模拟流程图 油藏数值模拟的类型 油藏数值模拟类型的划分方法有多种, 划分时最常用的标准是油藏类型、 需要模拟的油 藏流体类型和目标油藏中发生的开采过程, 也可以根据油气藏特性及开发时需要处理的各种 各样的复杂问题而设定, 油气藏特性和油气性质不同, 选择的模型也不同, 还可以根据油藏 数值模拟模型所使用的坐标系、空间维数和相态数来划分。 以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型; 以开采过程来 划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。 以油藏和流体描述为基础的油藏模型分为两类:黑油模型和组分模型。 (1) 黑油模型,是常规油田开发应用的油藏数值模型,用于开采过程中,对油藏 流体组分变化不敏感的情况, 是最完善、最成熟的。黑油模型假设质量转移完全取决于 压力变化,适应于油质比较重的油藏类型,在这些模型中,流体性质 E O 、B g 、R S 决定PVT 的 变化,如普通稠油及中质油的油气藏。 (2) 组分模型,应用于开采过程中对组分变化敏感的情况。这些情况包括:挥发性油 藏和凝析气藏的一次衰竭采油阶段, 用组分模型进行模拟。在组分模型中,适用于油质比较轻、气体组分比较高的油气藏, 使用 数据化 流体的PVT 数据、相 渗曲线、岩石数据 建立地质模型 建立网格 参数场 表格数据 油水井产量、井史 数据 T 动态模拟 含油边界拟合 非井点地质静态参数拟合 区块、单井压力拟合 生产指数拟合 以及压力保持阶段。同时,多次接触混相过程通常也采

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

《化工流程模拟实训—Aspen Plus教程(孙兰义主编)》配套PPS课件第7章 分离单元模拟PartB

第7章分离单元模拟Part B 作者:武佳孙兰义

第7章分离单元模拟Part B ?7.1 概述 ?7.2 精馏塔的简捷设计模块DSTWU ?7.3 精馏塔的简捷校核模块Distl ?7.4 精馏塔的严格计算模块RadFrac ?7.5 塔板和填料的设计与校核 ?7.6 连续萃取模块Extract ?7.7 吸收示例

7.1 概述 模块说明功能适用对象 DSTWU 使用Winn-Underwood-Gilliland 方法的多组分精馏的简捷设计模 块 确定最小回流比、最小理论板数以 及实际回流比、实际理论板数等 仅有一股进料和两股产品的简 单精馏塔 Distl 使用Edmister方法的多组分精馏 的简捷校核模块 计算产品组成 仅有一股进料和两股产品的简 单精馏塔 RadFrac 单个塔的两相或三相严格计算模 块 精馏塔的严格核算和设计计算 普通精馏、吸收、汽提、萃取 精馏、共沸精馏、三相精馏、 反应精馏等 Extract液-液萃取严格计算模块液-液萃取严格计算萃取塔 MultiFrac严格法多塔蒸馏模块对一些复杂的多塔进行严格核算和 设计计算 原油常减压蒸馏塔、吸收/汽提 塔组合等 SCFrac简捷法多塔蒸馏模块确定产品组成和流率、估算每个塔 段理论板数和热负荷等 原油常减压蒸馏塔等 PetroFrac石油蒸馏模块对石油炼制工业中的复杂塔进行严 格核算和设计计算预闪蒸塔、原油常减压蒸馏塔、催化裂化主分馏塔、乙烯装置初馏塔和急冷塔组合等 RateFrac非平衡级速率模块精馏塔的严格核算和设计计算 蒸馏塔、吸收塔、汽提塔、共

DSTWU是多组分精馏的简捷设计模块,针对相对挥发度近似恒定的物系开发,用于计算仅有一股进料和两股产品的简单精馏塔。 DSTWU模块用Winn-Underwood-Gilliland方法进行精馏塔的简捷设计计算。

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus Aspen Plus简述

“如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。1982年为了将其商品化,成立了AspenTech 公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及着名的工程公司都是Aspen Plus的用户。 Aspen Plus特点 (1)产品具有完备的物性数据库物性模型和数据是得到精确可靠的模拟结果的关键。人们普遍认为Aspen Plus 具有最适用于工业、且最完备的物性系统。许多公司为了使其物性计算方法标准化而采用Aspen Plus 的物性系统,并与其自身的工程计算软件相结合。Aspen Plus 数据库包括将近6000种纯组分的物性数据:①纯组分数据库,包括将近6000 种化合物的参数。 ②电解质水溶液数据库,包括约900种离子和分子溶质估算电解质物性所需的参数。③固体数据库,包括约3314种固体的固体模型参数。④ Henry 常数库,包括水溶液中61种化合物的Henry 常数参数。⑤二元交互作用参数库,包括Ridlich-Kwong Soave、Peng Robinson、Lee Kesler Plocker、BWR Lee Starling,以及Hayden O’Connell状态方程的二元交互作用参数

油藏数值模拟入门指南

[转]【推荐】油藏数值模拟入门指南 尝试写一写油藏数值模拟入门指南,希望对那些刚刚开始进入油藏数值模拟领域的工作者有所帮助。 第一:从掌握一套商业软件入手。 我给所有预从事油藏数值模拟领域工作的人员第一个建议是先从学一套商业数值模拟软件开始。起点越高越好,也就是说软件功能越强越庞大越好。现在在市场上流通的ECLIPSE,VIP 和CMG都可以。如果先学小软件容易走弯路。有时候掌握一套小软件后再学商业软件会有心里障碍。 对于软件的学习,当然如果能参加软件培训最好。如果没有机会参加培训,这时候你就需要从软件安装时附带的练习做起。油藏数值模拟软件通常分为主模型,数模前处理和数模后处理。主模型是数模的模拟器,即计算部分。这部分是最重要的部分也是最难掌握的部分。它可以细分为黑油模拟器,组分模拟气,热采模拟器,流线法模拟器等。数模前处理是一些为主模拟器做数据准备的模块。比如准备油田的构造模型,属性模型,流体的PVT参数,岩石的相渗曲线和毛管压力参数,油田的生产数据等。数模后处理是显示模拟计算结果以及进行结果分析。 以ECLIPSE软件为例,ECLIPSE100,ECLIPSE300和FrontSim是主模拟器。ECLISPE100是对黑油模型进行计算,ECLISPE300是对组分模型和热采模拟进行计算,FrontSim是流线法模拟器。前处理模块有Flogrid,PVTi,SCAL,Schedule,VFPi等。Flogrid用于为数值模拟建立模拟模型,包括油田构造模型和属性模型;PVTi用于为模拟准备流体的PVT参数,对于黑油模型,主要是流体的属性随地层压力的变化关系表,对于组分模型是状态方程;SCAL为模型准备岩石的相渗曲线和毛管压力输入参数;Schedule处理油田的生产数据,输出ECLIPSE 需要的数据格式(关键字);VFPi是生成井的垂直管流曲线表,用于模拟井筒管流。ECLIPSE OFFICE和FLOVIZ是后处理模块,进行计算曲线和三维场数据显示和分析,ECLIPSE OFFICE同时也是ECLIPSE的集成平台。 对于初学者,不但要学主模型,也需要学前后处理。对于ECLISPE的初学者,应该先从ECLISPE OFFICE学起,把ECLISPE OFFICE的安装练习做完。然后再去学Flogrid,Schedule 和SCAL。PVTi主要用于组分模型,做黑油模型可以不用。 第二:做油藏数值模拟都需要准备什么参数 在照着软件提供的安装例子做练习时经常遇到的问题是:虽然一步一步按照手册的说明做,但做的时候不明白每一步在做什么,为什么要这么做。这时候的重点在于你要知道你一开始做的工作都是为数值模拟计算提供满足软件格式要求的基础参数。有了这些基础参数你才能开始进行模拟计算。这些基础参数包括以下几个部分: 1。模拟工作的基本信息:设定是进行黑油模拟,还是热采或组分模拟;模拟采用的单位制(米制或英制);模拟模型大小(你的模型在X,Y,Z三方向的网格数);模拟模型网格类型(角点网格,矩形网格,径向网格或非结构性网格);模拟油藏的流体信息(是油,气,水三相还是油水或气水两相,还可以是油或气或水单相,有没有溶解气和挥发油等);模拟油田投入开发的时间;模拟有没有应用到一些特殊功能(局部网格加密,三次采油,端点标定,多段井等);模拟计算的解法(全隐式,隐压显饱或自适应)。 2。油藏模型:模型在X,Y,Z三方向的网格尺寸大小,每个网格的顶面深度,厚度,孔隙度,渗透率,净厚度(或净毛比)。网格是死网格还是活网格。断层走向和断层传导率。

分子动力学模拟-经验谈

分子动力学攻略 此文为dddc_redsnow发表于biolover上的关于分子动力学的系列原创文章,相当经典与精彩,特此将系列文章整合,一起转载,望学习动力学的新手们共同学习,提高进步,在此特向dddc_redsnow本人表示感谢。 动力学系列之一(gromacs,重发) 在老何的鼓励下,发一下我的gromacs上手手册(我带人时用的,基本半天可以学会gromcas) ###################################################### # Process protein files step by step # ###################################################### pdb2gmx -f 2th_cap.pdb -o 2th_cap.gro -p 2th_cap.top -ignh -ter nedit 2th_cap.top editconf -f 2th_cap.gro -o 2th_cap_box.gro -d 1.5 genbox -cp 2th_cap_box.gro -cs -p 2th_cap.top -o 2th_cap_water.gro make_ndx -f 2th_cap_water.gro -o 2th_cap.ndx genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_All.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_M.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_C.itp nedit Flavo.itp grompp -f em.mdp -c 2th_cap_water.gro -p 2th_cap.top -o prepare.tpr genion -s prepare.tpr -o 2th_cap_water_ion.gro -np 1 -pq 1 ##################################################### # Minimize step by step # # 1. minimization fixing whole protein # # 2. minimization fixing maincharin of protein # # 3. minimization fixing Ca of protein # # 4. minimization without fix # ##################################################### grompp -np 4 -f em.mdp -c 2th_cap_water_ion.gro -p 2th_cap.top -o minimize_water.tpr mpirun -np 4 mdrun -nice 0 -s minimize_water.tpr -o minimize_water.trr -c minimize_water.gro -e minimize_water.edr -g minimize_water.log & grompp -np 4 -f em.mdp -c minimize_water.gro -p 2th_cap.top -o minimize_sidechain.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain.tpr -o minimize_sidechain.trr -c minimize_sidechain.gro -e minimize_sidechain.edr -g minimize_sidechain.log & grompp -np 4 -f em.mdp -c minimize_sidechain.gro -p 2th_cap.top -o minimize_sidechain_ex.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain_ex.tpr -o minimize_sidechain_ex.trr -c minimize_sidechain_ex.gro -e minimize_sidechain_ex.edr minimize_sidechain_ex.log & grompp -np 4 -f em.mdp -c minimize_sidechain_ex.gro -p 2th_cap.top -o minimize_all.tpr mpirun -np 4 mdrun -nice 0 -s minimize_all.tpr -o minimize_all.trr -c minimize_all.gro -e minimize_allx.edr -g minimize_all.log&

油藏数值模拟方法

第一章油藏数值模拟方法分析 令狐采学 1.1油藏数值模拟 1.1.1油藏数值模拟简述 油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。其基础理论是基于达西渗流定律。 油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。这组流动方程组由运动方程、状态方程和连续方程所组成。油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层

模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。 油藏数值模拟技术从50 年代的提出到90 年代间历经40 年的发展,日益成熟。现在进入另外一个发展周期。近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。 油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。 图1 油藏数值模拟流程图 1.1.2油藏数值模拟的类型 油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。 以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型;以开采过程来划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。 以油藏和流体描述为基础的油藏模型分为两类:黑油模型

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.wendangku.net/doc/af13325433.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.wendangku.net/doc/af13325433.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.wendangku.net/doc/af13325433.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

相关文档
相关文档 最新文档