文档库 最新最全的文档下载
当前位置:文档库 › 传染病模型

传染病模型

传染病模型
传染病模型

微分方程在数学建模中的应用

学生姓名:谢婉莹学号:20090401112

数学与计算机科学系数学与应用数学专业

指导老师:余兴旺职称:讲师摘要:应用微分方程建立实际问题的数学模型,愈来愈受人们的关注。本文介绍了运用微分方程理论建立传染病模型,交通管理模型,人口模型的过程。

关键词:数学模型微分方程传染病模型交通管理模型人口模型

引言

数学建模即是用数学方法解决各种实际问题的桥梁。随着社会的快速发展,科技的快速发展,数学建模的作用愈来愈重要,可以说是无处不在。数学建模的类型有很多:初等模型,运筹模型,微分方程模型,概率模型,离散模型等。

在数学模型中,模型的建立尤为重要。微分方程建模对于许多实际问题的解决是一种极有效的数学手段。对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组来表示。

当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来状态、研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析做出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。下面我们就通过几个例子来说明这一过程。

一、传染病模型

随着社会的快速发展,人们的生活水平越来越高,对生活质量的要求也越来越高。人们开始尝试把各种鲜见稀奇的东西作为我们的食物,从而引发的问题越来越多。比如说:SARS问题,H1N1问题,H7N9等各种传染病问题。这些都给人们的生命财产带来极大的伤害。长期以来,建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,探索制止传染病蔓延的手段等,一直以来是关系到国计民生的问题。

传人病的传播涉及的因素很多,例如传染病人的多少,传染率的大小,排除

率的大小,人口的出生和死亡等,如果还绕考虑人口的迁入和迁出,潜伏期的长短以及预防疾病的宣传等因素的影响,那么疾病的传播变得非常复杂。倒不如抓住主要因素,把问题简化,建立相应的数学模型。

模型一 仅考虑病人人数的改变

1.1 模型的假设

(1)每个病人在单位时间内传染的人数是常数0K 。

(2)一个人得病后,经久不愈,并在传染期内不会死亡。

1.2 符号说明

记i(t)表示t 时刻病人数,0K 表示每个病人单位时间内传染的人数,i(0)=i 。即最初有0i 个传染病人。

1.3 模型的建立与求解

则在时间t ?内增加的病人数为 i(t+t ?)-i(t)=0K i(t)t ? 于是微分方程

???

??==0

0)0()()

(i i t i K dt

t di ①

其解为i(t)=0i t

K e 0。

1.4 模型的结果分析

结果表明,传染病的传播是按指数函数增加的。

这个结果与传染病的传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由于①的解可以推出,当t →∞时,i(t)→∞,这显然不符合实际情况。问题在于两条假设均不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际不符。因为在传播初期,传染病人少,未被传染者多。而在传染病传播中期和后期,传染病人逐渐增多,未被传染者逐渐减少,因而在不同时期的传染情况是不同的。所以归根到底此模型失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区分这两种人。因此为了与实际情况相符,我们在原有基础上修改假设建立新的模型。

模型二 同时考虑病人人数和未被传染人数的改变

2.1 模型的假设

(1)在疾病传播期内所考察地区的总人数n 不变,即不考虑生死,也不考虑迁移。人群分为易感染者和已感染者两类,简称为未被传染者和传染者。 (2)每个病人单位时间内传染的人数与这时未被传染的人数成正比。 (3)一人得病后,经久不愈,并在传染期内不会死亡。

2.2 符号说明

用i(t)、s(t)表示t 时刻传染病人数和未被传染人数。I(0)=i 0K =K s(t) I(t)+s(t)=n

2.3 模型的建立与求解

有上述假设可得微分方程

???

?

???==+=0)0()()()()()

(i i n t i t s t i t Ks dt t di ②

用变量法得其解为

i(t)=Knt e n n i

-???

? ??-+110 ③

其图形如图2.10所示。

式②可以用来预报传染较快的疾病前期传染病高峰到来的时间。 其中称

t dt

di

为传染病曲线,它表示传染病人增加率与时间的关系,如图2.11所示。

由③可得

2002111??

?

????????? ??-+???? ??-=--K n t K n t

e n e n Kn dt di i i ④

令0)

(2

2=dt t i d ,得极大点为 Kn

i n t ???? ??-=

1ln 10 ⑤

2.4 模型的结果分析

由⑤可知,当传染病强度K 或总人数n 增加时,1t 都将变小即传染病高峰来得很快。这与实际情况相吻合。同时,如果知道了传染强度K ,即可预报传染病高峰1t 到来的时间,这对于防治传染病是有益处的。

但是此模型仍有缺点:当t →∞时,i(t)→n ,即所有人终将被传染,全变为病人。这显然不符合实际情况。造成的原因是假设(3)中假设了人得病后久治不愈,即人群中的健康者只能变成病人,病人不会再变成健康者。

为了与实际情况更加吻合,对上面的数学模型再做进一步修改,这就要考虑到人得了病后有的会死亡,另外不是每个人被传染后都会传染给别人,因为其中一部分会被隔离。还要考虑人得了传染病由于医治和人自身抵抗力会痊愈,并非像前面假设那样人得病后久治不愈。为此作出新的假设,建立新的模型。

模型三 考虑病人可以痊愈的情况

3.1 模型的假设

(1)设患过传染病而完全痊愈的任何人具有长期免疫力,不考虑反复受传染的情形。并设传染病的潜伏期很短,可以忽略不计,即一个人患了病之后立即成为传染者。在这种情况下,把居民分成三类:

第一类是由能够把疾病传染给别人的那些传染者组成的。

第二类是由并非传染者但能够得病而成为传染者的那些人组成。 第三类包括患病死去的人,病愈后具有长期免疫力的人,以及在病愈并出现长期免疫力

以前被隔离起来的人。

(2)在所考虑时期内人口总数保持固定水平不变,即不考虑出生及其他原因引起的死亡,以及迁出、迁入等情况。

(3)易受感染者的变化率正比于第一类的人数与第二类人数的乘积。 (4)有第一类向第三类转变的速率与第一类的人数成正比。

3.2 符号说明

用I (t)表示t 时刻第一类人数,用s(t)表示t 时刻第二类人数,用R (t )表示t 时刻第

三类人数。人口总数N 。

3.3 模型的建立与求解

由假设可得微分方程

????

?????=-=-=)()

()()()()

()()()

(t I dt t dR t I t I t rs dt

t dI t I t rs dt t ds γγ ⑥

其中,r 、γ为两个比例常数;r 为传染率;γ为排除率。

由式⑥的三个方程相加得

[]0)()()(=++t R t I t s dt

d

则=++)()()(t R t I t s 常数=N (人口总数),故)()()(t I t s N t R --=。 由此可知,只要知道了)(t s 和)(t I ,即可求出)(t R 。 而式⑥的第一和第二个方程与)t (R 无关。因此,由

??????

?-=-=)()t ()()()()()

(t I I t rs dt

t dI t I t rs dt t ds γ ⑦ 得

C

s s I t ds t dI r t rs t I t rs t I t I t rs ++=-==--ln -s )(1)()()()()()()()(γγ

γ ⑧

00r 00,000ln

)s (,)(s )(s s

s s I I s t I t I t t ρργ+-+=====有

记时,,当 ⑨

下面讨论积分曲线如图3.10所示的性质。 由式⑧可知

??

?

??>>==><-=ρρ

ρ

ρs s s ds dI s ,0,0,01

所以当ρs 时,)s (I 是s 的减函数。

0)(,)0(00>=-∞=I s I I

由连续函数的中间值定理及单调性可知,存在唯一点)0(s 0s s <<∞∞,使得

)(=∞s I 。而当

)(0><<∞s I s s s 时,。由式⑦可知,

0/)(,0/)(0===dt t dI dt t ds I 时,。所以(∞s ,0)为方程组式⑦的平衡点。

当0t t ≥时,式⑨的图形如图3.10所示。

当t 由0t 变化到∞时,点()(),(t I t s )沿图3.10中的曲线移动,并沿s 减少方向移动,因为)(s t 随时间的增加而单调减少。因此,如果ρ<0s ,则)t (I 单调减小到零,)(t s 单调减小到∞s 。所以,为数不多的一群传染者0I 分散在居民0s 中,并且ρ<0s ,则这种疾病会很快被消灭。

如果ρ<0s ,随着)(s t 减小到ρ时,)t (I 增加,且当ρ=s 时,)(t I 达到最大值。当ρ

3.4 模型的结果分析

(1)只有居民中的易受传染者的人数超过阈值r γρ=时,传染病才会蔓延。 (2)如果起初易受传染者的人数0s 大于但接近于阈值ρ,即如果()ρ-0s 与

ρ相比是小量,则最终患病的人数近似于2()ρ-0s 。

二、 交通管理模型

模型四 合理设置黄灯亮灯时间模型

4.1 问题的描述

在交通十字路口,都会设置红路灯。为了让那些正在行驶在交叉路口或离交叉路口太近而无法停下的车辆通过路口,红路灯转换中间还要亮起一段时间的黄灯。对于一位驶进交叉路口的驾驶员来说,万万不可处于这样的进退两难的境地:要安全停车则离路口太近;要想在红灯亮之前通过路口又觉得太远。

那么,黄灯应亮多长时间才最为合理呢?

4.2 问题的分析

对于驶进交叉路口的驾驶员,当他看到黄色信号后要做出决定:是停车还是通过路口。如果他以法定速度(或低于法定速度)行驶,当决定停车时,他必须有足够的停车距离。当决定通过路口时,必须有足够的时间使他能完全通过路口。这包括做出停车决定的反应时间以及通过停车所需的最短距离的驾驶时间。能够很快看到黄灯的驾驶员可以利用刹车距离将车停下。

于是,黄灯状态应持续的时间包括驾驶员的反应时间,车通过交叉路口的时间以及通过刹车距离所需的时间。

4.3 符号说明

法定速度设为0v ,交叉路口的宽度为I ,典型的车身程度L ,汽车的重量为

W ,摩擦系数为μ,地面对汽车的摩擦力为W μ,其方向与运动方向相反。行驶

的距离为x ,时间为t 。

4.4 模型的建立与求解

考虑车通过路口实际上指的是车的尾部必须通过路口,因此,通过路口的时

间为0

v L

I +。 汽车在停车过程中,行驶的距离x 与时间t 的关系可由下面的微分方程

W

dt x

d W μ-=22g ⑴

求得,其中g 是重力加速度。

我们给出方程⑴的初值条件

,00==t x

00v dt

dx

t == ⑵于是,刹车距离就是直到速度0=v 时汽车驶过的距离。

首先,求解微分方程⑴,对⑴式从0到t 的积分,再利用初值条件⑵,我们得到

0v gt dt

dx

+-=μ ⑶ 在条件⑵下对⑶式从0到t 积分,得

t v gt 022

1

x +-=μ

注意到在⑶式中令

0=dt dx ,可得刹车所用的时间g

v

t μ00=,从而得到 g

v t μ2)(x 0

20= ⑷

我们计算一下黄灯状态的时间A : T v L

I t x A +++=00)(

其中T 是驾驶员的反应时间。于是

T v L I g v A +++=

002μ

如果把A 与0v 关系的图像描绘出来,则大致如图4,。10所示。

4.5 模型的结果分析

假设m I m L s T 9,5.4,1===。另外,我们选取具有代表性的2.0=μ。当

h km h km v /65/450、=以及h km /80时,黄灯时间如图4.11所示,表中给出了经验

法的值。

图4.11

)/(0h km v )(s A 经验法 45 5.27 3 65 6.35 4 80

7.28

5

我们注意到,经验法的结果一律比我们预测的黄灯状态短些。这使人想起,许多交岔路口红路灯的设计可能使车辆在路灯转为红灯时正处于交叉路口。

三、人口模型

模型五 指数增长模型

5.1 问题的描述

目前,在世界资源有限的情况下,人口的不断增长,尤其是发展中国家过高的人口增长率成为十分严峻的问题。面临这样的现实问题,人类必须进行自我控制,即采取必要的措施抑制过快的人口增长率。而影响人口增长的因素有很多,比如:人口的基数、出生率、和死亡率的高低等。如果把这些因素都考虑在内的话,所建的数学模型时非常复杂的。所以我们应抓住关键因素,则即人口增长与人口的基数和增长率有关,这两项为主要因素。

5.2 问题的分析

假设人口的增长过程可以用微分方程来描述。初看起来,人口增长时不能用微分方程来描述的,因为人口总数是按整数变化的而不是时间的可微函数。然而,如果人口总数很大时,可以近似认为它是时间的连续函数,甚至是可微函数。

5.3 符号说明

)(t N 表示t 时刻人口总数。

))(,(t N t r 表示时刻人口增长率,它与t 时间和t 时刻的人口数)(t N 关。

5.4 模型的建立与求解

根据假设只考虑人口的基数和增长率,其他因素的影响暂不考虑,则在t 到t t ?+这段时间人口总数增长为

t t N t N t r t N t t N ?=-?+)())(,()()(

两端同时除以t ?,并令0→?t ,则)(t N 满足微分方程

)())(,()

(t N t N t r dt

t dN = ⑸ 对⑸式变量分离,且两边积分可得 t t N t r ce t N ))(,()(=,c 为任意常数。

若给出⑸的初值条件

令r t N t r =))(,((常数),00)(N t N t t ==时, ⑹ 则方程⑸满足初值条件⑹的解为

)(00)(t t r e N t N -= ⑺

5.5 模型的结果分析

如果0>r ,⑺式说明人口总数)(t N 将按指数规律增长,将t 以1年或10年为单位离散化,那么可以说,人口数时以r e 为公比的等比数列增加的。 当人口总数不大时,生存空间、资源等极充裕,人口总数指数的增长是可能的。但当人口总数非常大时,指数增长的线性模型则不能反映这样一个事实:环境所提供的条件只能供养一定数量的人口生活,所以这个模型在)(t N 很大时是不合理的。

模型六 Logistic 模型

6.1 模型的假设

(1)引入常数m N (环境最大容纳量)表示自然资源和环境条件所能容纳的最大人口数。

(2)假设净相对增长率为???

?

??-

m N t N r )(1,即净增长率随)(t N 增加而减少,当0)(→→时,净增长率m N t N 。

6.2 模型的建立与求解

人口增长的方程为

N N N r dt dN m ????

?

?-=1 ⑻

这就是所谓的Logistic 模型。当m N 与N 相比很大时,m N rN 2

与rN 相比可以忽略,则模型就变为模型五;但当m N 与N 相比不是很大时,m

N rN 2这一项就不能忽略,

人口急剧增加的速度就会缓慢下来。从而我们可以用这个模型来预测未来地球人数。

四、 结束语

利用微分方程理论针对各种实际理论建立的数学模型,一般而言都是动态模型,虽然特的推导过程稍显繁琐,但是其结果却相当简明,并且可以给出和合理的解释。所以学好微分方程基本理论对进一步研究数学理论和实际应用均非常重要。

参考文献

[1]王高雄,常微分方程[M],北京:高等教育出版社,1998.

[2]姜启源,谢金星,叶俊,数学建模[M],北京:高等教育出版社,2003. [3]赵静,但琦,数学建模与数学实验[M],北京:高等教育出版社,2007. [4]冯杰,黄立伟,数学建模原理及案例[M],北京:科学出版社,2007. [5]边馥萍,侯文华,梁冯珍,数学模型方法与算法[M],北京:高等教育出版社,2005.

[6]韩中庚,数学建模竞赛-获奖论文精选与点评[M],北京:科学出版社,2007. [7]杨启航,边馥萍,数学模型[M],杭州:浙江大学出版社,1990. [8]东北师大微分方程教研室,常微分方程[M],北京:高等教育出版社,2005. [9]朱思铭,李尚廉,数学模型[M],广州:中山大学出版社,1995. [10]刘承平,数学建模方法[M],北京:高等教育出版社,2002.

数学建模 传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。 三、模型假设 模型二和模型三的假设条件: 假设一:在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 假设二:每个病人每天有效接触的平均人数是常数,称为日接触率。当病人

数学建模之传染病模型

第五章 微 分 方 程 模 型 如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型. §1 传 染 病 模 型 建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题. 考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位. 一. SI 模 型 假设条件: 1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人 和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i . 2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康 人有效接触时,使健康者受感染变为病人. 试建立描述()t i 变化的数学模型. 解: ()()1=+t i t s ()()N N t i N t s =+∴ 由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为 ()t i N ,∴每天共有()()t i N t s λ个健康人被感染. 于是i s N λ就是病人数i N 的增加率,即有 i s N dt di N λ= (1)

i s dt di λ=∴ 而1=+i s . 又记初始时刻(0=t )病人的比例为0i ,则 ()()?????=-=0 01i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-??? ? ??-+= 11110 [结果分析] 作出()t t i ~和i dt di ~的图形如下: 1. 当2 1=i 时,dt di 取到最大值m dt di ?? ? ??,此时刻为 ??? ? ??-=-11ln 01i t m λ 2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的). 二. SIS 模 型 在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.

数学建模传染病模型剖析

传染病的传播 摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合

MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程 SARS 数学模型 感染率 1问题的重述 SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: 1)建立传染病传播的指数模型,评价其合理性和实用性。 2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件1提供的数据供参考。 3)说明建立传染病数学模型的重要性。 2 定义与符号说明 N …………………………………表示为SARS 病人的总数; K (感染率)……………………表示为平均每天每人的传染他人的人数; L …………………………………表示为每个病人可能传染他人的天数; dt d N(t)………………………… 表示为每天(单位时间)发病人数; N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数; t …………………………………表示时间; R 2 ………………………………表示拟合的均方差; 3 建立传染病传播的指数模型 3.1模型假设 1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。单位时间(一天)内一个病人能传播的人数是常数k ; 2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k; 3) 病者在潜伏期传播可能性很小, 仍按健康人处理; 4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;

数学建模论文资料传染病模型)

传染病模型 摘要 “传染病的传播过程”数学模型是通过控制已感染人群来实现的。利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。

一.问题的提出 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 二.问题的分析 2.1 问题分析 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。 2.2模型分工

数学模型实验报告传染病

《数学模型实验》实验报告 姓名:学院:地点: 学号:专业:时间:年月日 一、实验名称: 传染病SIR模型 二、实验目的: 探讨传染病的SIR模型。通过微分方程的解的特征,分析受感染人数的变化规律,预报感染病的高潮时间,得出控制感染病蔓延的方法。三、实验任务: 大多数传染病如天花、流感、肝炎、荨麻等治愈后均有很强的免疫力,所以对于病愈后即非健康者(易感染者)、也非病人(已感染者)的人,他们已经退出了传染系统。假设:总人数N不变,人群分为健康者、病人和病愈免疫的移出者三类。三类人在总人数N中占的比例分别为s(t),i(t)和r(t)。建立相关模型,进行求解分析 四、实验步骤: 1.模型假设 2.模型构成 3.数值计算 4.结果分析 五、实验内容: (一)模型假设

1.总人数N不变,人群分为健康者、病人和病愈免疫的移出者三类,称SIR模型。时刻t三类人在总人数中所占的比例分别为s(t),i(t)和r(t)。 2.病人的日接触率为λ,日治愈率为μ,传染期接触数为β=λ/μ。(二)模型构成 由假设1显然有s(t)+i(t)+r(t)=1;由假设2,对于病愈免疫的移出者而言应有:Ndi/dt=λNsi-μNi; Ndr/dt=μNi。再记初始时刻的健康者和病人的比例分别是s0(s0>0)和i0(i0>0),则由此得到SIR模 型的方程可以写作 (三)数值计算 设方程中λ=1,μ=0.3,i(0)=0.02,s(0)=0.98,MATLAB编程语言如下: 建立函数: 引用: 得到轨迹图如下:

i(t),s(t)图像 i-s图像(相轨线) (四)结果分析 由图可看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t趋

数学建模 传染病模型

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变? 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍 乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t的病人人数x(t)是连续、可微函数, 方程(1)的解为 结果表明,随着t的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别健康人和病人这两种人。 模型2 SI模型 假设条件为 1.在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。人群分为易感染者即健康人(Susceptible)(S)和已感染者即病人(Infective)(i)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。 2.每个病人每天有效接触的平均人数是常数 ,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。

传染病模型(微分方程)

t 微分方程建模(传染病模型)的求解。 1、模型1:SI 模型。 假设: (1)t 时刻人群分为易感者(占总人数比例的()s t )和已感染者(占总人数比例的()y t ) (2)每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。 分析:根据假设,每个患者每天可以使()s t λ个健康者变为病人,因为病人数为()Ny t ,所以每天共有()()Ns t y t λ个健康者变为病人。即: dy N Nsy dt λ=,且()()1s t y t +=,设初始时刻病人比例为b ,则: (1) (0)dy y y dt y b λ?=-???=?,用MATLAB 解此微分方程: >> syms a b >> f=dsolve('Dy=a*y*(1-y)','y(0)=b','t') f = 1/(1-exp(-a*t)*(-1+b)/b) %11 ()1111(1)t t y t b e e b b λλ--= = --+- 当0.09,0.1b λ==时,分别在坐标系oty 中作出()y t 的图像,坐标系oyy '中作出 (1)y y y λ'=-的图像, >> a=0.1; >> b=0.09; >> h=dsolve('Dy=a*y*(1-y)','y(0)=b','t') h = 1/(1-exp(-a*t)*(-1+b)/b) >> f=subs(h) f = 1/(1+91/9*exp(-1/10*t)) ()y t 的图像 >> ezplot(f,[0,60]) >> grid on >> figure (2) >> fplot('0.1*y*(1-y)',[0,1])

传染病传播数学模型

第二节传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t时刻的病人数, k表示每个病人单位时间内传染的人 数,i(0)= i表示最初时有0i个传染病人,则在t?时间内增加的病人 数为 ()()() i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… (2.1) 其解为 ()00 k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由(2.1)的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

传染病的数学模型

传染病模型详解 /,SI SIS SIR 经典模型 经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下: dS SI dt N I SI d t N ββ?=-????=?? 从而得到 (1)di i i dt β=- 对此方程进行求解可得: 0000(),01t t i e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。 假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 所示。建立的平均场方程:

1.实验7-1传染病模型2

河北大学《数学模型》实验实验报告 一、实验目的 二、实验要求 1.实验7-1 传染病模型2( SI模型)——画di/dt~ i曲线图 (参考教材 p137-138) 传染病模型 2( SI 模型): ; di/dt=ki(1-i),i(0)=i 其中, i(t)是第 t 天病人在总人数中所占的比例。 λ是每个病人每天有效接触的平均人数(日接触率)。 i0是初始时刻( t=0)病人的比例。 取 k=0.1,画出 di/dt~ i 曲线图,求 i 为何值时di/dt达到最大值,并在曲线图上标注。试编写一个 m 文件来实现。 参考程序运行结果(在图形窗口菜单选择 Edit/Copy Figure,复制图形):

[提示] 1)画曲线图 用 fplot 函数,调用格式如下: fplot(fun,lims) fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。 若 lims 取[xmin xmax],则 x 轴被限制在此区间上。 若 lims 取[xmin xmax ymin ymax],则 y 轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数 fminbnd,调用格式如下: x=fminbnd(‘fun’,x1,x2) fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。 返回自变量 x 在区间 x1

matlab传染病模型

传染病模型实验 实验目的: 理解传染病的四类模型,学会利用Matlab软件求解微分方程(组)。 实验题目: 利用Matlab求解传染病的SIS微分方程模型,并绘制教材P139页图3-图6。 SIS模型 假设: (1)、t时刻人群分为易感者(占总人数比例的s(t))和已感染者(占总人数比例的i(t))。 (2)、每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。 (3)、病人每天被治愈的占病人总数的比例为μ,称为日治愈率,显然1 为这种传染病的平均传染期。 μ 则建立微分方程模型为: 令,则模型可写作 分别作图: 页脚内容1

当sigma>1时 Step1:先定义函数 function y=pr1(i,lambda,sigma) y=-lambda.*i.*(i-(1-1./sigma)) step2:作图 lambda=0.3;sigma=2; i=0:0.01:1; y=pr1(i,lambda,sigma) plot(i,y) 页脚内容2

页脚内容3 00.10.20.30.40.50.60.70.80.91 -0.16 -0.14-0.12-0.1-0.08-0.06-0.04-0.020 0.02 当sigma<1时 Step1:先定义函数 function y=pr1(i,lambda,sigma) y=-lambda.*i.*(i-(1-1./sigma)) step2:作图 lambda=0.3;sigma=0.5; i=0:0.01:1; y=pr1(i,lambda,sigma) plot(i,y)

SI传染病模型

SI传染病模型 1.模型的建立 由题意知道:在此环境中仅存在健康者(即易感者)和已感者(即病人),且在t时刻人数分别为S(t),L(t),不考虑人口的出生与死亡,此环境中的人口数量 不变N即K,于是在单位时间内每天每个病人感染的人数βS(t)L(t),它是 病人的增加率,所以有: d L =β*S()t*L()t L()0=L1 (1) d t 在t时刻健康者与已感者满足关系式:S()t+L ()t=K(2) 此模型满足Logistic模型,所以它的解为: L(t)=1/1+((1/L1)-1)*exp(-β*t) 1.求平衡点 syms r S L K y y=r*L*(K-L); solve(y) ans = SIS传染病模型 1.模型假设SIS模型的假设条件1.2与SI模型相同,增加的条件为:每天被治

愈的病人数占病人的总数为m ,此称为日治愈率。病人治愈后仍然可以成为被感染的健康者,显然,平均传染期为1/m 。 2. 模型建立 此模型可以修整为:(a 代表β) ()()()()***dL t a S t L t m L t dt =- ()()L t S t K += ()01L L = 求平衡点:(s, l ,k 分别代表S , L ,K ) syms a t s l m k f f=a*l*(k-l)-m*l; solve(f) ans = -a*(-k+l) 1.δ大于时的图像,10,0.8a a b b δ? ? = == ??? 2.δ小于1时的图像)(0.2,0.8a b ==

模型假设:在SIS 模型中我们增加:人群可分为健康者,病人,病疫免疫的移出者,且三种人群的数量分别为S ()t ,L ()t ,R ()t ;病人的日接触率和日治愈率分别为β,m 所以传染期为 m β δ = 1. 模型建立 ()()()()***dL t a S t L t m L t dt =- ()()L t S t K += ()01L L = (1) ()()()**dS t a S t L t dt =- ()()00S K L =- (2) 求平衡点 syms a t s l m k [s,l]=solve('a*l*(k-l)-m*l','-(a*s*(k-s))') s = a*k-a*l a*k-a*l l = 0 k 健康者与病人数量在总人数中的比例()s t ,()i t 对时间的变化关系图为:

数学建模_传染病模型 (1)

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变? 关键字:传染病模型、建模、流行病 摘要:随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、 天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。还有最近的SARS 病毒和禽流感病毒,都对人类的生产生活造成了重大的损失。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。 模型1 在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数, 病人人数的增加,就有 到考察的人数为常数足使人致病接触并且每天每个病人有效t t t ?+λ)(t t x t x t t x ?=-?+)()()(λ 程有个病人,即得微分方时有再设00x t = )1()0(,d d 0x x x t x ==λ 方程(1)的解为 )2()(0t e x t x λ= 结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人

传染病传播的数学模型

传染病传播的数学模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

传染病传播的 数学模型 很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k ;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t 时刻的病人数,0k 表示每个病人单位时间内传染的人数,i(0)= 0i 表示最初时有0i 个传染病人,则在t ?时间内增加的病人数为 ()()()0i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… () 其解为 ()00k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成 正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

传染病模型数学建模论文

甲型H1N1流感传播模型研究 小组成员:宋科康张晓鹏姚步泉 摘要 本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述 近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。 二、问题分析 甲型h1n1流感的传播是一道传染病问题。在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。 美国甲型H1N1流感实验室确认病例数量: 三、建立模型 (一)、不考虑潜伏期的数学模型

1、模型假设 (1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生 死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。 (2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。 病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。治愈 的病人具有了免疫力,即治愈后不再会成为二次患者。 (3)、s(t)、r(t)、i(t)之和是一个常数1。 2、模型构成 易感者和发病者有效接触后成为发病者者。设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。所以有: () ()()dS t S t I t dt λ=-(1) 单位时间内退出者的变化等于发病人群的减少,即 () ()dR t I t dt ν=(2) 发病人群的变化等于易感人群转入的数量,即 () ()()()dI t S t I t I t dt λν=-(3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。 3、模型求解 方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为: 0001()ln s i s i s s σ=+-+(4) 下面分析s(t)、i(t)、r(t)的变化情况: a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。 b 、最终未被感染者的健康者的比例是s ∞,是方程 0001()ln 0s s i s s σ +-+=在(0,1/)σ内的根。 C 、若01/s σ>,则开始有:()i t 先增加。当01/s σ=时,()i t 达到最大值,然后() i t

传染病模型 SI SIR

数学模型实验—实验报告10 学院: 专 业: 姓 名: 学号:___ ____ 实验时间:__ ____ 实验地点: 一、实验项目:传染病模型求解 二、实验目的和要求 a.求解微分方程的解析解 b.求解微分方程的数值解 三、实验内容 问题的描述 各种传染病给人类带来的巨大的灾难,长期以来,建立传染病的数学模型来描述传染病的的传播过程,分析受感染人数的变化规律,探索制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。 不同类型传染病有各自不同的特点,在此以一般的传播机理建立几种3模型。分别对3种建立成功的模型进行模型分析,便可以了解到该传染病在人类间传播的大概情况。 模型一(SI 模型): (1)模型假设 1.在疾病传播期内所考察地区的总人数N 不变,人群分为健康人和病人,时刻t 这两类人在总人数中所占比例为s (t )和i (t )。 2.每个病人每天有效接触的平均人数是常数a ,a 成为日接触率,当病人与健康者有效接触时,可使其患病。 (2)建立模型 根据假设,每个病人每天可使as (t )个健康人变成病人,t 时刻病人数为Ni (t ),所以每天共有aNs (t )i (t )个健康者被感染,即病人的增加率为: Ndi/dt=aNsi 又因为s (t )+i (t )=1 再记时刻t=0时病人的比例为i0 则建立好的模型为: ) 1(i ai dt di -= i(0)=i0 (3)模型求解 (代码、计算结果或输出结果) syms a i t i0 % a :日接触率,i :病人比例, s :健康人比例,i0:病人比例在t=0时的值 i=dsolve('Di=a*i*(1-i)','i(0)=i0','t'); y=subs(i,{a,i0},{,}); ezplot(y,[0,100])

传染病的扩散和传播模型(hgp)

流行病毒的扩散与传播的控制问题 摘要 本文以微分方程为理论基础,建立流行病毒的扩散与传播的控制模型,进而对疫情的蔓延趋势进行分析。 对问题一,首先将人群划分为五类:正常人、疑似患者、确诊患者、治愈者、死亡者,前三类组成传染系统。假设疑似患者包括病毒携带者(潜伏期患者)和非病毒携带者(最终为正常人)两部分,潜伏期患者最终都会被确诊,由此建立各类人群数量之间的变化关系。 然后将疫情变化分为两个阶段:控制前和控制后。在控制前阶段,由于病人未被隔离,相当于自由传染源,其每人每天接触的r个人都会成为疑似病例,因此疫情发展较迅速。在控制后阶段,疑似病例被隔离,确诊病人得到有效治疗,传染源减少,传染源每天接触的人数'r减少,治愈人数增多,退出传染系统者增多,最终疫情得到有效控制。 由上,建立起微分方程模型。 对问题二,代入题中限制条件求解模型得到潜伏期人数和确诊患者人数随时间变化的曲线图,控制前2 t=时,潜伏期人数Q增至15093,确诊患者人数I增至为4062,并且两者增长速度很快,控制后四五天,潜伏期人数和确诊患者人 数增到最大值 max 15206 Q=, max 12659 I=,而后逐渐下降,在12 t=时潜伏期人数几乎为零,当14 t=时确诊患者人数几乎为零。这时,疫情已经被控制。 对问题三,提前一天开始控制,3 t=时,潜伏期人数达到最大值 max 3722 Q=; 4 t=时确诊患者人数达到最大 max 3167 I=,而后也逐渐降低,到第十一天潜伏期的人数几乎为零,第十二天患病者人数几乎为零。

对问题四,将隔离强度增强p改为0.9,重复求解得:高峰期潜伏者人数 max 2527 Q=确诊患者人数 max 2093 I=。到第九天潜伏期人数减为零,到第十天确诊患者人数减为零,并根据以上分析结合实际给出一份建议报告。 关键词:传染病微分方程潜伏期 一、问题重述 近来猪流感在墨西哥爆发,引起全世界人的关注。流行病毒的扩散与传播的控制问题得到各国领导人和世界卫生组织的重视。各国都采取各种措施预防猪流感病毒的传播和蔓延。假设该病毒的潜伏期为d1至d2天,得病患者经治疗经过d3天可以治愈,严重的可能引起患者死亡。该病毒可通过直接接触、口腔飞沫进行传播、扩散。设人群中每人每天的接触人数为r。人群中的人可以分为5类:确诊患者、疑似患者、治愈者、死亡人和正常人,可控制参数是隔离措施强度,即潜伏期内的患者及疑似患者被隔离的百分数。 1.建立流行病病毒扩散与传播的控制模型; 2.利用所建立的模型针对如下数据进行模拟: 条件1.的d1=2, d2=7, d3=20, r=15;

1.实验7-1传染病模型2

大学《数学模型》实验实验报告 一、实验目的 二、实验要求 1.实验7-1 传染病模型2( SI模型)——画di/dt~ i曲线图 (参考教材 p137-138) 传染病模型 2( SI 模型): ; di/dt=ki(1-i),i(0)=i 其中, i(t)是第 t 天病人在总人数中所占的比例。 λ是每个病人每天有效接触的平均人数(日接触率)。 i0是初始时刻( t=0)病人的比例。 取 k=0.1,画出 di/dt~ i 曲线图,求 i 为何值时di/dt达到最大值,并在曲线图上标注。试编写一个 m 文件来实现。 参考程序运行结果(在图形窗口菜单选择 Edit/Copy Figure,复制图形):

[提示] 1)画曲线图 用 fplot 函数,调用格式如下: fplot(fun,lims) fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。 若 lims 取[xmin xmax],则 x 轴被限制在此区间上。 若 lims 取[xmin xmax ymin ymax],则 y 轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数 fminbnd,调用格式如下: x=fminbnd(‘fun’,x1,x2) fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。 返回自变量 x 在区间 x1

关于传染病模型

关于SARS 模型的建立与相关的预测分析 本文先根据材料提供的模型与数据较为扼要地分析了附件 1 的模型的优缺点, 摘要:全面地评价了该模型的合理性与实用性。而后在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上运用经典的龙格——库塔微分方程求解算法结合MA TLAB 编程程序在附件一拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议。而后运用差分方程(程序在附件二)就SARS 对经济(主要是旅游业)的影响进行了较为准确的分析,进而通过模型算出的理论预测数值与实际数值进行对比,以数值上的显著差异直观地表现了SARS对经济(旅游)的影响,并对接下来的几个月进行了较为合理的预测。本文的最后,通过本次建模过程中的切身体会,以一篇短文评述去说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程龙格—库塔算法SARS 双线性函数模型差分方程数学模型1 一问题的重述SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症俗称:非典型是肺炎)21 世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS的传播建立数学模型,具体要求如下:(1)对附件 1 所提供的一个早期的模型,评价其合理性和实用性。(2)建立你们自己的模型,说明为什么优于附件 1 中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后 5 天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件 2 提供的数据供参考。(3)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3 提供的数据供参考。(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 (二)对附件 1 所提供的模型的评价 该模型的合理性首先体现在模型假设上:“假定初始时刻的病例数为N0,平均每病(K ,人每天可传染K 个人一般为小数)平均每个病人可以直接感染他人的时间为L 天。” 其一,一般来说每病人每天可传染的人数与当时的健康人数有关1,但由于北京的人数基数较大,SARS 病人数相对较少并且SARA持续时间不是很长,所以这样假设也是可以的。其二,每个病人可以直接感染他人的时间是有限的,该模型考虑到了这一点,也是很合理的。该模型的合理性还在于用数理统计的方法估计相关参数。该模型的实用性是较好地模拟与预测了北京的SARA数据与发展。在传染病发病初期对疫情的预测结果还是较为理想的,这主要得益于发病初期,由于病情来得突然,有关部门没有来得及采取措施加以控制,使病情得以蔓延迅速,而且发病初期在治疗方法上不是特别有效,治愈所需的时间长,所以使用N t N 0 1 k t 作为模型进行估计以及参数的假设均较为合理,基本上是可行的。但是到了疫情发展中后期,由于政府部门采取强硬措施加强防治工作以及人民群众的防范意识与警觉程度上的普遍提高,加之治疗措施的改进,使得每天被传染的人数下降,并且治愈的人数在不断增加,治愈时间也在不断缩短,每天的病人数应在上一天的基础上减去治愈和死亡的人数,“ “ 并且由于采取强硬措施L”的取值会大大的减小,K”取值也会是个变量,而不是常数。大多数疑是病人往往在早期就会被隔离,所以,基本2上很少能转化成自由非典病人而去接触并传染别人。如果此时还是选取N t N 0 1 k t这样的单调递增函数作为预测模型,就会有较大的误差。该模型的另一个不足是没有考虑SARS 的潜伏期,也没有对人群进行合理的分类(如易感染人群、病人、治愈人群等等),所以必须建立更为合理的假设与模型。