文档库 最新最全的文档下载
当前位置:文档库 › 线性代数练习题(1-2章)答案

线性代数练习题(1-2章)答案

线性代数练习题(1-2章)答案
线性代数练习题(1-2章)答案

线性代数练习题(行列式·矩阵部分)

一、填空题

1.n 阶行列式

10

000

10000100

001

=n D (主对角线元素为1,其余元

素均为零)的值为 1 。

2.设行列式D =121

122

5

1

41201---x

,元素x 的代数余子式的值是 -14 。

3.设矩阵???

???-=1312A ,132)(2+-=x x x f ,则=)(A f 91312-?? ?-??

4.设矩阵??

???

?????=100110002A ,则逆矩阵=-1A 1002011001?? ? ?- ?

? ???

5.5阶行列式

D=a a

a a

a a a a a ---------110

11000

1100011

0001=54321a a a a a -+-+-+

6.设A 为n 阶可逆阵,且

E A A ||2=,则*A = A 7. N (n12…(n-1))= n-1 。

8. 设D 为一个三阶行列式 ,第三列元素分别为-2,3,1,其余子式分

别为9,6,24,则D= -12 。

9. 关于n 元线性方程组的克莱姆法则成立的条件是 1)线性方程组中未知数的个数和方程的个数相同,2)系数行列式D 不等于零 ,结论是

(1,2,)j j D x j n D

=

= 。

10. n 阶矩阵A 可逆的充要条件是0A ≠,设A *

为A 的伴随矩阵,则

A -1=

*

1A A

。 11. 若n 阶矩阵满足A 2

-2A-4E=0,则A -1

=

1

(2)4

A E - 。 12.

()??????? ??43

214321=()30, ()43214321????

??? ??123

4246836912481216?? ?

?

= ?

?

??

?

13. 设A 为三阶矩阵,若

A

=3,则

1

-A =13

,*

A = 9 。 14.

=

++++x

x x x 22

2

2

2222

222222223(8)x x +

15.设A 是m 阶方阵,B 是n 阶方阵,且|A |=a ,|B |=b ,令

?

??? ??=0B A 0C ,则|C |=ab mn

(-1)

二、选择题

1. 设n 阶行列式D =

n ij

a ,

j

i A 是D 中元素

j

i a 的代数余子式,则下列

各式中正确的是( C )。

(A)

1

=∑=n

i ij ij

A a

(B)

1=∑=n

j ij ij

A a

(C)

D

A a

n

j ij ij

=∑=1

(D)

D

A a

n

i i i =∑=1

21

2.设n 阶方阵A,B,C 满足关系式ABC=E ,其中E 是n 阶单位矩阵,则必有( D )

(A) ACB=E ; (B) CBA=E ; (C) BAC=E ; (D) BCA=E

3.

12

2

1

--k k 0≠的充要条件是( C )。

(a ) k 1≠(b ) k 3≠(c ) k 3,1≠-≠k 且(d )k 3,1≠-≠k 或 4. A,B,C 为n 阶方阵,则下列各式正确的是( D ) (A) AB=BA (B) AB=0,则A=0或B=0 (C) (A+B )(A-B )=A 2

-B

2

D) AC=BC 且C 可逆,则A=B

5. 设A 为n 阶可逆矩阵,则下述说法不正确的是(D )

(A) A ,

0≠ (B) 1-A 0≠ (C) r(A)=n (D) A 的行向量组线性相关

6.设A 是n 阶方阵,且A T

A=E ,则A 是( D )

(A )对称矩阵 (B )奇异矩阵 (C )正定矩阵 (D )正交矩阵

7.设A 为n 阶方阵,|A |=a ≠0,A *

为A 的伴随矩阵,则| A *

|=( D )

(A )a (B )a 1

(C )n a (D )1

-n a

三、解答题 1.计算行列式

6

7

4

1

212060311512-----=

D

(答案 27)

2.设

??????????--=111111111A ,??

????????---=120421321

B ,求A B T (答案002226028?? ?- ? ?-??

3.设A 是3阶矩阵,

10=A ,求*

121

)31(A A -- (答案

-4/5)

4. 试求行列式

A ,

B 的值, 其中A ,B 为n 阶方阵

???????

?

?+++=x x x

A 111111111

,????

?

??

??=n B 00020001 (答案1

(),!n A n x x B n -=+=)

5.设4阶方阵C B A ,,满足方程 11)2(--=-C A B C E T ,试求矩阵A ,

其中

1

2321

20101230120,0012001200010001B C --????

?

?

- ? ?==

? ?

? ?

? ????

? (

(答案1000210

012100121??

?-

?

?- ? ?-?

?

) 6.计算n 阶行列式

x a a a a a

a

x

a

a

a a a x a

a a a a x

(答案1

[(1)]()

n x n a x a -+--)

7.解矩阵方程AX=A+X,其中A =?

???? ?

?--221011322 (答案3

134247

48833310

2

2??- ? ? ?-

? ? ? ???

) 8.设三阶方阵满足BA A BA A +=-61

,且??

??? ??=714131

000000A ,求B (答案300020001??

? ? ???

9.设A 为n 阶方阵,E 是n 阶单位矩阵,满足方程0E A A =+-442

问A-3E 是否可逆?若可逆,试求出其逆矩阵。

解:因为 244(4)4440

A A E

A A E E

A A E E -=--=--=-≠所以 0A ≠,A 可逆

1

1

(4)4

A

A E -=--

四、若A,B 是同阶对称矩阵,证明:AB 为对称矩阵的充要条件是A 与B 可交换。

证明:必要性 设AB 为对称矩阵,则()T

T

T

AB AB B A BA === A 与B 可交换

充分性 设AB=BA ,则()T

T

T

AB B A AB ==,AB 为对称矩阵。 证毕。

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??221321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=321332123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=321161109412316z z z

所以有?????+--=+-=++-=3 21332123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

线性代数复习题-第二章

第二章 矩阵及其运算 复习题 一、填空题 1. 设A =a b c d ?? ???,且0A ad bc =-≠,则1A -= . 2. 设A =1231-?? ???,B =2103?? ??? ,(2,1)C =-,则()T A B C -= . 3. 设*A 是矩阵A 的伴随矩阵,则**____.AA A A == 4. 设235α-?? ?= ? ??? ,则矩阵____.T A αα== 5.设A 是n 阶可逆方阵,*A 是A 的伴随矩阵,则*A = . 6.已知C B A ,,为同阶方阵,且C 可逆,若B AC C =-1,则=-C A C m 1 (m 是整数). 7.设矩阵500031021A ?? ?= ? ??? ,则1____A -=. 8.设???? ? ??=300020001A ,则1-A = . 9.设()()1,1,1,3,2,1==B A ,则=2 )(B A T . 10.设C B A ,,均为n 阶方阵,且E ABC =,则______________)(=T T CA B . 11.设矩阵???? ? ??=300041003A ,则逆阵______________1-A ,112_________A -=. 12. 若A ,B 都是三阶方阵,2A =,3-=B ,则13____AB -=. 14.设三阶方阵A 的行列式为 A A =2,*为A 的伴随矩阵, 则行列式 1*A A -+=_______. 二、判断题: 1.n 阶方阵A 满足2 20A A E --=,则E A -可逆. ( ) 2.对任意n 阶方阵,,A B C ,若AB AC =,且0A ≠,则一定有B C =. ( )

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 21332123 2113235322y y y x y y y x y y y x , 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??22 1321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=3 2133 2123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=32 1161109412316z z z

所以有?????+--=+-=++-=3 2133 2123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374?? ? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

线性代数第二章矩阵练习题

第二章 一、选择题 1、计算13230102-???? +? ??? ???? 的值为(C ) C.3003?????? D.2902-?? ???? 2、设,A B 都是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的是(D ) A. 11AB B A --= B. 11A B BA --= C. 1111A B B A ----= D.11B A A B --= 3、初等矩阵(A ) A. 都是可逆阵 B.所对应的行列式值等于1 C. 相乘仍是初等阵 D.相加仍是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C ) A. ()2r B = B.()2r B < C. ()2r B ≤ D.()1r B ≥ 二、判断题 1、若,,A B C 都是n 阶矩阵,则()k k k k ABC A B C =. (×) 2、若,A B 是n 阶反对称方阵,则kA 与A B +仍是反对称方阵.(√) 3、矩阵324113A ??=????与矩阵2213B ?? =?? ?? 可进行乘法运算. (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =. (×) 三、填空题 1、已知[]456A =,123B ?? ??=?????? ,求AB 得_________。 (32)

2、已知12 n a a A a ???? ? ?=? ???? ? O (0,1,2,,i a i n ≠=K ),则1A -= 3、设A 为n 阶方阵,2A =,求T A A 的值为_________ 。 4、设A 为33?矩阵,3A =-,把A 按列分块为()1 2 3A A A A =,求出 132,4,A A A 的值为__________。 四、计算题 1、计算()101112300121024--????????????-????????. 解 原式()12092(38)4-?? ??==-??-???? . 2、求矩阵100120135A -?? ??=-??-???? 的逆矩阵. 解 求出10A =-,11201035A ==,1210515A -=-=-,1311 113A --==--, 2100035A =-=,2210515A -==--,2310 313 A -==-, 12 11 1n a a a ????????????????????? ? O 12 1 2n +

线性代数第二章习题答案

习 题 2-1 1.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序. 解: ????? ?? ? ? ? ??000010 100100110000001011 1110001110106543216 54321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵???? ??-=???? ?? +-=2521 ,03231 z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得?????=-=+=-0253223z x y x ,解得:?? ? ??===211 z y x 。 习 题 2-2 1.设???? ??=0112A ,??? ? ??-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)2 2B A -. 解:(1)??? ? ??--=???? ??--???? ??=???? ??--???? ??=-202892001050224402150112252B A ; (2)???? ??--=???? ??--???? ??--=???? ?????? ??--???? ??-???? ??=-2592041021820112402140210112BA AB ; (3)??? ? ??--=???? ??-???? ??=???? ??-???? ??--???? ?????? ??=-152441606112254021402101120112B A 22. 2.已知????? ??--=230412301321A ,??? ? ? ??---=052110 35123 4B ,求B A 23-. 解:??? ? ? ??----????? ??--=052110351234223041230 13 21 323B -A ??? ? ? ??----=????? ??----????? ??--=61941016151055011010422061024686901236903963 3.设??? ? ? ??----=????? ??=101012121234,432112 122121B A ,求

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式11 121321 222331 3233a a a a a a a a a =2,则1112 13 31323321312232 2333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1 ?? ???A B B .?? ??? A B 不可逆 C .?? ? ??A B 可逆,且其逆为-1-1?? ??? B A D .?? ???A B 可逆,且其逆为-1-1?? ?? ? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( )

线性代数第二章习题部分答案

第二章向量组的线性相关性 §2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题 1. 设3 α1α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T, 则线性组合α13α2+α3= (5,0,2)T . 3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量, 则2β1+β2β3= (2,8,2)T . 二、试确定下列向量组的线性相关性

1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T 解:设k1α1+k2α2+k3α3=0, 则k1 210 +k2 121 +k3 111 = 000 即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=03k2k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。 2. α1=(1,1,2)T, α2=(0,0,0)T, α3=(1,4,3)T 线性相关

三、设有向量组α1=(1,1,0)T, α2=(1,3,1)T, α3=(5,3,t)T,问t取何值时该向量组线性相关。 解:设k1α1+k2α2+k3α3=0, 则k1 110 +k2 131 +k3 53t =0 即k1+k2+5k3=0k1+3k23k3=0k2+tk3=0 k1+k2+5k3=0k24k3=0k2+tk3=0 k1+k2+5k3=0k1+3k23k3=0(t4)k3=0 所以,t=4, 线性相关; t≠4, 线性无关 四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。 解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=k1a1k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=k1k1+k2a1k2k1+k2a2. 五、已知向量组α1,α2,,α2n,令β1=α1+α2,β2=α2+α3,,β2n=α2n+α1,求证向量组β1,β2,,β2n线性相关。

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2 a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αααα-=___________。 (3) 二阶行列式2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 ,; C 1 ,; D 2 ,。 (3)三阶行列式2 31503 2012985 2 3 -=()。 A -70; B -63; C 70; D 82。

(4A 44 a b -;B () 2 2 2a b -;C 44b a -;D 44 a b 。 (5)n 阶行列式 0100002 000 1 000 n n -=()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号: (1)152332445166a a a a a a ;(2)215316426534a a a a a a ;(3)615243342516a a a a a a 答案:(1)正号;(2)负号。 【7】根据定义计算下列各行列式: (1)00001 00020 0030004000 50000 ;(2) 11 14 2223323341 44 000 00 a a a a a a a a ;(3)00010 20 0100 000 n n -;

线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;2294201722213 2222222222092650850311111111 1215042 132111111111 1323???? ? ??----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )* * =A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数习题集(带答案)

______________________________________________________________________________________________________________ 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 0010 0100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 0011 0000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2

6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311 122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7 3 4 11111 3263 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 101 1110 40 3 --= D ,则D 中第四行元的余子式的和为( ).

相关文档
相关文档 最新文档