文档库 最新最全的文档下载
当前位置:文档库 › 两类可化为Ut=Uxx形式的非线性偏微分方程

两类可化为Ut=Uxx形式的非线性偏微分方程

两类可化为Ut=Uxx形式的非线性偏微分方程
两类可化为Ut=Uxx形式的非线性偏微分方程

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

非线性偏微分方程

FINITE DIMENSIONAL REDUCTION OF NONAUTONOMOUS DISSIPATIVE SYSTEMS Alain Miranville Universit′e de Poitiers Collaborators:

Long time behavior of equations of the form y′=F(t,y) For autonomous systems: y′=F(y) In many situations,the evolution of the sys-tem is described by a system of ODEs: y=(y1,...,y N)∈R N,F=(F1,...,F N)

Assuming that the Cauchy problem y′=F(y), y(0)=y0, is well-posed,we can de?ne the family of solv-ing operators S(t),t≥0,acting on a subset φ?R N: S(t):φ→φ y0→y(t) This family of operators satis?es S(0)=Id, S(t+s)=S(t)?S(s),t,s≥0 We say that it forms a semigroup onφ

Qualitative study of such systems:goes back to Poincar′e Much is known nowadays,at least in low di-mensions Even relatively simple systems can generate very complicated chaotic behaviors These systems are sensitive to perturbations: trajectories with close initial data may diverge exponentially →Temporal evolution unpredictable on ti-me scales larger than some critical value →Show typical stochastic behaviors

第九章 非线性偏微分方程

第九章 非线性偏微分方程 前面几章索研究的偏微分方程都是线性的,但在实际工程级数及自然科学中索遇到的方程大多都是非线性的,在有些情况下,人们为了研究方便,对问题补充了一些附加的条件或略去一些次要的项,才得到线性方程。在这一章内,我们将从一个具体问题出发引入非线性偏微分方程的概念,然后重点讨论两类重要的非线性方程。 §9.1 极小曲面问题 在第八章内已经说过,求解一个边值问题可以转化成求它所对应的一个泛函的最小值(当然,一般说来变分问题的解只是原边值问题的弱解)。其实,在数学里也已证明了相反的结论,即在一定条件下一个变分问题的解必满足一个微分方程。在这一节内,我们以极小曲面问题为例说明这个事实。 设Ω是平面上有界区域,它的边界?Ω是充分光滑的,其方程为: (),(), x x s y y s ==00s s ≤≤ 其中00(0)(),(0)()x x s y y s ==即?Ω是一条闭曲线。现在在?Ω上给定一条空间曲线l (即作一条空间曲线l ,使它到Ω所在平面的投影为?Ω): 0(),:(),0,(),x x s l y y s s s u s ?=??=≤≤??=? (9.1) 这里0(0)()s ??=。所谓极小曲面问题就是要确定一张定义在Ω上的曲

面S ,使得 (1)S 以l 为周界; (2)S 的表面积在所有以l 为周界的曲面中是最小的。 假定空间曲面的方程为 (,)v v x y = 则由微积分学可知,这个曲面的表面积为 ()J v =?? (9.2) 于是上述极小曲面问题就变成求一个函数u ,使得 (1)由(,)u u x y =所表示的曲面以l 为周界,即 1(),u C u ??Ω∈Ω=,或者说,u M ?∈, 其中M ?由(8.7)给出; (2)()min ()v M J u J v ? ∈= (9.3) 这是一个变分问题。 如何求出变分问题(9.3)的解?我们先来看看假若u M ?∈是(9.3) 的解,那么u 必需满足什么样的条件。为此,在0M 任取一个元素v , 即任取0v M ∈,即1(),0v C v ?Ω∈Ω=。对任意(,),u v M ?εε∈-∞+∞+∈,记 ()()j J u v εε=+ (9.4) 其中()J u 由(9.2)确定,从(9.2)可知()j ε是定义在R 上的一个可微函数,由于u 是(9.3)的解,所以对任意R ε∈处取得最小值,故 (0)0j '= (9.5) 不难看出

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

非线性偏微分方程在金融衍生品定价中的应用

非线性偏微分方程在金融衍生品定价中的应用Black-Scholes期权定价公式对金融衍生品的发展起了不可估量的作用,是 金融衍生品的定价的基础。然而BS方程是建立在六大假设的基础上得到的,现实中不可能全部满足这些假设,后来许多研究者对于方程的假设做了一些修改,其中一些结果是应用了非线性偏微分方程对金融衍生品定价。本文主要介绍这方面的成果。 关键词:非线性偏微分方程金融衍生品定价 一般认为Black-Scholes期权定价公式是现代金融的基础,是现代金融产品定价的核心,以后的金融定价理论都是在此基础上发展起来的,从数学角度来讲,这个方程是一个比较简单的二阶线性抛物方程,通过简单的变形容易得到解析解。Willmott(2000)的著作中就用相似解的方法得到解的表达式。但BS方程是建立在六个假设的基础上的,金融市场上变化因素很多,往往很难同时满足BS 模型的这些假设条件,比如现实交易中应该考虑交易成本的问题,波动率不可能是一个常数,股价并不一定服从对数正态分布等等,为了解决这些问题,一些研究者提出了完全非线性方程。大概有两种,本文就此进行了论述。 两阶模型 第一种是两阶模型,这种方法主要是对于BS公式的假设进行改进,主要有: (一)加入证券的交易成本 现实市场中,证券的交易是要有成本的,然而BS模型的假设中没有考虑到交易成本,对于此,Leland(1985)考虑交易成本的期权的定价模型时,他认为不管每一个时间间隔是否是最优,都要进行Delta 对冲,来求算考虑交易成本的期权定价的模型,这样所得出的模型只要将BS模型中的设为常数的波动率进行修改就可以了,比较简单。而后,Hoggard,Whalley&Willmott(1992)中利用Taylor 展开得到了完全非线性方程: ,k为交易费率。 从上式可以看出,对于单个看涨或者看跌期权,因为其Gamma值都为正,通过变形可以得到其BS模型对应的波动率,这和Leland所得到的结果类似。不过这个模型还可以用来处理Gamma值不是单符号的期权组合的定价问题,还讨

偏微分方程理论的归纳与总结

偏微分方程是储存自然信息地载体,自然现象地深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强地优越性.微分方程是一个庞大地体系,它地基本问题就是解地存在性和唯一性.该学科地主要特征是不存在一种可以统一处理大多数偏微分方程地适定性问题地普适地方法和理论.这是与常微分方程有显著差异地地方.这种特性使得我们将方程分为许多种不同类型,这种分类地依据主要来自数学与自然现象这两个方面.从数学地角度,方程地类型一般总是对应于一些普遍地理论和工具.换句话讲,如果能建立一个普遍性地方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象地角度,我们又可以根据不同地运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联地,这就造成方程地概念有许多重叠现象. 根据数学地特征,偏微分方程主要被分为五大类,它们是: 线性与拟微分方程,研究这类方程地主要工具是分析方法; 椭圆型方程,它地方法是先验估计泛函分析手段; 抛物型方程,主要是方法,算子半群,及正则性估计; 双曲型方程,对应于方法; 一阶偏微分方程,主要工具是数学分析方法. 从自然界地运动类型出发,偏微分方程可分为如下几大类: 稳态方程(非时间演化方程); 耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充地自然运动.相变与混沌是它们地主要内容;文档收集自网络,仅用于个人学习 保守系统,如具有势能地波方程.该系统控制地运动是与外界隔离地,及无能量输入,也无能量损耗.行波现象与周期运动是它们地主要特征;文档收集自网络,仅用于个人学习 守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似地性质,可视为物质流地守恒.激波行为是由守恒律系统来控制.文档收集自网络,仅用于个人学习 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型地建立,解问题地解法以及三类典型方程地基本理论.文档收集自网络,仅用于个人学习 关于三类典型方程定解问题地解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和函数方法.文档收集自网络,仅用于个人学习 关于三类典型方程地基本理论——极值原理和能量估计,并由此给出了解地唯一性和稳定性地相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它地古典解和弱解.前者主要介绍了基本解、调和函数地基本性质、函数、极值原理、最大模估计、能量方法和变分原理;而后者地研究则需要知道空间地相关知识再加以研究;关于二阶线性抛物型方程,主要研究它地变换、特殊地求解方法、基本解、方程式和方程组地最大值原理以及最大模估计、带有非经典边界条件和非局部项地方程式地最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题地求解方法、初值问题地能量不等式与解地适定性、以及混合问题地能量模估计与解地适定性.文档收集自网络,仅用于个人学习 椭圆、抛物和双曲这三类线性偏微分方程解地适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则地求解区域试图求出满足特定线性偏微分方程和定解条件地具体解,这就决定了存在性问题;再利用方程本身所具有地特殊性质,将证明所求解是唯一地,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空间中考虑,我们将在连续函数空间和平方可积函数空间中分别讨论解关于输入数据地连续依赖性问题文档收集自网络,仅用于个人学习 学习偏微分方程理论以及偏微分方程分析是研究其它一切地基础.首先有必要解释一下

基于偏微分方程

数学物理方程论文 ——基于偏微分方程在PKMK型几何积分方法中的应用研究

基于偏微分方程在PKMK型几何积分方法中的应用研究 摘要: 人类的发展历史表明科学的理论总是从简单到复杂,从特殊到一般,从粗糙到 精确,逐渐深化的。因此,以数学为工具,以物理学开路的严密自然科学在初期阶 段总是力图把描述简单化、近似化,在数学方面采取的一个重要办法就是线性化。 但是随着科学的发展和人类向更完美的目标的持续追求,复杂的自然界不断促使我 们把一个个线性理论发展为非线性理论。非线性化是科学发展的必由之路。一些学 者已将非线性科学誉为上世纪继相对论和量子力学之后自然科学的“第三次革命”。 正如一位物理学家所说:“相对论的建立排除了对绝对空间和时间的牛顿幻觉;量 子力学的建立则排除了对可控空间和时间的牛顿幻觉;非线性科学的建立排除了拉 普拉斯决定论的可预见性狂想。”非线性科学的建立是研究非线性现象共性的一门 学问。 关键词:偏微分方程 PKMK型几何积分函数商的零点 正文: 在数学、物理、化学以及生物等领域中,人们遇到大量的非线性现象,这些现 象的表现形式虽然千差万别,但其运动规律却具有相似的数学模型。一般地,它们 可以用常微分方程和偏微分方程的数学模型来描述。许多偏微分方程通过空间离散 化可以化为常微分方程的初值问题。 传统上,人们从两个极端不同的出发点来理解和掌握常微分方程问题。纯数学 家对问题认识深刻,推导严密,并采用大范围整体化的定性知识;而数值分析家通 过构造富有技巧的算法,以获得只有很小的误差的离散解,他们一般不考虑整体的 定性性质。孰优孰劣?这要视具体问题具体分析。如果要问到:“局部误差多大?” 这个问题大可以由传统的数值分析方法来解决。事实上,真实的物理过程都不是极 端的。在数学物理问题的研究中,问题所属的物理学、力学和工程技术本身的特殊 规律,常常会在问题进行严格数学处理之前,提示求解问题定性的思想和方法,并 促使具体问题的解决。本文强调应将微分方程的几何性质等定性信息与数值计算有 机地结合起来,进而处理实际问题。 大部分在物理学中显示巨大威力的新的数学思想均来自于几何与分析的交叉。 我们可以简单地回顾微分方程与几何学不可分割的历史渊源。18世纪以前的物理学 家和自然哲学家,如Copemies,Galileo,Kepler,Newton等都对几何学非常熟悉,他们常用几何概念来表达其物理思想。在19世纪,Descartes对Euclid几何引入坐标后,将几何学的研究看成是代数和分析的应用,这引起了几何学的革命,促进了在 几何学中各种分析工具的应用。与此同时,在物理学中利用坐标概念将自然定律表 示成微分方程,促进了物理学的发展。在此阶段,多数物理学家主要注意对物理体 系局域运动性质的探讨,对运动实体的内部对称性及大范围整体性质往往注意不 足。拓扑学与微分几何在物理学的重要性常被忽视。19世纪中叶,Maxwell从实验 观察总结出电磁现象的运动方程,注意到Maxwell方程组的共性不变性。Lorentz。Minkowski之后,直到20世纪初,Einstein提出了狭义相对论,人们才进一步深入 认识到了时空的基本几何特性的重要性。这时主要应用的数学工具是微分方程及群 论分析等。长期以来,微分方程在自然现象的数学研究中起到了决定性的作用,人 们充分认识到,通过研究微分方程的几何性质,可以获知它的真解的关键性的定性

偏微分方程

论文题目:偏微分方程的来源与发展课程:数学物理方程 姓名:卢江 学号:162210012 专业:轮机工程

偏微分方程的来源与发展 摘要:“数学物理方程”是以物理、工程技术和其它科学中出现的偏微分方程为主要研究对象,并且主要介绍求偏微分方程精确解方法的一门数学基础课程。本文简单介绍了偏微分方程发展的来源、发展历程及特点、解决问题的方法,给出了偏微分方程的发展趋势。 关键词:偏微分方程;模型;发展阶段;历程。 一、偏微分方程问题的来源以及模型的建立 偏微分方程由起初研究直接来源于物理与几何的问题发展到一个独立的数学分支,它内容庞杂,方法多样。偏微分方程讨论的问题不仅来源于物理、力学、生物、几何和化学等学科的古典问题,而且在解决这些问题时应用了现代数学的许多工具。近几十年来,该领域的研究工作,特别是对非线性方程的理论、应用以及计算方法的研究起到了极大的推动作用,十分活跃。 用数学方法处理应用问题时,首先是要建立合理的数学模型。在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题需要用多个变量的函数来描述。这样建立的数学模型在很多情况下是偏微分方程。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量; 速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量; 物体在一点上的张力状态的量叫做张量。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。 物质总是在时间和空间中运动着的。虽然物质的运动形式千差万别,然而却具有共同的量的变化规律。客观世界的一切事物的运动和变化在数学上的反映就是变量的概念。事物的运动和变化又是相互依赖、相互制约的,反映在数学上,就是变量之间的关系,从而又形成了函数的概念。由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数( 或微分) 间的关系式,即微分方程。如果一个微分方程中出现的未知函数只含

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

(整理)偏微分方程相关材料翻译

目录 前言vii 1 应用与方法概述 1 1.1 什么是偏微分方程1 1.2 求解并解释偏微分方程7 2傅里叶级数17 2.1 周期函数18 2.2 傅里叶级数26 2.3 以任意数为周期的函数的傅里叶级数38 2.4 半幅展开:余弦级数和正弦级数50 2.5 均方逼近和帕塞瓦尔恒等式53 2.6 傅里叶级数的复数形式60 2.7 受迫振动69 收敛性的补充内容 2.8 傅里叶级数表示定理的证明77 2.9 一致收敛性和傅里叶级数85 2.10 狄利克雷判别法和傅里叶级数的收敛性94 3 直角坐标中的偏微分方程103 3.1 物理和工程中的偏微分方程104 3.2 建模2 弦振动和波动方程109 3.3 一维波动方程的求解:分离变量法114 3.4 达朗贝尔方法126 3.5 一维热传导方程135 3.6 棒中的热传导:各种边界条件146 3.7 二维波动方程和热传导方程155 3.8 直角坐标中的拉普拉斯方程163 3.9 泊松方程:特征函数展开法170 3.10 诺伊曼条件和罗宾条件180 3.11 最大值原理187 4 极坐标与柱面坐标中的偏微分方程193

4.1 各个坐标系中的拉普拉斯算子194 4.2 圆膜的振动:对称情况198 4.3 圆膜的振动:一般情况207 4.4 圆域中的拉普拉斯方程216 4.5 圆柱体中的拉普拉斯方程228 4.6 亥姆霍兹方程和泊松方程231 关于贝塞尔函数的补充内容 4.7 贝塞尔方程和贝塞尔函数237 4.8 贝塞尔级数展开248 4.9 贝塞尔函数的积分公式和渐近式261 5球面坐标中的偏微分方程269 5.1 问题和方法概述270 5.2 对称狄利克雷问题274 5.3 球面调和函数和一般狄利克雷问题281 5.4 亥姆霍兹方程及其在泊松方程、热传导方程和波动方程中的应用291 关于贝塞尔函数的补充内容 5.5 勒让德微分方程300 5.6 勒让德多项式和勒让德级数展开308 5.7 连带勒让德函数和连带勒让德级数展开319 6施图姆-刘维尔理论及其在工程中的应用325 6.1 正交函数326 6.2 施图姆-刘维尔理论333 6.3 悬链346 6.4 四阶施图姆-刘维尔理论353 6.5 梁的弹性振动和屈曲360 6.6 双调和算子371 6.7 圆板的振动377 7傅里叶变换及其应用389 7.1 傅里叶积分表示390 7.2 傅里叶变换398 7.3 傅里叶变换法411

变分方法及其在非线性偏微分方程应用方面的进展和未决问题

第42卷第2期2018年3月 江西师范大学学报(自然科学版) Journal of Jiangxi Normal University(Natural Science) Yol.42 No.2 Mar.2018 文章编号=1000-5862(2018)02-0111-19 变分方法及其在非线性偏微分方程 应用方面的进展和未决问题 邹文明 (清华大学数学科学系,北京100084) 摘要:先介绍变分法发展的简单历史以及将来的发展趋势.然后综述变分法应用于非线性偏微分方程的 基本思想和最新成果.通俗介绍环绕理论、变号临界点理论及应用,其中包括对称扰动方程和Rabinowitz 公开问题、Brezis-Nirenberg 临界指数方程、Li-Lin 公开问题、Bose-Einstein 凝聚、Berestycki-Caffarelli-Niren- berg猜测和Lane-Emden方程及猜想. 关键词:变分法;非线性偏微分方程;环绕理论;临界指数;变号临界点理论;薛定谔方程 中图分类号:〇176;0 175.29 文献标志码:A D O I:10.16357/j. cnki. issnlOOO-5862.2018.02.01 〇变分法简史和将来的发展趋势 变分的思想可以追溯到法国科学家费马(Pierre de Fermat,1601 _1665)时代.他在 1662 年提出了现 在被称为的极小作用原理:光传播的路径是光程取 极值的路径.这个极值可能是最大值(或最小值),甚至可以是函数的拐点.在最初提出时,又被人们称 为“最短时间原理”,即光线传播的路径是需时最少 的路径.此时,微积分还没有产生! 17世纪后半叶,更多的非线性问题需要更加严 密的理论工具,这就促使了微积分的产生.当时,许 多科学家,如法国的费马、笛卡尔,英国的巴罗、瓦里 士,德国的开普勒等,都为微积分的产生做了大量的 前期研究工作,为微积分的创立做出了启蒙的贡献. 英国的数学家牛顿(1643—1727)在1684—1685年 写《自然哲学的数学原理》,于1687年正式出版.德 国数学家莱布尼茨(1646—1716)于1684年在《博 学学报》(Acta Eruditorum)发表了《一种求极大极小 和切线的新方法,它也适用于分式和无理量,以及这 种新方法的奇妙类型的计算》.这2个工作标志着 微积分的诞生.牛顿-莱布尼茨发明微积分后,有了 系统且严谨的办法来研究变分问题.但围绕着微积 分的发明权之争,引发了欧洲大陆学派如德国(莱布尼茨学派)和英国(牛顿学派)的数学家们之间的 互相挑战[1]. 约翰?贝努利(Johann Beinoulli,瑞士数学家,I667—1748)在1696年6月提出一个作为向欧洲数 学家(甚至包括他哥哥Jakob Bernoulli,瑞士数学家,1654—1705)挑战的数学问题,即现在被称为的“最 速下降线问题问题提出半年后,仍然未解决.于 是Johann Beinoulli在1697年元旦发表著名的“公 告”(Programma),再次向“全世界最聪明的数学家”(意指牛顿)挑战,1月29日牛顿从英国造币局下班 回到住处,看到了转达Johann Beinoulli挑战的信 件,随后他利用一个晚上的时间解决了这个问题,并 将结果匿名(这是他常用的办法)发表.Johann Bei-nm illi读到这篇文章后惊叹“终于看见了雄狮的利 爪”,意指是牛顿所为.“最速下降线问题”现在被认 为是变分法的起源.瑞士数学家Leonhard Euler (1707—1783)作为 Johann Beinoulli 的学生,也对变 分法做出了极大贡献.例如,Leonhard Euler在1734 年推广了最速降线问题,寻找这类问题的更一般方 法.1744年,Leonhard E uler的《寻求具有某种极大 或极小性质的曲线的方法》一书出版[1].这是变分 学史上的里程碑,它标志着变分法作为一个新的数 学分支的诞生.在这个数学分支中,函数本身就是自 变量,因此比微积分的极值问题更加抽象和复杂. 收稿日期:2018<01-20 基金项目:国家自然科学基金(11771234)资助项目. 作者简介:部文明(1966-),男,江西宁都人,教授,博士生导师,国家杰出青年基金获得者,主要从事变分法和非线性微 分方程的研究.E-mails :zou-wm@ mail, tsinghua. edu. cn

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方 法 非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程 (一)主要研究内容 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。 2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。 3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的

许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。 (二)研究方向的特色 1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。 2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。 (三)可取得的突破 1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。 2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa 迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。 3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 随机微分方程数值解

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与 总结 Prepared on 22 November 2020

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显着差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程);

(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

相关文档