文档库 最新最全的文档下载
当前位置:文档库 › 离子晶体的红外光学性质

离子晶体的红外光学性质

红外透波材料的研究发展

红外透波材料的研究发展 摘要:红外透波材料是指对红外线透过率高的材料,是红外技术的应用基础之一。本文介绍了几类常用红外透过材料的基本性质,简述了其制备技术及发展现状,并讨论了各自存在问题,并对红外透波材料未来发展进行了展望。 关键词:红外透波材料;玻璃;晶体;陶瓷;制备技术 1引言 目前,红外技术与激光技术并驾齐驱,在军事上占有举足轻重的地位。红外成像、红外侦察、红外跟踪、红外制导、红外预警、红外对抗等在现代和未来战争中都是很重要的战术和战略手段。在二十世纪70年代以后,军事红外技术又逐步向民用部门转化。标志红外技术最新成就的红外热成像技术,与雷达、电视一起构成当代三大传感系统,尤其是焦平面列阵技术的采用,将使发展成可与眼睛相媲美的凝视系统。而红外透波材料是红外热成像系统的光学元件的重要材料。红外透波材料不但要求具有高性能、小体积,还要造价低。高性能主要包括:结构完整、组分均匀以免发生散射,在测量波段内具有高红外透射率;热稳定性好,透射比和折射率不应随温度变化而变化;载流子寿命长,不宜潮解,耐酸碱腐蚀性好;力学性能优良,可以承受高运动的速压载荷等。 2 红外透波材料的特征值 透过率 一般透过率要求在50%以上,同时要求透过率的频率范围要宽。红外透波材料的透射短波限,对于纯晶体,决定于其电子从价带跃迁到导带的吸收,即其禁带宽度。透射长波限决定于声子吸收,和晶格结构及平均原子量有关。 折射率和色散 不同材料用途不同,对折射率的要求也不相同。对于窗口和整流罩的材料要求折射率低,以减少反射损失。对于透镜、棱镜、红外光学系统要求尽量高的折射率。 发射率 对红外透波材料的发射率要求尽量低,以免增加红外系统的目标特征,特别是军用系统易暴露。 其他 和选择其他光学材料一样,都要注意其力学、化学、物理性质,要求温度稳定性好,对水、气稳定,力学性质主要有弹性模量、扭转刚度、泊松比、拉伸强度和硬度。物理性质包括熔点、热导率、膨胀系数及可成型性。此外要强调的物性是材料的热导率要高,特别是用于高速飞行器的时候。 3 红外透波材料的种类 玻璃 玻璃的光学均匀性好,易于加工成型,价格便宜。缺点是透过波长较短,使用温度低于500℃。目前研究的红外透波玻璃材料主要有:氧化物红外玻璃、硫系玻璃和氟化物玻璃。

许宪岳压电超晶格中极化激元的色散关系计算

1 绪论 引言 长期以来,人们对具有周期结构的物质的研究始终兴趣不减。晶体中的周期性势场导致在其中运动的电子的能带结构,只有处于通带中的电子才能在晶体中自由运动,处于禁带中的电子则不能传播。在诸如超晶格的人工材料中,对相关物理参数的周期性调制也同样会引起带结构。比如对介电常数进行调制则形成光子晶体[]1,它在抑制自发辐射,控制光的传播路径和制备新型激光器等方面有重要应用前景[]1;对非线性光学系数进行调制则可应用于准位相匹配频率转换[]2。近来由周期性弹性材料组成的声子晶体也引起了人们的关注[]3。这种调制结构可以拓展到准周期、非周期乃至二维结构.被调制的参数可以更为复杂些,比如对铁电畴或压电系数进行调制。两个甚至更多的参数被同时调制会引起一些耦合效应。 在晶体中,电子、光子和声子之间会发生耦合。例如,在离子晶体中晶格振动的横光学声子和光子的耦合产生极化激元并导致红外吸收。如果超晶格中铁电畴或压电系数受到调制,则会引起超晶格振动和电磁波间的耦合。可以预计在这样的人工材料中会有类似的诸如激发极化激元等效应的出现.这一想法已经在横超晶格振动与光子的耦合中得到了证实[]4。 国内外研究状况 自从我国著名的科学家黄昆教授提出极化激元这一概念以来,对极化激元的研究一直以来就是一个非常热门的领域。极化激元是凝聚态物质中一类重要的元激发,是电磁波与物质极化波的混合态或耦合模[5]。 1950年黄昆教授综合介质的电磁理论和晶格动力学理论对极性晶体提出了一对唯象方程。这个方程提供了处理极性晶体光学振动的基础,称为“黄方程”。1951年黄昆教授从黄方程出发,又推导出晶体中的声子与电磁波的耦合振荡模式。他所预见的声子与电磁波的耦合振动模式于1963年首先被半导体磷化镓的Raman散射实验所证实,被命名为极化激元。

红外光学材料大全

红外光学材料 1,进口CVD硒化锌(ZnSe)红外光学材料 CVD硒化锌(ZnSe)是一种化学惰性材料,具有纯度高,环境适应能力强,易于加工等特点。它的光传输损耗小,具有很好的透光性能。是高功率CO2激光光学元件的首选材料。由于该红外材料的折射率均匀和一致性很好,因此也是前视红外(FLIR)热成像系统中保护窗口和光学元件的理想材料。同时,该材料还广泛用于医学和工业热辐射测量仪和红外光谱仪中的窗口和透镜。 CVD ZINC SELENIDE Transmission Wavelength in Micrometers (t=8mm) 光学性质: 透过波长范围0.5μm---22μm 折射率不均匀性(Δn/n)<3×10- 吸收系数(1/cm) 5.0×10-3@1300nm 7.0×10-4@2700nm 4.0×10-4@3800nm 4.0×10-4@5250nm 5.0×10-4@10600nm 热光系数dn/dT(1/k,298—358k) 1.07×10-

折射率n随波长的变化(20℃) 理化性质: 激光损伤阈值:(10600nm脉冲激光,脉冲宽度=15μs) 2,进口CVD硫化锌(ZnS)红外光学材料

CVD硫化锌是一种化学惰性材料,具有纯度高,不溶于水,密度适中,易于加工等特点,广泛应用于红外窗口,整流罩和红外光学元件的制作。和硒化锌(ZnSe)一样,硫化锌(ZnS)也是一种折射率均匀性和一致性好的材料,在8000nm—12000nm波段具有很好的图像传输性能,该材料在中红外波段也有较高的透过率,但随着波长变短,吸收和散射增强。与硒化锌(ZNSE)相比,硫化锌的价格低,硬度高,断裂强度是硒化锌的两倍,抗恶劣环境的能力强,非常适合用于制造导弹整流罩和军用飞行器的红外窗口。 透过率曲线: CVD ZINC SULFIDE Transmission(CVD硫化锌) Wavelength in Micrometer (t =6mm) CLEARTRAN Transmission(多光谱CVD硫化锌) Wavelength in Micrometers (t=9.4mm) CVD硫化锌多光谱CVD硫化锌 密度(g . cm-3 @ 298k) 4.09 4.09 电阻率(Ω. Cm) ~1012~101.3

红外光学玻璃与红外晶体材料光学特性

一、红外光学玻璃与红外晶体材料光学特性: 1.晶体材料 晶体材料包括离子晶体与半导体晶体离子晶体包括碱卤化合物晶体, 碱土—卤族化合物晶体及氧化物及某些无机盐晶体。半导体晶体包括Ⅳ族单元素晶体、Ⅲ~Ⅴ族化合物和Ⅱ~Ⅵ族化合物晶体等。离子型晶体通常具有较高的透过率, 同时有较低的折射率, 因而反射损失小, 一般不需镀增透膜, 同时离子型晶体光学性能受温度影响也小于非离子型 晶体。半导体晶体属于共价晶体或某种离子耦合的共价键晶体。晶体的特点是其物理和化学特性及使用特性的多样性。晶体的折射率及色散度变化围比其它类型材料丰富得多。可以满足不同应用的需要, 有一些晶体还具备光电、磁光、声光等效应, 可以用作探测器材料。[1] 按部晶体结构晶体材料可分为单晶体和多晶体 ①单晶体材料 表1.1 几种常用红外晶体材料[1] 名称化学组成透射长波限/ μm 折射率/4.3μ m 硬度/克氏密度/(g·cm-3)溶解度 /(g·L-3)H2O 金刚石C30 2.48820 3.51不溶锗Ge25 4.02800 5.33不溶硅Si15 3.421150 2.33不溶石英晶体SiO2 4.5 1.46740 2.2不溶兰宝石Al2O3 5.5 1.681370 3.98不溶氟化锂LiF8.0 1.34110 2.600.27氟化镁MgF28.0 1.35576 3.18不溶氟化钡BaF213.5 1.4582 4.890.17氟化钙CaF210.0 1.41158 3.180.002溴化铊TLBr34 2.35127.560.05金红石TiO2 6.0 2.45880 4.26不溶砷化镓GaAs18 3.34(8μm)750 5.31不溶氯化钠NaCl25 1.5217 2.1635 硒化锌ZnSe22 2.4150 5.27不溶锑化铟InSb16 3.99223 5.78不溶硫化锌ZnS15 2.25354 4.09不溶KRS-5TLBr-TLI45 2.38407.370.02 KRS-6TLBr-TLCl30 2.19357.190.01 ②多晶体材料

非线性光学晶体的研究现状

非线性光学晶体的研究现状 摘要 本文论述了近几年的非线性光学晶体的研究现状,重点介绍了非线性光学晶体中的两大类:无机非线性晶体和有机非线性晶体的研究现状。 关键字:非线性光学晶体;无机;有机;现状; 1.引言 1961年, Franken首次发现了水晶激光倍频现象。这一现象的发现,不仅标志着非线性光学的诞生, 而且强有力地促进了非线性光学晶体材料的迅速发展。 随着非线性光学的深入研究和新型材料的不断发展, 使得非线性光学晶体材料在信息通讯、激光二极管、图像处理、光信号处理及光计算等众多领域都具有极为重要的作用和巨大的潜在应用,这些研究与应用对非线性光学晶体又提出了更多更高的物理化学性能要求, 同时许多应用也还在层出不穷地发展中,正是由于非线性光学晶体有着如此广阔的应用前景以及这些应用可能带来的光电子技术领域的重大突破,所以寻找与合成性能优异的新型非线性光学晶体一直是一个非常重要的课题,成为该领域人们关注的热点之一。 2.无机非线性光学晶体 无机非线性光学晶体是人们研究得较早的非线性光学材料, 大致可分为:(1)无机盐类晶体,包括硼酸盐、磷酸盐、碘酸盐、铌酸盐、钛酸盐等盐类晶体;(2)半导体型非线性光学晶体, 如Te、Se、GaAs、ZnSe、CdGeAs2 和CdGe(As1-xP)2等。随着激光科学与技术的不断发展,在频率转换方面,无机非线性光学晶体材料起着越来越重要的作用,下面我简单介绍几种。 (1)Cr : KTP晶体 晶体磷酸钦氧钾(KITOPO4,KTP )是一种具有优良性能的非线性光学晶体,具有非线性光学系数大, 透光波段宽,化学性能稳定,耐高温等特性.现已广泛地被用于激光频率转换领域.近些年来,随着光电子技术的发展,人们对掺杂KTP型晶体进行了多方面的研究,已形成了一系列KTP晶体家族.掺入有价值的稀土离子并使其符合发光要求,可获得激光自倍频晶体.1990年,LinJT首次简单地报道了Cr: KTP晶体实现激光自倍频运转情况. Cr : K T P 晶体的荧光发射波段为8 00-8 50n m, 可望在自倍频后转换成波长为400-425nm的蓝色激光输出.但Cr: K T P晶体对蓝光有较强的吸收, 可采用晶体的定向生长方法来加以弥补.波长800-850nm 的基频光, 远小于KTP晶体的n类位相匹配的截止波长(1000nm左右), 因此, 当Cr :KTP晶体自倍频时, 只能使用I类位相匹配,而I类相匹配的有效非线性光学数相当小.但随着对KTP晶体应用研究的深入,特别是它在光波导领域中的应用,人们已成功地研制出多种新的位相匹配技术,如准位相匹配技术,实现了高效率I类倍频转换,输出波长范围为380-480nm,效率已超过50 % /w·cm2, 这些新的应用技术的发明,为进一步研究Cr:KTP晶体的激光自倍频效应展示出广阔的应用前景。 (2)AgGaS2 和AgGaSe2 晶体 AgGaS2 属于黄铜矿结构的晶体,点群42m。其透过范围从0.53 ~12μm。尽管它是以上提到的所有红外晶体中非线性光学参数最小的,但由于它达到550 nm的超短波透明性, 可用在Nd:YAG激光器泵浦的OPO中以及使用二氧化碳、Ti:蓝宝石、Nd:YAG与IR 染料,波长范围3-12μm的激光器的各种不同混频试验中。它还应用于直接对抗红外系统和CO2激光器的SHG。 AgGaSe2 也属于黄铜矿结构。具有0.73 ~18μm的透过波段范围。它的有效传输范围是0.9 ~16 μm,当使用各种现行常用的激光器泵浦时,其相位匹配范围大的特点使其应用到OPO中具有很大潜力;当使用波长2.05μm的Ho:YLF激光器泵浦时, 波长在 2.5 ~

红外Ga2S3_Sb2S3硫系玻璃的热稳定性及光学性能

第44卷第6期2016年6月 硅酸盐学报Vol. 44,No. 6 June,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/ab6181791.html, DOI:10.14062/j.issn.0454-5648.2016.06.08 红外Ga2S3–Sb2S3硫系玻璃的热稳定性及光学性能 李戈1,徐铁峰2,3,戴世勋2,3,张腾宇1,张勤远4,焦清2,3 (1. 宁波大学信息科学与工程学院,浙江宁波 315211;2. 宁波大学高等技术研究院,浙江宁波 315211; 3. 浙江省光电探测材料及器件重点实验室,浙江宁波 315211; 4. 华南理工大学发光材料与器件国家重点实验室,广州 510640) 摘要:采用真空熔融淬冷法制备Ga x Sb40–x S60硫系玻璃样品,并通过Archimedes法、X射线衍射、热膨胀系数分析、可见/近红外光谱吸收度与透过率、中远红外光谱透过率以及Raman散射光谱等研究了硫系玻璃样品的结构、热稳定性和光学性能。结果表明:随着Ga含量的增加,玻璃密度逐渐下降,玻璃转变温度逐渐提高,热膨胀系数不断减小,表明玻璃具有良好的热稳定性;玻璃的可见/近红外短波截止边均发生蓝移,光学带隙增大,而且保持了良好的红外透过率,其较宽的红外透过范围(0.8~14.0μm),涵盖了目前3大主要通信波段和热红外波段,Ga–Sb–S玻璃已成为极具前景的红外材料。Ga含量增加促进[GaS4]四面体的形成,减少[SbS3]三角锥的比例,归纳了该类硫系玻璃的光学性质与结构的依赖关系。 关键词:硫系玻璃;红外光学;光学特性;镓含量;玻璃结构 中图分类号:TN213 文献标志码:A 文章编号:0454–5648(2016)06–0830–06 网络出版时间:2016–05–06 10:33:00 网络出版地址:https://www.wendangku.net/doc/ab6181791.html,/kcms/detail/11.2310.TQ.20160506.1033.008.html Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3 LI Ge1, XU Tiefeng2,3, DAI Shixun2,3, ZHANG Tengyu1, ZHANG Qinyuan4, JIAO Qing2,3 (1. Faculty of Electrical Engineering and Computer Science, NingBo University, Ningbo 315211, Zhejiang, China; 2. Advanced Technology Research Institute, Ningbo University, Ningbo 315211, Zhejiang, China; 3. Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, Zhejiang, China; 4. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China) Abstract:Series of Ga x Sb40–x S60 chalcogenide glasses were synthesized by a melt-quenching method. The thermal and optical properties of sample glasses were determined by the Archimedes principle, X-ray diffraction, thermal expansion, ultra violet–visible–near infrared absorption spectroscopy, and Fourier transform infrared spectroscopy, respectively. The structures of the samples with different compositions were analyzed by Raman spectroscopy. The results show that all of the glasses have good thermal stability and spectral properties. The density decreases slightly, the glass transition temperature improves, and the thermal expansion coefficient reduces with increasing the content of gallium. Besides, there is a slightly augmentation of optic band gap and a regularly blue-shifted of IR absorption cutting-off edge. Since all of the chalcogenide glasses have a high transmittance in a wide spectrum range of 0.8–14.0 μm (covering three main commutation bands and thermal infrared band), they are thus a promising material for mid-infrared application. According to the Raman spectra, the formation of [GaS4] tetrahedral units promote and the [SbS3] pyramid units suppress with the increase of gallium content. The relationship between optical properties and the structure in the chalcogenide glasses was summarized. Keywords:chalcogenide glass; infrared optics; optical property; gallium content; glass structure 收稿日期:2015–12–25。修订日期:2016–01–18。 基金项目:国家自然科学基金重点项目(61435009);宁波自然科学基金(2015A610079);发光材料与器件国家重点实验室开放课题 (2016–skllmd–11)资助。 第一作者:李戈(1991—),男,硕士研究生。 通信作者:焦清(1985—),女,讲师。Received date: 2015–12–25. Revised date: 2016–01–18. First author: LI Ge (1990–), male, Master candidate. E-mail: imlige@https://www.wendangku.net/doc/ab6181791.html, Correspondent author: JIAO Qing (1985–), female, Lecturer. E-mail:jiaoqing@https://www.wendangku.net/doc/ab6181791.html,

非线性光学晶体现状及发展趋势

非线性光学晶体现状及发展趋势作者:赵斌 沈德忠、王晓洋、陈建荣 (中材人工晶体研究院) 前言 非线性光学晶体是重要的光电信息功能材料之一,是光电子技术特别是激光技术的重要物质基础,其发展程度与激光技术的发展密切相关。 非线性光学晶体材料可以用来进行激光频率转换,扩展激光的波长;用来调制激光的强度、相位;实现激光信号的全息存储、消除波前畴变的自泵浦相位共轭等等。所以,非线性光学晶体是高新技术和现代军事技术中不可缺少的关键材料,各发达国家都将其放在优先发展的位置,并作为一项重要战略措施列入各自的高技术发展计划中,给予高度重视和支持。 伴随着激光技术从上世纪六十年代发展至今,非线性光学晶体也得到长足的发展,从最初的石英倍频晶体开始,不断涌现出铌酸锂(LiNbO3—LN)、磷酸二氢钾(KH2PO4—KDP)、磷酸二氘钾(KD2PO4—DKDP)、碘酸锂(LiIO3—LI)、磷酸氧钛钾(KTiOPO4—KTP)、偏硼酸钡(-BaB2O4—BBO)、三硼酸锂(LiB3O5—LBO)、铌酸钾(KNbO3—KN)、硼酸铯(CSB3O5—CBO)、硼酸铯锂(LiCSB6O10—CLBO)、氟硼酸钾铍(KBe2BO3F2—KBBF)以及硫银镓(AgGaS2—AGS)、砷镉锗(CdGeAs—CGA)、磷锗锌(ZnGeP2—ZGP)等非线性光学晶体,广泛应用于激光倍频、和频、差频、光参量放大以及电光调制、电光偏转等。比较有代表的例子是:用LN制作的光波导器件及调制器件,已广泛应用于光通讯;利用KTP晶体的商业内腔倍频YAG激光器,其绿光输出可达几百瓦;用CBO和频的YAG三倍频激光器,355nm输出已达17.7瓦;用CLBO四倍频的YAG激光器,266nm紫外光输出已达42瓦;用KBBF直接六倍频已获177.3nm的深紫外激光;使用KTP、BBO、LBO的光参量振荡器,其调谐范围覆盖了可见光到4.5m波段,并实现单纵模运转。 就非线性光学晶体、器件及应用整个领域的科技水平来看,发达国家如美国、英国等居于世界前列,从最初的原理提出、新材料的探索、器件的开发,他们都作出了重要的贡献。在非线性晶体材料的生产上,日本、中国、和前苏联的一些国家如俄罗斯、乌克兰、立陶宛等,占有重要的地位,而美国和欧洲一些国家则主要侧重于非线性晶体器件及设备的制造。我国在非线性光学晶体领域占有重要的地位。 一、中国在本领域的世界地位 我国无论在非线性光学晶体的学术研究还是产业化方面,都在国际上有着重要的影响,特别是在可见、紫外波段非线性晶体的研究方面一直处于领先水平,受到世界瞩目。我国在非线性晶体领域最主要的成就是(1)发明了掺镁LiNbO3晶体,通过掺杂使得LiNbO3的抗损伤阈值提高了两个数量级以上,大大开拓了铌酸锂晶体的应用领域;(2)在硼酸盐系列中发现并研制出- BBO、LBO、CBO、KBBF等一系列性能优异的紫外非线性光学晶体,开创了紫外激光倍频的新纪元,使得人类不断向固体紫外激光的极限推进;(3)首次在国际上用溶剂法生长出可实际应用的KTP大单晶,并实现产业化,使KTP晶体在全世界得到普遍的应用,促进了激光技术的发展。(4)主导了周期、准周期极化人工微结构非线性光学晶体材料的研究和实验验证,开拓了非线性光学晶体的新领域。 我国多种非线性光学晶体的生长技术居国际先进水平,国外已有的所有晶体生长方法我国都有,几乎所有重要的非线性光学晶体都已生长出来,一些重要晶体满足了国内重大工程需求,一批高技术晶体已成为商品,在国际上享有盛誉。

非线性光学材料小结

非线性光学材料 一、概述 20 世纪60 年代, Franken 等人用红宝石激光束通过石英晶体,首次观察到倍频效应,从而宣告了非线性光学的诞生,非线性光学材料也随之产生。 定义:可以产生非线性光学效应的介质 (一)、非线性光学效应 当激光这样的强光在介质传播时,出现光的相位、频率、强度、或是其他一些传播特性都发生变化,而且这些变化与入射光的强度相关。 物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p 。在光强度不是很高时,分子的诱导偶极矩p 线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E 的非线性函数,如下表示: p = α E + β E2 + γ E3 + ?? 式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应) ,γ为二阶分子超极化率(三阶效应) 。即基于电场强度E 的n 次幂所诱导的电极化效应就称之为n 阶非线性光学效应。 对宏观介质来说, p = x (1) E + x(2) E2 + x (3)E3 + ?? 其中x (1) 、x(2) 、x(3) ??类似于α、β、γ??,表示介质的一阶、二阶、三阶等n 阶非线性系数。因此,一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。 目前研究较多的是二阶和三阶非线性光学效应。 常见非线性光学现象有: ①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。 ②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。 ③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。 ④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与

常见光学材料简介

常见光学材料简介 透镜是光学实验中的主要元件之一,可采用多种不同的光学材料制成,用于光束的准直、聚焦、成像。Newport提供的各种球面和非球面透镜,主要制作材料有BK7玻璃、紫外级熔融石英(UVFS)、红外级氟化钙(CaF2)、氟化镁(MgF2),以及硒化锌(ZnSe)。在从可见光到近红外小于2.1μm的光谱范围内,BK7玻璃具有良好的性能,且价格适中。在紫外区域一直到195nm,紫外级熔融石英是一种非常好的选择。在可见光到近红外2.1μm范围内,熔融石英具有比BK7玻璃更高的透射率,更好的均匀度以及更低的热膨胀系数。氟化钙和氟化镁则适用于深紫外或红外应用。 本文将对这些常见光学材料的性质和应用进行介绍,并列出了一些基本的材料参数,如折射率、透射率、反射率、Abbe数、热膨胀系数、传导率、热容量、密度、Knoop硬度,及杨氏模量。 BK7玻璃 BK7是一种常见的硼硅酸盐冕玻璃,广泛用作可见光和近红外区域的光学材料。它的高均匀度,低气泡和杂质含量,以及简单的生产和加工工艺,使它成为制作透射性光学元件的良好选择。BK7的硬度也比较高,可以防止划伤。透射光谱范围380-2100nm。但是它具有较高的热膨胀系数,不适合用在环境温度多变的应用中。 UV Grade Fused Silica(UVFS) 紫外级熔融石英 紫外级熔融石英是一种合成的无定型熔融石英材料,具有极高的纯度。这种非晶的石英玻璃具有很低的热膨胀系数,良好的光学性能,以及高紫外透过率,可以透射直到195nm的紫外光。它的透射性和均匀度均优于晶体形态的石英,且没有石英晶体的那些取向性和热不稳定性等问题。由于它的高激光损伤阈值,熔融石英常用于高功率激光的应用中。它的光谱透射范围可以达到2.1μm,且具有良好的折射率均匀性和极低的杂质含量。常见应用包括透射性和折射性的光学元件,尤其是对激光损伤阈值要求较高的应用。 CaF2 氟化钙 氟化钙是一种具有简单立方晶格结构的晶体材料,采用真空Stockbarger技术生长制备。它在真空紫外波段到红外波段都具有良好的透射性。这种宽光谱透射特性,加上它没有双折射性质,使它成为紫外到红外宽光谱应用理想选择。氟化钙在0.25-7μm内的透射率在90%以上,并具有较高的激光损伤阈值,常用于制作准分子激光的光学元件。红外级氟化钙通常采用自然界中可见的萤石生长而成,成本低廉。但氟化钙具有较大的热膨胀系数,热稳定性很差,要避免使用在高温环境中。氟化钙的折射率比较低,因此通常不需要在表面镀增透膜。 MgF2 氟化镁 氟化镁是一种具有正双折射性质的晶体,可采用Stockbarger技术生长,同样在真空紫外波段到红外波段具有良好的透射。通常在切割时使它的c轴与光轴方向平行,以降低双折射性质。氟化镁是另一种深紫外到红外的光学材料选择,透射范围0.15-6.5μm。另外,它可用

红外物理特性及应用参考资料

红外物理特性及应用

红外通信特性实验 波长范围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。对热辐射的深入研究导致普朗克量子理论的创立。对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。 现代红外技术的成熟已经打开了一系列应用的大门。例如红外通信,红外污染监测,红外跟踪,红外报警,红外治疗,红外控制,利用红外成像原理的各种空间监视传感器,机载传感器,房屋安全系统,夜视仪等。 光纤通信早已成为固定通信网的主要传输技术,目前正积极研究将光通信用于微波通信一直占据的宽带无线通信领域。无论光纤通信还是无线光通信,用的都是红外光。这是因为,光纤通信中,由石英材料构成的光纤在0.8~1.7微米的波段范围内有几个抵损耗区,而无线大气通信中,考虑到大气对光波的吸收,散射损耗及避开太阳光散射形成的背景辐射,一般在0.81~0.86,1.55~1.6微米两个波段范围内选择通信波长。因此,一般所称的光通信实际就是红外通信。 【实验原理】 1、红外通信 在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。 红外传输的介质可以是光纤或空间,本实验采用空间传输。 2、红外材料 光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比: dI Idx α=- (1) 对上式积分,可得: L o I I e α-= (2) 上式中L 为材料的厚度。 材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。常用的红外光学材料包括:石英晶体及石英玻璃,它在0.14~4.5微米的波长范围内都有较高的透射率。半导体材料及它们的化合物如锗,硅,金刚石,氮化硅,碳化硅,砷化镓,磷化镓。氟化物晶体如氟化钙,氟化镁。氧化物陶瓷如蓝宝石单晶(Al 2O 3),尖晶石(MgAl 2O 4),氮氧化铝,氧化镁,氧化钇,氧化锆。还有硫化锌,硒化锌,以及一些硫化物玻璃,锗硫系玻璃等。 光波在不同折射率的介质表面会反射,入射角为零或入射角很小时反射率:

红外光学材料大全

1,进口CVD硒化锌(ZnSe)红外光学材料 CVD硒化锌(ZnSe)是一种化学惰性材料,具有纯度高,环境适应能力强,易于加工等特点。它的光传输损耗小,具有很好的透光性能。是高功率CO2激光光学元件的首选材料。由于该红外材料的折射率均匀和一致性很好,因此也是前视红外(FLIR)热成像系统中保护窗口和光学元件的理想材料。同时,该材料还广泛用于医学和工业热辐射测量仪和红外光谱仪中的窗口和透镜。 CVD ZINC SELENIDE Transmission Wavelength in Micrometers (t=8mm) 光学性质: 透过波长范围μm---22μm 折射率不均匀性(Δn/n) 吸收系数(1/cm)×10-3@1300nm ×10-4@2700nm ×10-4@3800nm ×10-4@5250nm ×10-4@10600nm 热光系数dn/dT(1/k,298— ×10-5@1150nm

折射率n随波长的变化(20℃) 理化性质: 激光损伤阈值:(10600nm脉冲激光,脉冲宽度=15μs) 2,进口CVD硫化锌(ZnS)红外光学材料 CVD硫化锌是一种化学惰性材料,具有纯度高,不溶于水,密度适中,易于加工等特点,广泛应用于红外窗口,整流罩和红外光学元件的制作。和硒化锌(ZnSe)一样,硫化锌(ZnS)

也是一种折射率均匀性和一致性好的材料,在8000nm—12000nm波段具有很好的图像传输性能,该材料在中红外波段也有较高的透过率,但随着波长变短,吸收和散射增强。与硒化锌(ZNSE)相比,硫化锌的价格低,硬度高,断裂强度是硒化锌的两倍,抗恶劣环境的能力强,非常适合用于制造导弹整流罩和军用飞行器的红外窗口。 透过率曲线: CVD ZINC SULFIDE Transmission(CVD硫化锌) Wavelength in Micrometer (t =6mm) CLEARTRAN Transmission(多光谱CVD硫化锌) Wavelength in Micrometers (t= 理化性质: CVD硫化锌多光谱CVD硫化锌 密度 (g . cm-3 @ 298k) 电阻率 (Ω. Cm)~1012~ 熔点 (℃)1827 化学纯度 (%) 热膨胀系数(1/k)* 10-6@273k* 10-6@273k * 10-6@373k* 10-6@373k

红外光学材料

红外光学材料 红外光学系统与可见光光学系统的主要区别在于只有有限的材料可有效应用于中波红外和长波红外波段,能同时应用于这两个波段的材料就更少。表2-1列出了几种比较常用的红外光学材料及其重要特性。 2.2.1红外光学材料的特点 红外光学系统中所使用的材料一般具有以下特点[i,ii,iii]: (1)红外材料不仅种类有限,而且价格昂贵(一般在几千到几万元一公斤)。 (2)某些材料的折射率温度系数(dn/dt )较大,导致焦距随温度的漂移较大。如果工作温度范围较宽,则必须适当的选择红外光学材料或采取必要措施进行补偿。 (3)某些光学材料易碎,且化学稳定性差,使得加工以及安装困难,成品率不高。 (4)许多光学材料不透明,根据材料和波段的不同而表现出不同的颜色。 (5)红外光学材料受热时都会发生自辐射,导致杂散光形成。 表2-1 常用红外光学材料的特性 材料 折射率(4μm ) 折射率(10μm ) dn/dt/℃ 锗 4.0243 4.0032 0.000396 硅 3.4255 3.4179 0.00015 硫化锌(CVD ) 2.252 2.2005 0.0000433 硒化锌(CVD ) 2.4331 2.4065 0.00006 AMTIR I 2.5141 2.4976 0.000072 氟化镁 1.3526 + 0.00002 蓝宝石 1.6753 + 0.00001 三硫化砷 2.4112 2.3816 × 氟化钙 1.4097 + 0.000011 氟化钡 1.458 * -0.000016 601228Se As Ge + 2.6038 0.000091 651520Se As Ge 2.6058 2.5858 0.000058 “+”不透过;“×”得不到;“*”透射,但折射率剧烈下降

固体物理答案第3章(20200511192744)

1 3 . 1已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj 为: nj a j sin( j t naq j j ) (2)第j 个格波的平均动能 (3) 经典的简谐运动有: 1 -格波平均能量= 2 4ma2 2N 3.2讨论N 个原胞的一维双原子链(相邻原子间距为 时与一维单原子链 --- 对应。^m a 2 j 2cos 2 ( j t 2 n j naq j j ) lma 2 2N 4 振幅a 2 吧,所以 Nm j 2 nj 1 2aj k B T_ 2。 j Nm 而每个原子的平方平均位移为: (nj )2 j 2 nj 1 2 2aj j Nm j j 为任意相位因子。 并已知在较高温度下每个格波的平均能量为 k p T 。具体计算每个原子 的平方平均位移。 1 根据丄 T 解:(1) T ? 2 / . o sin ( j t naq j j )dt 其中T —为振动周期, j 所以2j a^sin 2( j t naq j 每个格波的平均动能=平均势能= a ),其2 N 个格波的解。当m M 解:(1) 一维双原子链: 2a q 2a 声学波: 2 m M mM 4mM .2 2sin aq (m M)2 当m M 时, 2 j m cosaq) m Jin 2 凹。 2 光学波: 2 7 1 mM 4mM (m M)2 2 sin aq

「0 3. 5已知NaCI 晶体平均每对离子的相互作用能为: u(r) 其中马德隆常数 a 1.75,n 9 ,平衡离子间距r 0 2.82?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与 比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏 r r °的二次方项。 U(r 。 )U(r 。) U(r 。 1 2U(r 。 2 2 2 0( 4) 其中 U(r 。 2 q n r 。 n 根据 0为平衡条件。 由r 0已知可确定 (1)式,离子偏离平衡位置 所受的恢复力为: U(r 。 2U(r o 2 故恢复力常数为 2 U(r) 2 r n 3 r ° (1) (2) (3) ⑷ 当m M 时,有 cosaq) ?cos 2oq m 2 (2) —维双原子链在 m M 时的解 2 ^sin 20q m 2 2 4 2 aq 2a 2a cos - m 2 与一维单原子链的解 是 --- 对应的。 2 4 sin 2 凹 m 2 NaCl 红外吸收频率的测量只值 61进行

第二章红外光学材料的光学性质

第二章红外光学材料的光学性质§2.1 引言 §2.2反射 §2.3透过率和吸收系数以及和温度的关系 §2.4折射指数、色散和折射指数的温度关系 §2.5散射 §2.6 发射率 §2.7红外材料的微波透射性质

§2.1引言 红外光学材料首先要注意的是它的光学性质,然后确定该种材料所适用的光学波段,其后才能考虑它的力学、热学性质。在相同使用波段情况下,在各个材料之间进行选择,光学性质是红外光学材料最重要的基本性质。 红外光学材料的光学性质是一个广泛的说法,它实际上包含的内容很多。有光的反射、理论透过率、吸收系数以及和温度的关系、透过率与温度的关系、折射指数以及折射指数的色散关系和温度关系、发射率和红外光学材料的微波介电性质等等。在本章中试图对上述这些性质作尽可能详细的讨论。对于每一种材料,希望能给出具体的实验数据。 §2.2反射损伤 在第一章的(1-5-18)式中表示了垂直入射光通过两种不同介质(其折射指数分别为n 1和n 2)界面时所产生的反射和透射。 ()??? ? ???+= ? ??? ??+-=2 212 12 21 214n n n n T n n n n R (2-2-1) 在求得上式的过程中是假定介质电导率0=σ。因而光在介质中传播时没有损耗。在电导率0≠σ的情况下,在界面的反射系数可表示为: ()()2 22 2 11k n k n R +++-= (2-2-2) 这里k 是消光系数(参见第一章§4),π λβ 4= k ,β为吸收系数,对于红外光学材料β值通常在10-1~10-4,因之,消光系数k 的数值在4×10-6~4×10-9之间。和(n-1)2, (n+1)2相比是一个非常小的量。因而,在反射率的计算中完全可以忽略。于是,单面反射率通常可以表示为: ()() 22 11n n R +-= (2-2-3) 这里R 是垂直入射时的反射率。 如果入射光是斜入射,由于光的偏振

固体物理答案补充

补充计算题 19.在离子晶体中,由于,电中性的要求,肖特基缺陷都成对地产生,令n 代表正负离子空位的对数,E 是形成一对肖特基缺陷所需要的能量,N 为整个离子晶体中正负离子对的数目,(1)证明T k E B Ne n 2/-=.(2)试 求有肖特基缺陷后,体积的相对变化V V V ./?为无缺陷时的晶体体积. [解答] (1)由N 个正离子中取出n 个正离子形成 n 个空位的可能方式数为 ! )!(!1n n N N W -= 同样.由 个负离子中取出 个负离子形成 个空位的可能方式数也为 ! )!(!2n n N N W -=. 因此,在晶体中形成 对正,负离子空位的可能方式数为 211!)!(!?? ????-==n n N N W W W 与无空位时相比,晶体熵的增量为 ! )!(!121n n N N n k nW k S B B -==? 若不考虑空位的出现对离子振动的影响,晶体的自由能 !)!(!1200n n N N n T k nE F S T nE F F B --+=?-+=, 其中0F 是只与晶体体积有关的自由能,利用平衡条件 0=??? ????T n F 及斯特林公式nN N N nN N nN 11!1≈-= 得 []n n n N nN N n T k E n F B T 1)(12---??-=??? ???? 012=--=n n N n T k E B . 由此得T k E B e n N n 2/-=-. 由于n N >>,因此得 T k E B Ne n 2/-=. (2)肖特基缺陷是晶体内部原子跑到晶体表面上,而使原来的位置变成空位,也就是说,肖特基缺陷将引起晶体体积的增大,设每个离子占据体积为v 则当出现 n 对正、负离子空位时,所增加的体积为nv V 2=?. 而晶体原体积为Nv V 2=. 由以上两式及上题中的结果T k E B Ne n 2/-= 得T k E B e N n V V 2/-==?.

相关文档