文档库 最新最全的文档下载
当前位置:文档库 › p103考虑齿面摩擦的减速器锥齿轮动态啮合仿真分析-李源

p103考虑齿面摩擦的减速器锥齿轮动态啮合仿真分析-李源

p103考虑齿面摩擦的减速器锥齿轮动态啮合仿真分析-李源
p103考虑齿面摩擦的减速器锥齿轮动态啮合仿真分析-李源

考虑齿面摩擦的减速器锥齿轮动态啮合仿真分析

李源1 李明2 柳龙3 袁杰红1

(1国防科学技术大学,长沙,410072;2南昌航空大学航空与机械学院,南昌,330063;

3中国人民解放军77115部队,成都,611233)

摘 要:利用大型有限元分析软件MSC.Marc,建立了某型减速器螺旋锥齿轮副多齿对啮

合的三维有限元非线性接触分析模型。基于该模型,在一个啮合周期内,对齿轮副分别进行了无摩擦与考虑摩擦工况下的动态啮合仿真分析,给出了啮合时轮齿的接触状态、接触应力、齿根弯曲应力随啮合位置变化的规律,并对数值结果进行了相关分析。

关键词:MSC.Marc 螺旋锥齿轮 摩擦 接触 动态啮合

A Dynamic Simulating Analysis for Spiral Bevel Gear

Meshing in Reducer under Surface Friction

Li Yuan,Li Ming,Liu Long,Yuan Jiehong

Abstract By using the large finite element method software MSC.Marc, A 3-D nonlinear contact analysis model for a pair of spiral bevel gear in Reducer with several meshing teeth pairs is established. Based on the model, the dynamic meshing simulation in the case of no friction and under friction are carried out in a meshing period. The numerical results which indicating the variety of the contact status,the contact stress,the bending stress vs. the different meshing position are presented, and the relative explanation are made simultaneously.

Key words:MSC.Marc,spiral bevel gear,friction,contact,dynamic meshing

0 前言

螺旋锥齿轮在机械和航空工业中有着广泛的应用,常应用于航空减速器等高速、重载传动的场合。这类齿轮失效所导致的后果往往是十分严重甚至是灾难性的。资料显示,在FLIGHT INTERNATIONAL的全球直升机事故统计中,齿轮故障占机械故障总数的70%以上。因此,齿轮副在连续啮合过程中的受载接触性能、齿面接触应力和齿根弯曲应力是令人关注的重要指标。

螺旋锥齿轮啮合问题是一个高度边界条件非线性的接触物理问题,因而给理论分析带

来了挑战。目前,有限元方法成为计算齿轮问题的最普遍最有效的方法。文献表明,许多学

者[1]-[7]使用有限元方法对齿轮啮合的静、动态特性进行了初步的探讨。但在仿真计算时仅有

少量作者考虑到啮合中齿面摩擦问题。

齿面的摩擦不仅使齿轮的传动效率降低,还会导致齿面磨损,引起齿轮的失效。传统

的齿轮强度理论不计齿间摩擦力,认为齿间摩擦力对齿轮的强度影响很小。针对此观点的局

限性,李秀莲等在文献[8]中通过对一级减速直齿圆锥齿轮传动机构中主动轮受力情况进行全

面地分析,推导出包含齿间摩擦力在内的主动轮齿根弯曲疲劳应力计算公式研究结果表明,

齿间摩擦对减速圆锥齿轮传动主动力的齿根弯曲应力增加不可忽视的12%。高创宽等在文献

[9]中采用实验的手段,研究了齿面摩擦对齿面接触应力的不可忽视的影响,指出齿面摩擦力

会使齿面接触应力增加10%。

作者已利用MSC.Marc 强大的直接约束接触分析算法,建立了一个螺旋锥齿轮多齿对啮

合的三维有限元非线性接触模型[10]。本文在一个啮合周期内,对齿轮副分别进行了无摩擦与

考虑摩擦工况下的动态啮合仿真分析,给出了啮合时轮齿的接触状态、接触应力、齿根弯曲

应力随啮合位置变化的规律。

1 MSC.Marc 关于摩擦问题的定义

摩擦是一种非常复杂的物理现象,与接触表面的硬度、湿度、法向应力和相对滑动速

度等特性有关。航空减速器传动系统内部螺旋锥齿轮齿轮转速高、载荷重,工作时需要润滑

油循环流动行润滑、降温,以保证减速器正常工作,一旦失去润滑油,齿轮之间便会因过热

而“烧蚀”,后果十分严重。

Marc 采用了滑动库仑摩擦模型这种简化的理想模型来对摩擦进行数值模拟。

滑动库仑摩擦模型除了不用于块体锻造成型外,在许多加工工艺分析和一般的有摩擦

的实际问题中都被广泛采用。

库仑摩擦模型为:

fr n t σμσ≤?

式中:n σ为接触节点法向应力;fr σ 切向(摩擦)应力;μ为摩擦系数;t 为相对滑

动速度方向上的切向单位矢量。

库仑摩擦模型又常写成结点合力的形式:

t n f f t μ≤??

式中:t f 为剪切力;n f 为法向反作用力。

理论上当法向力给定后,摩擦力的值会随着相对滑动速度或相对位移增量的变化而产

生阶梯函数状的变化。如果在数值计算中引入这种不连续性,往往会导致数值困难。Marc

中采用了一个修正的库仑摩擦模型,其公式为: 2arctan(r

fr n cnst t r ννσμσπ≤??

式中,的物理意义是发生滑动时接触体之间的临界相对速度。它的大小决定了这

个数学模型与实际呈阶梯状变化的摩擦力的接近程度。太大的 导致有效摩擦力数值的降低,

但使迭代相对容易收敛;而太小的虽然能够较好模拟静摩擦与滑动摩擦之间的突变,但使求

解的收敛性很差。

cnst r ν库仑摩擦是依赖于法向力和相对滑动速度的高度非线性现象,它是速度或位移增量的

隐式函数,其数值贯彻包含两个部分,一个是施加切向摩擦力的贡献;另一个是对系统刚度

矩阵的贡献,如果完整地考虑这种摩擦对刚度的贡献会导致系统矩阵出现非对称,这样一来,

所需的计算机内存和CPU 时间都会上升。从减少计算费用的角度出发,Marc 软件在考虑摩

擦力对刚度矩阵的贡献时,只保留了对称部分的影响。

Marc 软件处理基于应力的摩擦模型时,采取以下步骤:

首先,把单元积分点上的应力,等效应力按形函数外推至节点,然后计算局部坐标系

下的法向应力,之后,计算相对滑动速度。在一个增量步开始时,把前一步计算所得的相对

滑动速度作为迭代开始的初值。当一个节点首次与某个接触段接触时,则首先假设它是粘着

摩擦,相对滑动速度为零。

在计算可变形接触体与可变形接触体之间的接触时,Marc 自动使施加在它们上的接触

反力大小相等,方向相反,并将其外推到邻近的边界节点上,这种处理保证了所施加的摩擦

力和法向反力处于自平衡。

2 多齿对啮合有限元接触模型的建立

图1 螺旋锥齿轮三齿接触模型图2 锥齿轮啮合齿对局部网格 作者先基于Gleason 机床调整卡获得了轮齿的几何形状,然后进行网格划分,并严格保

证齿面和齿根部节点的空间位置精度。为控制模型规模同时利于提高计算精度,模型的网格

采用8节点六面体单元并进行人工方式划分。由于MSC.Marc 提供的前处理模块无法实现斜

齿轮模型的六面体网格人工划分,而其自动划分的网格质量较差,且对网格密度的控制很不

方便。本文因此利用MSC.Patran的强大前处理功能,通过人工方式,对参与接触的齿面和

相应的齿根采用较密的网格;对不参与接触的齿面和轮缘采用较疏的网格。

图1和图2分别为螺旋锥齿轮三齿啮合接触模型的完整网格和啮合齿对的局部网格。

3 考虑齿面摩擦的啮合过程仿真

3.1 无摩擦动态啮合仿真

动态啮合过程仿真的主要在于考察弧齿锥齿轮副在带载启动时的接触状态,以及齿面和

齿根的应力变化规律。主动齿转速取200r/min,结构阻尼系数取0.04,瞬态响应的计算时

间取0.001275,共有340个增量步,恰好为齿轮的一个啮合周期,所需计算时间为167493s。 3.2 考虑摩擦的动态啮合仿真

查阅齿轮设计手册及文献[11-12]表明,文中研究的齿轮副在有润滑的条件下滑动摩擦系数

为0.05-0.10,无润滑条件下为0.10-0.20。文中采用库仑摩擦模型,滑动摩擦系数定义为

0.15,这个数值即为减速器螺旋锥齿轮处于最“恶劣”工况下的摩擦系数。所用有限元模型

与前文中是相同的,只增加了对摩擦系数的定义。

3.2 动态啮合仿真分析结果分析

考虑摩擦时总的计算时间为192522s,比无摩擦的时候速度慢了1/3。图3、图4分别

为考虑摩擦时主动齿转速为200r/min时其齿面接触应力和齿面接触摩擦应力曲线。图5、

图6分别为增量步为40时无摩擦和有摩擦两种情况下主动齿齿根弯曲应力。图7、图8分

别为增量步为250时无摩擦和有摩擦两种情况下主动齿齿根弯曲应力。

图3 转速为200时有摩擦的齿面接触应力图4 转速为200时齿面接触摩擦应力

图5增量步为40时无摩擦的齿根弯曲应力 图6增量步为40时有摩擦的齿根弯曲应力

图3-图4可得,对应螺旋锥齿轮主动齿齿面上同一节点,其齿面最大接触摩擦应力为102.8MPa,齿面最大接触应力为642.6MPa。可知,考虑摩擦之后,齿面摩擦应力对齿面接触应力有着显著的影响。

图5-图6分别为增量步为40时主动齿上齿根模型无摩擦和有摩擦时主动齿齿根弯曲应力,图中可得无摩擦时主动齿最大齿根弯曲应力为132.8MPa,有摩擦时最大齿根弯曲应力为142.1MPa。可知,有摩擦情况下,齿轮的最大弯曲应力增大约7.0%。

图7-图8分别为增量步为250时主动齿上齿根模型无摩擦和有摩擦主动齿齿根弯曲应力,图中可得无摩擦时主动齿最大齿根弯曲应力为43.75MPa,有摩擦时最大齿根弯曲应力为49.44MPa。可知,有摩擦情况下,齿轮的最大弯曲应力增大约13%。 通过对一个齿轮啮合周期内其他啮合位置的计算,定义摩擦系数为0.15后,齿轮的最大齿根弯曲应力比无摩擦时平均增加10%,这与文献[8]中的结论是基本吻合的。

10 主动齿轮齿轮齿面点的接触应力 图11 主动齿轮齿根点的弯曲应力

图7增量步为250时无摩擦的齿根弯曲应力 图8增量步为250时有摩擦的齿根弯曲应力 4 小结

本文首先探讨了摩擦的定义及Marc 对摩擦问题的处理,着重分析了定义摩擦系数之后,齿面接触应力及齿根弯曲强度随啮合位置改变的变化规律。齿轮的运转试验结果指出:摩擦对齿轮的强度具有很强烈的影响。针对理论及实验中的摩擦对啮合过程的影响,文中主要分析了主动齿转速为200r/min 时,齿面接触应力、齿根弯曲应力与未定义摩擦时齿面接触应力、齿根弯曲应力的变化,并得出一定的变化规律。

考虑摩擦的螺旋锥齿轮动态啮合过程的分析,为进一步的关于螺旋锥齿轮副的疲劳失效问题的探讨可提供参考。

5 参考文献

[1] 郑昌启. 弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理,机械工程学报,1981,17(2):1-12

[2] 费喜明,郑建华. 螺旋齿轮齿面接触应力理论计算,海军工程大学学报,2001,13(3):90-92

[3] 徐建宁,方志荣,纪名刚,王三民. 弧齿锥齿轮三维接触应力的有限元—线性规划法求解及分析,机械科学与技术,1997,26(5):11-13

[4] 林腾蛟,李润方,郭晓冬,王立华. 准双曲面齿轮三维间隙非线性冲击特性分析,中国机械工程,2003,14(9):727-730

[5] 方宗德,高平,宋乐民. 弧齿锥齿轮传动的振动分析,航空学报,1994,15(5):576-581

[6] 陈火红. MSC.Marc接触分析培训教程,MSC.Software 中国,2001

[7] 高建平,方宗德,方宏斌.螺旋锥齿轮边缘接触分析[J].航空动力学报,1998,13(3):289-291.

[8] 李秀莲,齿间摩擦力作用下的圆锥齿轮齿根弯曲疲劳强度的计算.液压与传动,2004,No1:101-103

[9] 高创宽,周谋,亓秀梅,齿面摩擦力对齿轮接触应力的影响.机械强度,2003,25(6):642-645

[10] 李源,袁杰红,李俊武.航空减速器弧齿锥齿轮啮合仿真分析模型.机械传动,2O06,30(3):29~31

[11] 徐辅仁,装甲车增速齿轮传动中大齿轮齿根的弯曲疲劳.兵工学报,1999,2:17-23

[12] 徐辅仁,减速齿轮传动中主动轮齿根弯曲疲劳的计算.起重运输机械,2000

锥齿轮减速器——开式齿轮

锥齿轮减速器——开式齿轮机械课程设计 说明书 设计题目:单级锥齿轮减速器 专业班级:09热能与动力工程 林学生姓名:赵仲 学生学号:2 0 0 9 0 8 7 9 指导教师:雒晓兵 2011-6-30 兰州交通大学博文学院 (1)引言…………………………………………………………………………………… (2)设计题目……………………………………………………………………………… (3)电动机的选择………………………………………………………………………… (4)传动零件的设计和计算…………………………………………………………… (5)减速箱结构的设计………………………………………………………………… (6)轴的计算与校核………………………………………………………………………

(7)键连接的选择和计算……………………………………………………………… (8)联轴器的选择……………………………………………………………………… (9)设计小结…………………………………………………………………………… (10)参考文献…………………………………………………………………………… 2 一、引言 课程设计是考察学生全面在掌握基本理论知识的主要环节。本次是设计一个锥齿 轮减速器,减速器是用于电动机和工作机之间的独立的闭式传动装置。课程设计 内容包括:设计题目,电机选择,运动学动力学计算,传动零件的设计及计算, 减速器结构设计,轴的设计计算与校核。 锥齿轮减速器的计算机辅助机械设计,计算机辅助设计及计算机辅助制造 (CAM/CAD)技术是当今设计以及制造领域广泛采用的先进技术,通过本课题的研究,将进一步深入的对这一技术进行深入的了解和学习。 3 重要数据: 设计题目:锥齿轮减速器——开式齿轮 1. 传动方案 编号:b

弧齿锥齿轮加工原理

第一章弧齿锥齿轮及弧齿锥齿轮啮合的基本概念 齿轮的种类有很多五花八门。从齿形上分有渐开线齿轮、圆弧齿轮和其他曲线齿轮。从齿向上分有直齿齿轮、斜齿齿轮和圆弧齿齿轮。还有一类比较特殊的齿轮就是我们在下面将要介绍到螺旋锥齿轮。 螺旋锥齿轮目前我们能接触到的主要有两种,一个是圆弧齿锥齿轮(也叫收缩齿锥齿轮),另一个就是延伸外摆线锥齿轮(也叫等高齿锥齿轮)。下面我们主要讨论的是圆弧齿锥齿轮。 首先我们介绍3个名词: 模数 模数是齿轮的一个基本参数,通俗讲模数越大,齿轮的齿距就越大,齿轮的轮齿及各部分尺寸均相应增大。当一个齿轮的齿数为Z,分度圆直径为D,分度圆上的齿距为P时,则其分度圆的周长应为:Π D=PZ。则该齿轮的分度圆直径为: D=PZ/Π 上式中含有无理数Π,为了设计和制造的方便,我们规定M= P/Π,称M为模数。圆弧齿锥齿轮以大端模数作为齿轮的公称模数。

螺旋角 圆弧齿锥齿轮齿面节线上任意一点的切线与该点向量半径之间的夹角,我们称之为该点的螺旋角。而我们平常所称弧齿锥齿轮的螺旋角实际为该齿轮节线中点的螺旋角(图1-1)。 图1-1 圆弧齿锥齿轮的螺旋方向即为:从齿轮正面对着齿面看,轮齿中点到大端的齿线是顺时针方向的称为右旋齿,轮齿中点到大端的齿线是逆时针方向的称为左旋齿(图1-2)。 我们要记住一对相啮合的弧齿锥齿轮,一定是其螺旋方向相反,而螺旋角的数值相等。螺旋方向的选择一般是使其轴向力的作用方向离开锥顶,使一对齿轮在传动过程中有分离倾向,从而使齿侧间隙增大,轮齿不至于卡住。

1-2 图 1-4)1-3、图节线(节面)(图无论是圆柱齿轮还是圆锥齿轮都可以抽象成两个对于齿轮来说,圆柱体或圆锥体之间的纯滚动。它们的半径由所要求的速度比值决定,此半径所确定的圆称为节圆,所确定的圆锥母线称为节线。 1-3 图

弧齿锥齿轮几何参数设计

弧齿锥齿轮几何参数设计

————————————————————————————————作者: ————————————————————————————————日期: ?

第14章 弧齿锥齿轮的轮坯设计 14.1 弧齿锥齿轮的基本概念 14.1.1 锥齿轮的节锥 对于相交轴之间的齿轮传动,一般采用锥齿轮。锥齿轮有直齿锥齿轮和弧齿锥齿轮。弧齿锥齿轮副的形式如图14-1所示,与直齿锥齿轮相比,轮齿倾斜呈弧线形。但弧齿锥齿轮的节锥同直齿锥齿轮的节锥一样,相当于一对相切圆锥面作纯滚动,它是齿轮副相对运动的瞬时轴线绕齿轮轴线旋转形成的(图14-2)。两个相切圆锥的公切面成为齿轮副的节平面。齿轮轴线与节平面的夹角,即节锥的半锥角称为锥齿轮的节锥角δ1或δ2。两齿轮轴线之间的夹角称为锥齿轮副的轴交角∑。节锥任意一点到节锥顶点O 的距离称为该点的锥距R i ,节点P 的锥距为R 。因锥齿轮副两个节锥的顶点重合,则 21δδ+=∑ 大小轮的齿数之比称为锥齿轮的传动比 1 2 12z z i = (14-1) 小轮和大轮的节点半径r 1、r 2分别为 11sin δR r = 22sin δR r = (14-2) 它们与锥齿轮的齿数成正比,即 1 2 1212sin sin z z r r ==δδ (14-3) 传动比与轴交角已知,则节锥可惟一的确定,大、小轮节锥角计算公式为 ∑ +∑ = cos 1sin 12122i i tg δ 21δδ-∑= (14-4) 当0 90 =∑时,即正交锥齿轮 副,122i tg =δ 图14-2 锥齿轮的 (a) 左旋 图14-1 弧齿锥

一级圆锥齿轮减速器传动方案

设计题目:一级圆锥齿轮减速器传动方案 运动简图: (1) 原始数据 运输带牵引力F=2200N 运输带线速度v=1.8m/s 驱动滚筒直径D=280mm (2)工作条件及要求 ①使用5年,双班制工作,单向工作 ②载荷有轻微冲击 ③运送煤,盐,沙等松散物品 ④运输带线速度允许误差为±5% ⑤有中等规模机械厂小批量生产 目录 机械设计基础课程设计任务书.................................................. 第1章引言 ............................................................................. 第2章电机的选择 ................................................................. 第3章带传动的设计 ................................................................. 第4章、齿轮传动的设计计算.................................................. 第5章、齿轮上作用力的计算................................................ 第6章、轴的设计计算 ............................................................. 第7章、密封与润滑 ................................................................. 第8章课程设计总结 ............................................................... 参考资料 .....................................................................................

带式输送机传动装置中的二级圆锥圆柱齿轮减速器设计

优秀设计 机械设计课程设计 说明书 设计课题:二级圆锥圆柱齿轮减速器的设计 专业班级: 学生姓名: 指导教师: 设计时间:

工程技术学院 任务书 姓名:专业:班级: 指导教师:职称: 课程设计题目:带式输送机传动装置的设计 1.已知技术参数和设计要求:1)工作条件:两班制,连续单向运转,载荷较平稳,室 内工作,有粉尘,环境最高温度35℃; 2)使用折旧期:8年; 3)检修间隔期:一年一次大修,半年一次小修。 4)动力来源:电力,三相交流,电压380/220V; 5)运输带速度允许误差:±5%; 6)制造条件及生产批量:一般机械厂制造,小批量生产 7)已知运输链曳引力F=4KN,运输链速度v=1.6m/s,卷筒直径:D=400mm工作年限8年。 所需仪器设备:电脑。 成果验收形式:1.减速器装配图一张; 2.零件工作图2张( 齿轮和轴,同组的同学不能画相同的零件); 3.设计计算说明书一份 4. 机械设计课程设计结束时进行课程设计总结和答辩。 参考文献:1、《机械设计(第八版)》高等教育出版社 2、《机械设计课程设计手册(第3版)》高等教育出版社 3、《机械设计基础实训指导(第三版)》高等教育出版社 4、《机械原理(第七版)》高等教育出版社 5、《公差配合与技术测量(第3版)》高等教育出版社 时间 20**年12月13日~20**年12月27日 安排

指导教师:教研室主任: 年月日。

目录 一、设计任务书 (5) 二、动力机的选择 (5) 三、计算传动装置的运动和动力参数 (6) 四、传动件设计计算(齿轮) (10) 五、轴的设计.......... .......... .......... ........... .... .. . (20) 六、滚动轴承的选择及计算 (32) 七、键连接的选择及校核计算 (34) 八、联轴器的选择 (35) 九、设计总结 (37) 十、参考资料 (38)

弧齿锥齿轮主要参数的测绘计算

弧齿锥齿轮主要参数的测绘计

作者: 日期:

弧齿锥齿轮主要参数的测绘计算 零部件加工部麻俊方 弧齿锥齿轮具有承载能力高、运转平稳、噪音低等特点,在汽车行业中得到了广泛的应用。通常由一对弧齿锥齿轮组成汽车驱动桥主减速器的主要传动机构。弧齿锥齿轮的设计与测绘计算均比较复杂,下面仅介绍几种主要参数的测绘计算方法。 1.轴交角 一对弧齿锥齿轮副的住从动齿轮中心轴线交于一点。轴线间的交角刀可成任意角度,但在绝大多数汽车驱动桥上,主减速齿轮副都采用90°相交的布置。 2.齿制 渐开线锥齿轮的齿制很多,多达40多种,我国常用的齿制有Gleason(格利森)制、Oerlikon(奥利康)制、Kingelnberg(克林贝格)制三种。其中应用最广泛也是最常见到的是Gleaso n(格利森)制弧齿锥齿轮。不同的齿制,对应不同的参数计算方法与计算公式,在测量齿轮时一定要注意区分。 3?模数 弧齿锥齿轮模数是一个变值,由大端向小端与锥距成比例缩小,通常以大端面模数叫来计算。GB12368-9C规定了锥齿轮大端端面模数,其中以》1为例,有1、1.125、1.375、1.5、1.75、2等等。但是所测量的齿轮模数不一定为整数,也不一定符合标准模数系列。对于模数的测绘与计算,有以下方式:

1. 由测量的锥距R,可初步估算锥齿轮的大端模数 叫 h(用深度尺来测量)加以复核。对于等顶隙收缩齿(格里森制),齿顶高系数h a = 0.85,顶隙系 * 数C *=0.188则齿高 h=(2 h a +C *)m 。 * 由此得出模数m=h(2h a +C *),进而复核模数m s 。 t m s — 2. 测量出锥齿轮的周节t ,根据公式 来进行 计算,这种方法要求测量数据准 确无误,且被测绘齿轮无磨损现象。 3. 由齿顶圆直径反求模数。首先测绘出齿顶圆的直径尺寸,利用齿顶圆计算公式,然 后反求模数。所使用的反求公式为 4. 由刀顶距的数值计算模数。 弧齿锥齿轮铣刀盘的刀顶距W 叫席2 式中 m s —大端模数的估算数值; 1 0.5— L e ; R 因为 2 Z 2 ^ 、、, ,于是便可确定锥齿轮大 端模数 m 2R 人『云。然后实测齿高 m s Z i D ei 2 f 0 cos 1 2x 1 cos 1 D e2 z 2 2 f 0 cos 2 2x 2 cos 2

弧齿锥齿轮几何参数设计分解

弧齿锥齿轮几何参数设计分解

————————————————————————————————作者:————————————————————————————————日期: ?

第14章 弧齿锥齿轮的轮坯设计 14.1 弧齿锥齿轮的基本概念 14.1.1 锥齿轮的节锥 对于相交轴之间的齿轮传动,一般采用锥齿轮。锥齿轮有直齿锥齿轮和弧齿锥齿轮。弧齿锥齿轮副的形式如图14-1所示,与直齿锥齿轮相比,轮齿倾斜呈弧线形。但弧齿锥齿轮的节锥同直齿锥齿轮的节锥一样,相当于一对相切圆锥面作纯滚动,它是齿轮副相对运动的瞬时轴线绕齿轮轴线旋转形成的(图14-2)。两个相切圆锥的公切面成为齿轮副的节平面。齿轮轴线与节平面的夹角,即节锥的半锥角称为锥齿轮的节锥角δ1或δ2。两齿轮轴线之间的夹角称为锥齿轮副的轴交角∑。节锥任意一点到节锥顶点O 的距离称为该点的锥距Ri ,节点P 的锥距为R 。因锥齿轮副两个节锥的顶点重合,则 21δδ+=∑ 大小轮的齿数之比称为锥齿轮的传动比 1 2 12z z i = (14-1) 小轮和大轮的节点半径r1、r 2分别为 11sin δR r = 22sin δR r = (14-2) 它们与锥齿轮的齿数成正比,即 1 2 1212sin sin z z r r ==δδ (14-3) 传动比与轴交角已知,则节锥可惟一的确定,大、小轮节锥角计算公式为 ∑ +∑ = cos 1sin 12122i i tg δ 21δδ-∑= (14-4) 当0 90 =∑时,即正交锥齿轮 副,122i tg =δ 14.1.2弧齿锥齿轮的旋向与螺旋角 图14-2 锥齿轮的 (a) 左旋 图14-1 弧齿锥

(整理)弧齿锥齿轮几何参数设计

第14章 弧齿锥齿轮的轮坯设计 14.1 弧齿锥齿轮的基本概念 14.1.1 锥齿轮的节锥 对于相交轴之间的齿轮传动,一般采用锥齿轮。锥齿轮有直齿锥齿轮和弧齿锥齿轮。弧齿锥齿轮副的形式如图14-1所示,与直齿锥齿轮相比,轮齿倾斜呈弧线形。但弧齿锥齿轮的节锥同直齿锥齿轮的节锥一样,相当于一对相切圆锥面作纯滚动,它是齿轮副相对运动的瞬时轴线绕齿轮轴线旋转形成的(图14-2)。两个相切圆锥的公切面成为齿轮副的节平面。齿轮轴线与节平面的夹角,即节锥的半锥角称为锥齿轮的节锥角δ1或δ2。两齿轮轴线之间的夹角称为锥齿轮副的轴交角∑。节锥任意一点到节锥顶点O 的距离称为该点的锥距R i ,节点P 的锥距为R 。因锥齿轮副两个节锥的顶点重合,则 21δδ+=∑ 大小轮的齿数之比称为锥齿轮的传动比 1 2 12z z i = (14-1) 小轮和大轮的节点半径r 1、r 2分别为 11sin δR r = 22sin δR r = (14-2) 它们与锥齿轮的齿数成正比,即 1 2 1212sin sin z z r r ==δδ (14-3) 传动比与轴交角已知,则节锥可惟一的确定,大、小轮节锥角计算公式为 ∑ +∑ = cos 1sin 12122i i tg δ 21δδ-∑= (14-4) 当0 90=∑时,即正交锥齿轮副,122i tg =δ 14.1.2弧齿锥齿轮的旋向与螺旋角 1.旋向 弧齿锥齿轮的轮齿对母线的倾斜方向称为旋向,有左旋和右旋两种(图14-3)。面对轮齿观察,由小端到大端顺时针倾斜者为右旋齿轮(图14-3b ),逆时针倾斜者则为左旋齿(图14-3a )。 大小轮的旋向相图14-2 锥齿轮的节锥与节面 (a) 左旋 (b) 右旋 图14-1 弧齿锥齿轮副

单级锥齿轮减速器设计

机械课程设计 说明书 设计题目:带式运输机传动装置的设计专业班级: 学生姓名: 学生学号: 指导教师: 时间:2013-1-17

(1)引言……………………………………………………………………………………(2)设计题目………………………………………………………………………………(3)电动机的选择…………………………………………………………………………(4)传动零件的设计和计算……………………………………………………………(5)减速箱结构的设计…………………………………………………………………(6)轴的计算与校核………………………………………………………………………(7)键连接的选择和计算………………………………………………………………(8)联轴器的选择………………………………………………………………………(9)设计小结……………………………………………………………………………(10)参考文献……………………………………………………………………………

一、引言 课程设计是考察学生全面在掌握基本理论知识的主要环节。本次是设计一个锥齿轮减速器,减速器是用于电动机和工作机之间的独立的闭式传动装置。课程设计内容包括:设计题目,电机选择,运动学动力学计算,传动零件的设计及计算,减速器结构设计,轴的设计计算与校核。 锥齿轮减速器的计算机辅助机械设计,计算机辅助设计及计算机辅助制造(CAM/CAD)技术是当今设计以及制造领域广泛采用的先进技术,通过本课题的研究,将进一步深入的对这一技术进行深入的了解和学习。 减速器的设计基本上符合生产设计的要求,限于作者水平有限,错误之处在所难免,望老师予以批评改正。

等高齿弧齿锥齿轮的切齿计算是最简单的

圆弧等高齿锥齿轮的切齿计算是最简单的,可以用作图法进行: 一、计算大轮刀位、极角、大端小端螺旋角,垂直轮位的变化范围 1.O为摇台中心,M为齿面中点,OM长度为中点锥距; 2.在M点作直线,与X轴的夹角为螺旋角ps的直线; 3.作与上述直线垂直的直线MO C,截MO C=r C; 4.连接OO C,OO C的长就是刀位S,OO C与X轴的夹角q就是滚动中心的极角; 5.以O C为中心,以r C为半径作圆弧,它就是齿线,与内端和外端分别交于M i和M o; 6.连OM O、O C M O,与O C M O垂直的直线与OM O的夹角pso就是大端螺旋角。同样可以作 出小端螺旋角psi; 7.如图可以量出展成M O和M i点时的极角qo和qi,加工时摇台角在qi-Δ~qo+Δ之间变化, Δ可取3~5°; 8.垂直轮位展成时在r C cos(psi)~r C cos(pso)之间变化。 二、大轮加工时的轮位、床位 大轮加工时的垂直轮位为0,水平轮位为0,床位由 图可知 X BG = -b G B G为大轮齿根高。 大轮的安装角为大轮节锥角gama。 大轮加工时的滚比 R a = N C / N N C是冠轮齿数,N C = N/sinГ。N是大轮齿数,Г是大轮 节锥角。

三、大轮凸面、凹面中点的螺旋角和齿长曲率半径 ,刀顶距为W G,那么 设刀盘名义半径为r 大轮内刀、即大轮凸面的成形半径为 r i = r C - 0.5W G - b G tan(a) a为刀盘压力角,通常为20°。同样可知大 轮外刀,即大轮凹面的成形半径为 r O = r C + 0.5W G + b G tan(a) 它们当然可以用作图法求出。 大轮凸面中点的实际螺旋角可以用作图法 求得: 以S、A M、r i为边做三角形,由刀盘中心向 X轴作垂线,夹角psi就是大轮凸面计算点 的实际螺旋角。 同样可以求出大轮凹面计算点的实际螺旋 角pso。 四、小轮切齿计算 与大轮凸面相配的小轮凹面(用精外切刀加工)中点的压力角应该等于a,螺旋角应该等于psi,其成形半径应该比大轮凸面的成形半径大Δr,以形成曲率差,其大小与设计所要求的接触区长度有关。设齿宽为F,接触区长度比为B,那么 Δr = 0.0508(r C cosβ/BF)2 r po = r i+Δr 小轮凹面的刀位和极角可用图法求得:建坐标系,在X轴上取OM=A M。在M点作直线与X 轴的交角为psi,作与上述直线垂直的直线MO C,取MO C = r po。连接OO C,S po = OO C即为加工小轮凹面的刀位,OO C与X轴的夹角q po就是加工小轮的极角。同样的办法可以求出加工小轮凸面的刀位和极角。 和大轮加工一样,垂直轮位和水 平轮位均为0,床位 X BP = -b P 轮坯安装角为小轮节锥角γ。滚 比 R ap = N C /n 要注意的是小轮外刀的刀尖半 径为 r tpo = r po-b p tan(a) 内刀的刀尖半径 r tpi = r pi+b p tan(a)

弧齿锥齿轮设计计算表.docx

齿 轮 基 螺旋锥齿轮切齿数据调整表5698 本 参 数 : 齿数 端面模数 螺旋角 螺旋方向 外锥距 齿面宽 齿顶高 齿全高 齿侧间隙 节锥角 根锥角 压力角 理论外径 大端法向齿弦齿高规大端法向 弦齿厚 安装距 刀盘数据: 代码小轮大轮 Z2331 m 6.349999905 6.349999905 ?35°00′00.0 ″35°00′00.0 ″ 右旋左旋 L e122.5566483122.5566483 b3232 h 6.052 4.743 H11.98911.989 c.1 —.25 36°34′22.9 ″53°25′37.1 ″ 33°47′58.3 ″50°02′37.2 ″ 20°00′00.0 ″20°00′00.0 ″ 155.77202.503 5.978646755 4.679176331 8.0584850317.033198357 A134118 名义错刀量 刀号 刀片压刀尖 直径( w)力角直径 20°00 齿轮材料 机床调整数据 调整项目 工序项目 轮坯安装角 垂直轮位 水平轮位修正值 床位 滚比值 摇台角 偏心角 分齿时跳齿数 分齿挂轮 滚比挂轮 摇台检角 滚比检验 工件检角 切削速度(米/分) 切削速度挂轮 每齿进刀 进给挂轮 齿轮名称齿轮图号 uh k 机床型号Y225 大齿轮小齿轮 粗切精切粗切精切凹面精切凸面 50°02′37.2 ″33°47′58.3 ″ 00000 000-3.45 3.45 000 1.92-1.92 0.454153330.726645350.9991373420.963071110.963071108 88°35′51.5 ″ 322°50′318°21′313°16′ 18.0 ″18.0 ″15.0 ″ 44°29′20.7 ″ 44°29′42°32′46°26′50.5 20.7 ″39.9 ″″ 18111111 10/3116/3122/2322/2322/23 4°00′20°00′20°00′20°00′20°00′00.0 00.0 ″00.0 ″00.0 ″00.0 ″″ 4°58′24°51′33°30′32°18′34°45′43.2 19.3 ″36.6 ″25.8 ″29.6 ″″ 外切刀 大粗切内切刀轮 外切刀精切内切刀 ′00.0摆角挂轮 7.5″230.6 20°00 2292 ′00.0分度器旋转—分度齿厚减薄量 7.5″226.6 20°00 /厘米2) ′00.0液压夹紧压力(公斤 7.5″231.6 20°00 2293 ′00.0附: Y228 机床调整数据 7.5″225.6 20°00 0.0220.017 ′00.0摇台角83°50′52.9 ″318°05′313°36′308°31′ 外切刀 小粗切内切刀轮 外切刀 7.5″230.077 20°00 2291.48 ′00.0偏心角 7.5″227.123 20°00 1.67.5 ′00.0 230.2 ″ 20°00 34°59′23.5 ″ 19.0 ″19.0 ″16.0 ″ 34°59′33°29′36°29′48.7 23.5 ″20.8 ″″ 精切内切刀 ′00.0计算日期 229 1.67.5 ″227 第一 页 2001/4/12校对日期 第二页

机械机电毕业设计_设计单级圆锥齿轮减速器

课程设计说明书 班级: 姓名: 学号:0505231111 指导教师:

目录 一、传动方案拟定 (2) 二、电动机的选择 (2) 三、计算总传动比及分配各级的传动比 (4) 四、运动参数及动力参数计算 (5) 五、传动零件的设计计算 (6) 六、轴的设计计算 (8) 七、滚动轴承的选择及校核计算 (10) 八、键联接的选择及计算 (13) 九、设计小结 (14) 十、参考资料目录 (15) 传动方案拟定

第四组:设计单级圆锥齿轮减速器 一、设计任务书 设计一混料机传动及直齿圆锥齿轮减速器。 设计参数如下表所示。 1. 减速器输出轴转矩T=80(N?m ) 2.减速器输出轴转速n=140r/min 运转方向不变,工作载荷平稳;工作寿命10年,每年300个工作日,每日工作8小时 部件:1电动机 2V 带传动 3减速器 4联轴器 5混料机 传动方案设计如下: 二、电动机选择 1、电动机类型的选择: Y 系列三相异步电动机 2、电动机功率选择: η w P Pd = 5432 21ηηηηηη= 式中1η、2η、3η、4η、5η依次为V 带传动、齿轮传动轴承、锥齿轮传动、联轴器传动、滚子链轴承的效率。取η1=0.96、η2=0.99、η3=0.95、η4=0.96、η5=0.99 n=1min 140-?r

KW P P w d 47.4'== η KW P P d D 59.5'== 3、电动机的转速w n 为1min 140-?r ,按照推荐的合理传动比范围,取V 带传动的传动比4~2'1=i ,单级锥齿轮传动的传动比3~2' 2=i ,则合理传 动比的范围12~4'=i ,故电动机转速的可选范围是 ' ''w d n i n = ' d n =560~16801min -?r 符合这一范围的同步转速有7501min -?r 、10001min -?r 、15001min -?r ,再跟据计算出的功率,由《机械设计基础课程设计》附录2.1得三种电动机型号。技术参数如下图: 方案1、方案3虽然总传动比都不大,但机座较高,而且方案3中电动机机座较高,所以选方案3。

三级圆柱圆锥齿轮减速器的设计

1 绪论 通过查阅一些文献我们可以了解到带式传动装置的设计情况,为我所要做的课题确定研究的方向和设计的容。 1.1 带传动 带传动是机械设备中应用较多的传动装置之一,主要有主动轮、从动轮和传动带组成。工作时靠带与带轮间的摩擦或啮合实现主、从动轮间运动和动力的传递。 带传动具有结构简单、传动平稳、价格低廉、缓冲吸振及过载打滑以保护其他零件的优点。 1.2圆锥-圆柱齿轮传动减速器 YK系列圆锥-圆柱齿轮传动减速器适用的工作条件:环境温度为-40~40度;输入轴转速不得大于1500r/min,齿轮啮合线速度不大于25m/s,电机启动转矩为减速器额定转矩的两倍。YK系列的特点:采用一级圆弧锥齿轮和一、二、三级圆柱齿轮组合,把锥齿轮作为高速级(四级减速器时作为第二级),以减小锥齿轮的尺寸;齿轮均采用优质合金钢渗碳淬火、精加工而成,圆柱齿轮精度达到 GB/T10095中的6级,圆锥齿轮精度达到GB/T11365中的7级;中心距、公称传动比等主要参数均采用R20优先数系;结构上采用模块

式设计方法,主要零件可以互换;除底座式实心输出轴的基本型外,还派生出输出轴为空心轴的有底座悬挂结构;有多中润滑、冷却、装配型式。所以有较大的覆盖面,可以满足较多工业部门的使用要求。 减速器的选用原则:(1)按机械强度确定减速器的规格。减速器的额定功率P1N 是按载荷平稳、每天工作小于等于10h、每小时启动5次、允许启动转矩为工作转矩的两倍、单向运转、单对齿轮的接触强度安全系数为1、失效概率小于等于1%等条件算确定.当载荷性质不同,每天工作小时数不同时,应根据工作机载荷分类按各种系数进行修正.减速器双向运转时,需视情况将P1N乘上0.7~1.0的系数,当反向载荷大、换向频繁、选用的可靠度K R较低时取小值,反之取大值。功率按下式计算:P2m=P2*K A*K S*K R ,其中P2 为工作功率;K A 为使用系数; K S 为启动系数; K R 为可靠系数。(2)热功率效核.减速器的许用热功率P G适用于环境温度20℃,每小时100%连续运转和功率利用律(指P2/P1N×100%)为100%的情况,不符合上述情况时,应进行修正。(3)校核轴伸部位承受的径向载荷。 2结构设计 2.1V带传动

单级圆锥齿轮减速器说明书知识讲解

目录 一、设计任务书 (1) 二、电动机的选择 (2) 三、计算总传动比及分配各级的传动比 (4) 四、运动参数及动力参数计算 (4) 五、传动零件的设计计算 (7) 六、轴的设计计算 (12) 七.箱体结构设计 (21) 八、键联接的选择及计算 (23) 九、滚动轴承的选择及计算 (24) 十、密封和润滑的选择 (24) 十一.联轴器的选择 (25) 十二、课程设计小结 (26) 十三、参考文献 (27)

课程设计任务书 一、设计任务:设计胶带输送机的传动装置(见下图)工作条件如下表 工作年限8 工作班 制2 工作环 境 清洁 载荷性质平稳生产批量小批 动力来源电力,三相交流电,电压380/220 检修间隔四年一次大修,两年一次中修二、原始数据: 滚筒圆周力F (N) 2500 带速V(m/s) 1.4 滚筒直径D(mm)300 滚筒长度(mm) 450 三、主要设计内容 1.选择电动机; 2.设计链传动和直齿轮传动; 3.设计轴并校核; 4.设计滚动轴承并校核; 5.选择联轴器; 6.选择并验算键; 7.设计减速器箱体及附件; 8.确定润滑方式。

n=60×1000v/πD =60×1000×1.4/π×300 r/min =89.13 r/min 根据[1]P7表1推荐的传动比,取圆锥齿轮传动比i1,=2~3再取链传动比i2’=2~6,则总传动比合理的范围为i a’=4~18 故电动机转速的可选范为 n d’= i a’.n =(4~18) ×89.13 r/min =356.5~1604.3 r/min 则符合这一范围的同步转有750、1000 和1500r/min 额定功率大于4.12Kw的有:Y132M2-6. 其主要性能见下表: 电动机型号额定功率 (Kw) 满载转速 /(r/min) 堵转转矩最大转矩质量 /kg 额定转矩额定转矩 Y132M2-6. 5.5 960 2.0 2.0 84 电动机主要外形和安装尺寸列于下表 中心高 H 外形尺寸 L×(AC/2+AD)×HD 底角安装尺寸 A×B 地脚螺栓孔直径 K 轴伸尺寸 D×E 装键部位尺寸 F×GD 132 515×(270/2+210) ×315 216×178 12 38×80 10×33

二级圆锥圆柱齿轮减速器设计(就这个)

机械设计课程设计任务书 设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容: (1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张 系统简图: 原始数据:运输带拉力 F=2100N ,运输带速度 s m 6.1=∨,滚筒直径 D=400mm 工作条件:连续单向运转,载荷较平稳,两班制。环境最高温度350C ;允许运输带速度误差为±5%, 小批量生产。

设计步骤: 一、 选择电动机和计算运动参数 (一) 电动机的选择 1. 计算带式运输机所需的功率:P w = 1000FV =1000 6 .12100?=3.36kw 2. 各机械传动效率的参数选择:1η=0.99(弹性联轴器), 2η=0.98(圆锥 滚子轴承),3η=0.96(圆锥齿轮传动),4η=0.97(圆柱齿轮传动),5η=0.96(卷筒). 所以总传动效率:∑η=2 1η4 2η3η4η5η =96.097.096.098.099.042???? =0.808 3. 计算电动机的输出功率:d P = ∑ ηw P = 808 .036 .3kw ≈4.16kw 4. 确定电动机转速:查表选择二级圆锥圆柱齿轮减速器传动比合理范围 ∑'i =8~25(华南理工大学出版社《机械设计课程设计》第二版朱文坚 黄 平主编),工作机卷筒的转速w n =400 14.36 .1100060d v 100060???= ?π=76.43 r/min , 所 以 电 动机转速范围为 min /r 75.1910~44.61143.7625~8n i n w d )()(’=?= =∑。则电动机同步转速选择可选为 750r/min ,1000r/min ,1500r/min 。考虑电动机和传动装置的尺寸、价格、及结构紧凑和 满足锥齿轮传动比关系(3i i 25.0i ≤=I ∑I 且),故首先选择750r/min ,电动机选择如表所示 表1 (二) 计算传动比: 1. 总传动比:420.943 .76720 n n i w m ≈== ∑

圆锥齿轮参数设计

圆锥齿轮参数设计 0.概述 锥齿轮是圆锥齿轮的简称,它用来实现两相交轴之间的传动,两轴交角S称为轴角,其值可根据传动需要确定,一般多采用90°。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,如下图所示。由于这一特点,对应于圆柱齿轮中的各有关"圆柱"在锥齿轮中就变成了"圆锥",如分度锥、节锥、基锥、齿顶锥等。锥齿轮的轮齿有直齿、斜齿和曲线齿等形式。直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s);曲线齿锥齿轮具有传动平稳、噪声小及承载能力大等特点,用于高速重载的场合。本节只讨论S=90°的标准直齿锥齿轮传动。 1. 齿廓曲面的形成 直齿锥齿轮齿廓曲面的形成与圆柱齿轮类似。如下图所示,发生平面1与基锥2相切并作纯滚动,该平面上过锥顶点O的任一直线OK的轨迹即为渐开锥面。渐开锥面与以O为球心,以锥长R为半径的球面的交线AK为球面渐开线,它应是锥齿轮的大端齿廓曲线。但球面无法展开成平面,这就给锥齿轮的设计制造带来很多困难。为此产生一种代替球面渐开线的近似方法。 2. 锥齿轮大端背锥、当量齿轮及当量齿数 (1) 背锥和当量齿轮 下图为一锥齿轮的轴向半剖面,其中DOAA为分度锥的轴剖面,锥长OA称锥距,用R 表示;以锥顶O为圆心,以R为半径的圆应为球面的投影。若以球面渐开线作锥齿轮的齿廓,则园弧bAc为轮齿球面大端与轴剖面的交线,该球面齿形是不能展开成平面的。为此,再过A作O1A⊥OA,交齿轮的轴线于点O1。设想以OO1为轴线,以O1A为母线作圆锥面O1AA,该圆锥称为锥齿轮的大端背锥。显然,该背锥与球面切于锥齿轮大端的分度圆。由于大端背锥母线1A与锥齿轮的分度锥母线相互垂直,将球面齿形的圆弧bAc投影到背锥上得到线段 b'Ac',圆弧bAc与线段b'Ac'非常接近,且锥距R与锥齿轮大端模数m之比值愈大(一般R/m>30),两者就更接近。这说明:可用大端背锥上的齿形近似地作为锥齿轮的大端齿形。由于背锥可展开成平面并得到一扇形齿轮,扇形齿轮的模数m、压力角a和齿高系数ha*等参数分别与锥齿轮大端参数相同。再将扇形齿轮补足成完整的直齿圆柱齿轮,这个虚拟的圆

弧齿锥齿轮的加工调整计算

第15章 弧齿锥齿轮的加工调整计算 弧齿锥齿轮的切齿是按照“假想齿轮”的原理进行的,而采用的切齿方法要根据具体情况而定。 15.1 弧齿锥齿轮的切齿原理与刀号 对于收缩齿弧齿锥齿轮的加工,通常采用平顶齿轮原理进行加工。就是在切齿的过程中,假想有一个平顶齿轮与机床摇台同心,它通过机床摇台的转动而与被切齿轮做无隙的啮合。这个假想平顶齿轮的轮齿表面,是由安装在机床摇台上的铣刀盘刀片切削刃的相对于摇台运动的轨迹表面所代替,如图15-1中所示。在这个运动过程中,代表假想平顶齿轮轮齿的刀片切削刃就在被切齿轮的轮坯上逐渐地切出齿形。YS2250(Y225)和Y2280等机床就是按“假想平顶齿轮”原理设计的。 在调整切齿机床的时候,必须使被切齿轮的节锥面与假想平顶齿轮的节锥面相切并做纯滚动。而切齿时刀顶旋转平面则需和被切齿轮的根锥相切,也就是说,刀盘轴线与根锥母线垂直,而非与节锥母线垂直,如图15-2所示。所以铣刀 盘轴线与被切齿轮的节锥面倾斜了一个大小等于被切齿轮齿根角θf 的角度,使被切齿轮两则齿面的压力角出现了误差,这样就产生了刀号修正问题。 如图15-2,用螺旋角接近900时的情况予以说明刀号与压力角的关系。由于在切齿时采用了“平顶产形轮”原理,工件是按照根锥角进行安装的,铣刀盘轴线垂直于根锥母线,因而和节锥母线倾斜一个齿根角θf 。这样,当外切刀片与内切刀片使用相同的压力角时,切出来的齿轮凹面与凸面在节锥上的压力角是不相等的(α”≠α’)。如果要使轮齿中点处的两侧压力角相等,就需要对刀具的两个侧刃的压力角进行修 图15-1弧齿锥齿轮的切齿原理 摇台 刀盘 被加工齿轮

单级锥齿轮减速器课题设计

(1)引言……………………………………………………………………………………(2)设计题目………………………………………………………………………………(3)电动机的选择…………………………………………………………………………(4)传动零件的设计和计算……………………………………………………………(5)减速箱结构的设计…………………………………………………………………(6)轴的计算与校核………………………………………………………………………(7)键连接的选择和计算………………………………………………………………(8)联轴器的选择………………………………………………………………………(9)设计小结……………………………………………………………………………(10)参考文献…………………………………………………………………………… 二、设计题目:带式运输机传动装置的设计 1. 传动方案 锥齿轮减速器——开式齿轮 2. 带式运输机的工作原理 如图20-1

3. 工作情况 1)工作条件:两班制,连续单向运转,载荷较平稳,室内工作,有粉尘,环境最高温度35度; 2)使用折旧期:8年; 3)检修间隔期:四年一次大修,两年一次中修,半年一次小修; 4)动力来源:电力,三相流,电压380、220V ; 5)运输带速度允许误差:±5%; 6)制造条件及生产批量:一般机械厂制造,小批量生产。 4.设计数据 运输带工作拉力F/N 2800 运输带工作速度V/(m/s ) 1.4 卷筒直径D/mm 350 5 设计内容 1)按照给定的原始数据和传动方案设计减速器装置; 2)完成减速器装配图1张; 3)零件工作图1-3张; 4)编写设计计算说明书一份。 三、电动机的选择: (一)、电动机的选择 1、选择电动机的类型: 按工作要求和条件,选用三机笼型电动机,封闭式结构,电压380V ,Y 型。 2、选择电动机容量 : 电动机所需的功率为:kw a w d p p η=

一级圆锥齿轮减速器.

机械设计课程设计 说明书 题目:一级圆锥齿轮减速器 指导老师: 学生姓名: 学号: 所属院系:机械工程学院 专业:机械工程及自动化 班级:机械10-2 完成日期:2014年1月25日 目录 第一章机械设计课程设计任务书

1.1设计题目 (1) 第二章电动机的选择2 2.1选择电动机类型 (2) 2.2确定电动机的转速 (3) 第三章各轴的运动及动力参数计算 3.1 传动比的确定 (4) 3.2 各轴的动力参数计算 (4) 第四章锥齿轮的设计计算 4.1选精度等级、材料及齿数 (5) 4.2按齿面接触强度设计 (5) 第五章链传动的设计 (8) 第六章轴的结构设计 6.1 轴1(高速轴)的设计与校核 (9) 6.2 轴2(低速轴)的设计 (10) 第七章对轴进行弯扭校核 7.1输入轴的校核轴 (12) 7.2输入轴的校核 (13) 第八章轴承的校核 8.1输入轴的校核 (14) 8.2输出轴的校核 (15) 第九章键的选择与校核 (16) 第十章减速箱体结构设计 10.1 箱体的尺寸计算 (18) 10.2窥视孔及窥视孔 (20) 设计小结 (23) 参考文献 (24)

第一章机械设计课程设计任务1.1设计题目 1)减速器装配图一张; 2)零件工作图二张(大齿轮,输出轴); 3)设计说明书一份。

第二章电动机的选择 2.1选择电动机类型 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y系列全封闭自冷式笼型三相异步电动机,电压380V。 1. 电动机容量的选择 1)工作机所需功率 p w =FV=2800×1.8=5.04KW 电动机的输出功率Pd=p w/η 2)效率: 弹性连轴器工作效率η 1 =0.99 圆锥滚子轴承工作效率η 2 =0.99 锥齿轮(8级)工作效率η 3 =0.97 滚子连工作效率η 4 =0.96 传动滚筒工作效率η 5 =0.96 传动装置总效率: η=η1×η23×η3×η4×η 5 =0.99×0.993×0.97×0.96×0.96=0.87 则所需电动机功率为: Pd=p w/η=5.04/0.87=5.79KW 取P d=5.7KW 2.2电动机转速的选择 滚筒轴工作转速 n w =60×1000v/πD=60×1000×1.8/π×320r/min=107r/min (5)通常链传动的传动比范围为i 1=2-5,一级圆锥传动范围为i 2 =2-4,则总的传动比范 围为i=4-20,故电动机转速的可选范围为n 机= n w ×i=(4~20)×107=428-2140 r/min (6)符合这一范围的同步转速有750 r/min,1000 r/min,1500 r/min,现以同步转速750 r/min,1000 r/min,1500 r/min三种方案比较,由第六章相关资料查的电动机

圆锥齿轮的画法讲解学习

圆锥齿轮的画法 单个圆锥齿轮结构画法 [文本] 圆锥齿轮通常用于交角 90°的两轴之间的传动,其各部分结 构如图所示。齿顶圆所在的锥面称为顶锥面、大端端面所在的锥面称为背锥,小端端面所在的锥面称为前锥,分度圆所在的锥面称为分度圆锥,该锥顶角的半角称为分锥角,用δ表示。 圆锥齿轮的轮齿是在圆锥面上加工出来的,在齿的长度方向上模数、齿数、齿厚均不相同,大端尺寸最大,其它部分向锥顶方向缩

小。为了计算、制造方便,规定以大端的模数为准计算圆锥齿轮各部分的尺寸,计算公式见下表。 其实与圆柱齿轮区别也不大,只是圆锥齿轮的计算参数都是打断的参数,齿根高是1.2倍的模数,比同模数的标准圆柱齿轮的齿顶高要小,另外尺高的方向垂直于分度圆圆锥的母线,不是州县的平行方向。 单个圆锥齿轮的画法规则同标准圆柱齿轮一样,在投影为非圆的视图中常用剖视图表示,轮齿按不剖处理,用粗实线画出齿顶线、齿根线,用点画线画出分度线。在投影为非圆的视图中,只用粗实线画出大端和小端的齿顶圆,用点画线画出大端的分度圆,齿根圆不画。[文本] 注意:圆锥齿轮计算的模数为大端的模数,所有计算的数据都是大端的参数,根据大端的分度圆直径,分锥角画出分度线细点画线,

量出齿顶高、齿根高,即可画出齿顶和齿根线,根据齿宽,画出齿形部分,其余部分根据需要进行设计。 单个齿轮的画法同圆柱齿轮的规定完全相同。应当根据分锥角,画出分度圆锥的分度线,根据分度圆半径量出大端的位置,根据齿顶高、齿根高找出大端齿顶和齿根的位置,向分度锥顶连线,就是顶锥(齿顶圆锥)和根锥(齿根圆锥),根据齿宽量出分度圆上小端的位置,做分度圆线的垂直线,其他的次要结构根据需要设计即可。 啮合画法 [文本]

相关文档
相关文档 最新文档