文档库 最新最全的文档下载
当前位置:文档库 › 最新机械制造工程原理知识点复习整理

最新机械制造工程原理知识点复习整理

最新机械制造工程原理知识点复习整理
最新机械制造工程原理知识点复习整理

机械制造工程原理

1、切削加工过程的两个基本要素:成型运动和刀具。

2、发生线:母线和导线。

3、形成发生线的方法:轨迹法,成形法,相切法,展成法。

4、成型运动的种类:

简单成形运动(直线运动和旋转运动):各个部分相互独立,没有严格的相对运动关系。

复合运动:各个部分相互依存,保持严格的相对运动关系。

5、合成切削运动:

主运动:刀具的切削部分切入工件材料,使被切金属层转变为切屑,从而形成工件新表面,是刀具与工件之间的主要相对运动。

进给运动:使切削加工持续不断进行,形成具有所需几何形状的已加工表面。

6、主运动方向:切削刃上选定点相对于工件的瞬时主运动方向。

切削速度:切削刃上选定点相对于工件主运动的瞬时速度。

7、工件上的加工表面:

待加工表面:加工时即将被切除的表面。

已加工表面:已被切除多与金属而形成符合要求的工件新表面。

过渡表面:加工时由主切削刃正在切削的那个表面。

8、切削用量三要素:

切削速度:

进给量:工件或刀具每回转一周时二者沿进给方向的相对位移。

切削深度:工件上已加工表面和待加工表面间的垂直距离。

9、刀具材料具备的基本性能

硬度,耐磨性,耐热性,强度和韧性,减磨性,导热性和热膨胀系数,工艺性和经济性。

10、刀具常用材料

高速钢:(W MO CR V)优点:强度,韧性和工艺性能好,价格便宜,工艺性好,广泛用于复杂刀具和小型刀具。缺点:不能承受高温,高硬度,高强度的材料。

硬质合金:工艺性差,主要用于制作简单刀具,允许切削速度高

超硬刀具材料

11、切削加工:使刀具接近工件,然后使刀具对工件做相对运动,由于工件内部产生较大的应力而引起工件材料破坏,把不需要的部分作为切屑剥离出来,加工出所需形状,尺寸和表面质量的工件。

金属切削过程:工件的被切金属层在刀具前刀面的推挤下,沿着剪切面产生剪切变形并转变为切屑的过程,也可以说是金属内部不断滑移的过程。实质是:工件材料的剪切变形和挤压摩擦。

12、金属切削的三个变形区:

A、主要特征:沿滑移线的剪切变形和随之产生的加工硬化现象。切削速度高,宽度较小

0.02-0.2mm,近似平面,成为剪切面。

B、切屑沿着前刀面流动,前刀面与切屑的摩擦力作用,切屑底部的晶粒进一步纤维化,方向与前刀面平行。

C、后到面与已加工表面的挤压和摩擦,使已加工表面产生晶粒的纤维化和冷硬效果。

13、切削变形的表达:

变形系数:直观的反应了切削变形程度,但很粗略,有时不能反映剪切变形的真实情况。切削层公称厚度hd越小,变形系数越大。

剪应变:

剪切角:

描述切削机理的指标:切削层参数:切削层公称厚度h0,切削层公称宽度b0,切削面积14、切屑的分类:

带状切屑:塑性材料,切削厚度较小,切削速度较高,前角较大。

节状切屑:切削速度较低,切削厚度较大。

粉状切屑:塑性材料,切削速度较低。

崩碎切屑:脆性材料。

切削的形态是随着切削条件的改变而转化的。在形成节状切屑的情况下,若减小前角或加大切削厚度,可以得到单元切屑,反之得到带状切屑。

工件材料脆性越大,切屑厚度越大,切屑卷曲半径越小,切屑就越容易折断。脆性材料,切削力集中在刀尖附近,易取较小的前角和较小的后角。

15、积屑瘤的形成:

在金属切削过程中,常常有一些从切屑和工件上的金属冷焊并层积在前刀面上,形成一个非常坚硬的金属堆积物,能够代替刀刃进行切削,并且已一定的频率生长和脱落,成为积屑瘤。在切削速度不高而又能形成带状切屑的情况下产生。

16、积屑瘤对切削过程的影响:

保护刀具,增大前角,增大切削厚度,增大已加工表面的粗糙度,加速刀具磨损。

17、对待积屑瘤的态度:

粗加工:利用,保护刀具,减小切削变形。

精加工:不希望。控制积屑瘤:改变切削速度,加注切削液和增大前角。

18、影响切削变形的因素:

工件材料:强度和硬度越大,变形系数越小。

刀具前角:前角大,变形系数增大。

切削速度的影响:

切削厚度的影响:厚度增大,变形系数减小。

19、切削力(fc切削速度,和基面及进给方向垂直、fp、ff)的来源:

切削层金属、切屑和工件表层金属的弹塑性变形所产生的抗力。

刀具与切屑、工件表面的摩擦阻力。

20、影响切削力的因素:

工件材料:强度、硬度越高,切削力越大;塑性愈大,切削变形越大,切削力越大。

切削用量的影响:切深影响比进给量大,为了提高生产率,加大进给量有利。

切削速度增加,切削力减小。

刀具几何参数:前角加大,切削力增大。塑性材料影响较大,脆性材料影响较小。

负棱角使切削力变大。

刀具磨损的影响:后到面磨损,总切削力增大。

21、切削热的来源:切削层金属的弹塑性变形,切屑与前刀面,工件与后到面的摩擦。

传导:工件、切屑、刀具、周围介质。

分布规律:塑性材料:温度最高处事在距离刀尖一定长度的地方。

脆性材料:刀尖处且靠近后到面的地方。

22、影响切削温度的因素:

切削用量的影响:切削速度增大,切削热提高,不成正比。

进给量的增大,切削热提高。

切削深度影响很小。

刀具几何参数:前角大,切削温度低。

主偏角增大,温度提高。

刀具磨损,温度升高。

工件材料:强硬度越高,切削热越大。合金钢高于45钢;塑性材料高于脆性材料。

23、刀具磨损:前刀面,后到面,前后刀面。

24、磨损机理:

磨料磨损:各种切削速度都存在,低速是刀具磨损的主要原因、

冷焊磨损:物理作用,在中等偏低的速度下切削塑性材料较严重。

扩散磨损:化学作用:

氧化磨损:

热电磨损:

25、磨损过程:

初期磨损:在极短的时间内,VB上升很快。

正常磨损:磨损量缓慢均匀增加,曲线斜率代表磨损强度。

剧烈磨损:磨损快,强度大。进入前必须换刀。

26、磨钝标准:最大的允许磨损值,后到面磨损带中间部分平均量允许达到的最大值,用VB表示。

27、刀具的使用寿命或者为刀具的耐用度:刃磨好的刀具自开始切削直到磨损量达到磨钝标准为止的净切削时间。

28、切削用量的选择原则:

(速度影响最大)在提高生产率的同时,又希望刀具使用寿命下降的不多的情况下:首先尽量选用大的切削深度,然后根据加工条件和加工要求选取允许的最大进给量,最后根据刀具的使用寿命或机床功率选取最大的切削速度。

29、刀具的使用寿命选择:生产率最高,生产成本最低,利润率最大。

30、刀具磨损:刀具不经过正常磨损,而在很短的实践内突然失效。

烧刃、卷刃(工具钢,高速钢)、崩刃(硬质合金)、断裂、表层脱落。

加工精度:零件加工后的几何尺寸与理想几何尺寸的接近程度。

31、选择刀具几何参数的一般性原则:

要考虑工件的实际情况。

考虑刀具材料和刀具结构

考虑各个几何参数的之间的联系。

考虑具体的加工条件。

32、前角的功用:

影响切削区的变形程度:增大前角,可以减小切削变形,减小切削力、切削热和切削功率。用于精加工。

影响切削刃与刀头强度、受力性质和散热条件:增大前角会使切削刃与刀头强度降低,刀头的导热面积和容热体积减小。

影响切削刃形态和断屑效果

影响已加工表面质量。

33、合理前角的选择(取决于刀具材料和工件材料的性质):强度硬度低,较大的前角;塑性材料,较大的前角。

合理主偏角的选择:

粗加工和半精加工是,硬质合金一般选用较大的主偏角,较小振动,延长刀具的寿命,容易断屑,可以采用大的切削深度。

加工很硬的材料,取较小的主偏角。

系统工艺刚性较好时,较小的主偏角可以延长刀具的使用寿命;刚性不足,大的主偏角,较小切深抗力。

34、切削加工性:工件材料加工的难易程度,45钢为比较基准;铸铁材料,以灰铸铁为标准。

衡量指标:刀具使用寿命的相对比值

相同使用寿命,切削速度的比值

切削力和切削温度。

已加工表面的质量。

35、影响切削加工性的因素:

金属材料的物理和机械性能的影响:

硬度和强度:越大,切削加工性越差

塑性:塑性越大越难加工

韧性:韧性越高,越差

导热性:导热系数越大,越好。

线膨胀系数:

金属材料化学成分的影响:

36、切削液的种类:水溶液,乳化液,切削油。

作用:冷却,润滑,清洗,防锈。

37、机床的代号:CA6140 类别(车床)、结构特性代号(为了区别主参数相同而结构不同)、组别代号、系别代号、主参数

机床的组成:主轴箱,刀架,尾座、床身、溜板箱、进给箱。

普通机床:加工范围大,通用性较大,各类零件的不同工序,结构复杂。

专门化机床:加工范围较窄。

专用机床:只能加工某零件的特定工序,加工范围最窄。

38、机床的运动分析:表面成形运动(在切削过程中,使工件获得一定表面形状,所必须的刀具和工件间的相对运动):主运动和进给运动辅助运动

机床的基本技术参数:尺寸参数,运动参数,动力参数。

机床的动态精度:机床工作时再切削力,夹紧力、振动和温升的作用下部件间相互位置精度和部件的运动精度。

39、传动链:构成一个传动联系的一系列传动件

外联系传动链:联系动源和机床执行件,使执行件得到预定速度的运动,并传递一定的动力。传动比不要求准确,工件的旋转和刀架的移动之间也没有严格的相对速度关系。

内联系传动链:联系复合运动之内的各个运动分量,传动链联系的执行件之间的相对速度有严格的要求,用来保证运动的轨迹。有严格的传动比要求,否则不能保证被加工表面的性质,不能用摩擦传动或瞬时传动比有变化的传动件。

40、定比机构和换置机构。

41、车削螺纹:米制、英制、模制、径节

运动平衡式:it=s

42、钻床(立式钻床,摇臂钻床,):钻孔、扩孔、铰孔、钻埋头孔、锪平面、攻螺纹。

孔加工的刀具:在实体材料上加工:麻花钻、中心钻、深孔钻;对已有孔再加工:扩孔钻,锪钻,铰刀,镗刀。

卧式铣床的主运动:刀具旋转,进给运动:工件直线

铣平面分为端铣和周铣两种方式:端铣是用分布在铣刀端面上的刀齿进行铣的方法;周铣是

用分布在铣刀圆柱面上的刀齿进行铣削的方法。

麻花钻有两条主切削刃和两条副切削刃,副后角为0

拉床只有主运动,没有进给运动。

成型法加工:(铣齿机,拉齿机,磨齿机,盘状模数铣刀,指状模数铣刀)刀具的齿形与被加工齿间的形状相同。运动简单,不需要专门机床,但生产率低,加工精度低,用于单件小批生产。加工精度取决于刀具的精度。

展成发加工:

插齿:原理:一对圆柱齿轮的啮合,其中一个是工件,一个是插齿刀(模数和压力角相等)。展成运动:插齿刀和工件的相对转动。上下往复运动是主运动。径向切入运动。

滚齿:一对螺旋齿轮啮合的过程,可以加工模数相同的任意齿数的齿轮,有造型误差。43、圆周铣削:

逆铣:铣刀刀齿切削速度在进给方向上的速度分量与工件进给速度方向相反。

刀齿有一个从零切削厚度开始切入工件的过程,与已加工表面的加工硬化层挤压和摩擦,刀具易磨损。可以避免顺铣时的窜动现象,但引起振动。

顺铣:切入工件的切削厚度最大,然后逐渐减小到零切出,从而避免了在已加工表面的冷硬层上挤压和摩擦,不能用于带硬皮的工件,接触硬皮加剧磨损。

44、砂轮的硬度:用来反映磨粒在磨削力的作用下,从砂轮表面脱落的难易程度,砂轮硬,表示磨粒难以脱落。工件材料越硬,砂轮硬度应选得越软些。

45、夹具组成:

定位元件:

夹紧装置:限制自由度

导向元件和对刀装置:

连接元件

夹具体

其他元件及装置

46、夹具的作用:

保证加工精度;提高生产率;减轻劳动强度;扩大机床的工艺范围。

47、夹具的分类:车、磨、钻(钻模)、镗、铣

通用夹具:三爪卡盘

专用夹具:成批和大批量生产

组合夹具

成组夹具

随行夹具

48、夹具中的加工误差:

夹紧误差:工件或夹具刚度过低或夹紧力作用方向、作用点选择不当,都会使工件或夹具产生变形,形成加工的误差。

安装误差

对定误差

加工过程误差:

49、定位:把工件安放在机床工作台上或夹具中,使它和刀具之间有相对正确的位置。

夹紧:工件定位后,应将工件固定,使其在加工过程中保持定位位置不变。

工件从定位到夹紧的整个过程为安装。

50、安装:

直接找正安装:生产率低,用于单件小批量生产,精度高。

机械制造装备设计第二章习题答案(关慧贞)

第二章金属切削机床设计 1.机床设计应满足哪些基本要求,其理由是什么 答:机床设计应满足如下基本要求: 1)、工艺范围,机床工艺范围是指机床适应不同生产要求的能力,也可称之为机床的加工功能。机床的工艺范围直接影响到机床结构的复杂程度、设计制造成本、加工效率和自动化程度。 2)、柔性,机床的柔性是指其适应加工对象变化的能力,分为功能柔性和结构柔性; 3)、与物流系统的可接近性,可接近性是指机床与物流系统之间进行物料(工件、刀具、切屑等)流动的方便程度; 4)、刚度,机床的刚度是指加工过程中,在切削力的作用下,抵抗刀具相对于工件在影响加工精度方向变形的能力。刚度包括静态刚度、动态刚度、热态刚度。机床的刚度直接影响机床的加工精度和生产率; 5)、精度,机床精度主要指机床的几何精度和机床的工作精度。机床的几何精度指空载条件下机床本身的精度,机床的工作精度指精加工条件下机床的加工精度(尺寸、形状及位置偏差)。 6)、噪声;7)、自动化;8)、生产周期; 9)、生产率,机床的生产率通常是指单位时间内机床所能加工的工件数量来表示。机床的切削效率越高,辅助时间越短,则它的生产率越高。 10)、成本,成本概念贯穿在产品的整个生命周期内,包括设计、制造、包装、运输、使用维护、再利用和报废处理等的费用,是衡量产品市场竞争力的重要指标; 11)、可靠性,应保证机床在规定的使用条件下、在规定的时间内,完成规定的加工功能时,无故障运行的概率要高。 12)、造型与色彩,机床的外观造型与色彩,要求简洁明快、美观大方、宜人性好。应根据机床功能、结构、工艺及操作控制等特点,按照人机工程学要求进行设计。 2.机床设计的主要内容及步骤是什么 答:一般机床设计的内容及步骤大致如下: (1)总体设计包括机床主要技术指标设计:工艺范围运行模式,生产率,性

机械制造工程基础

机械制造工程基础综合复习题 一、选择题 1. 加工硬化的金属,最低加热到________,即可消除残余应力。 A. 回复温度 B. 再结晶温度 C. 熔点 D. 始锻温度 2. 图示圆锥齿轮铸件,齿面质量要求较高。材料HT350,小批生产。最佳浇注位置及分型面的方案是________。 A.方案Ⅰ B.方案Ⅱ C.方案Ⅲ D.方案Ⅳ Ⅱ Ⅲ全部 3. 精加工塑性材料时,为了避免积屑瘤的产生,应该采用________。 A. 较低的切削速度 B. 中等切削速度 C.较高的切削速度 D.较低或者较高的切削速 4. 下面能够提高位置精度的孔加工方法是________。 A. 铰孔 B. 浮动镗 C. 扩孔 D. 拉孔 5. 顺铣与逆铣相比较,其优点是________。 A. 刀具磨损减轻 B. 工作台运动稳定 C. 散热条件好 D. 生产效率高 6. 在液态合金中,混入了________会使合金的流动性提高。 A. 高熔点夹杂物 B. 低熔点夹杂物 C. 气体杂质 D. 型砂 7. 在铸件凝固过程中,其断面的_________对铸件质量的影响最大。 A. 液相区 B. 固相区 C. 液固两相区 D. 液相区和固相区 8. 金属在其_________之下进行的塑性变形称为冷变形。 A. 回复温度 B. 再结晶温度 C. 熔点 D. 始锻温度 9. 研究表明,金属材料在三向应力状态下,_________的数目越多,则其塑性越好。 A. 压应力 B. 拉应力 C. 剪应力 D. 弯曲应力 10. 拉深加工时,如果凸凹模间隙过大,拉深件容易出现________缺陷。 A. 起皱 B. 拉裂 C. 拉穿 D. 扭曲 11. 焊接电弧各区域中产生热量最多的是________。 A. 阴极区 B. 弧柱区 C. 阳极区 D. 不确定

(完整word版)道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 ● 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结 构形式。 ● 路面结构由下而上有:垫层,基层,面层。 ● 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 ● 砂石材料是石料和集料的统称 ● 岩石物理常数为密度和孔隙率 ● 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 ● 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛 体积的质量。 ● 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 ● 吸水性:岩石吸入水分的能力称为吸水性。 ● 吸水性的大小用吸水率与饱和吸水率来表征。 ● 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 ● 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 ● 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 ● 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 ● 表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质量。 ● 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 ● 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。1000 1?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) ● 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层 的关键指标。 ● 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要。 ● 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 ● 级配参数: ?? ???分率。质量占试样总质量的百是指通过某号筛的式样通过百分率和。筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 沥青混合料 水泥混合料 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

土木工程材料知识点归纳版

1.弹性模量:用E表示。材料在弹性变形阶段内,应力和对应的应变的比值。反映材料抵抗弹性变形能力。其值 越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小,抵抗变形能力越强 2.韧性:在冲击、振动荷载作用下,能吸收较大能量产生一定变形而不致破坏的性质。 3.耐水性:材料长期在饱和水作用下不被破坏,强度也不显著降低的性质,表示方法——软化系数:材料在吸水 饱和状态下的抗压强度与干燥状态下的抗压强度之比K R = f b/f g 软化系数大于0.8的材料通常可以认为是耐水材料;对于经常位于水中或处于潮湿环境中的材料,软化系数不得低于0.85;对于受潮较轻或次要结构所用的材料,软化系数不宜小于0.75 4.导热性:传导热量的能力,表示方式——导热系数,材料的导热系数越小,材料的绝热性能就越好。影响导热性 的因素:材料的表观密度越小,其孔隙率越大,导热系数越小,导热性越差。由于水与冰的导热系数较空气大,当材料受潮或受冻时会使导热系数急剧增大,导致材料保温隔热方式变差。所以隔热材料要注意防潮防冻。 5.建筑石膏的化学分子式:β-CaSO4˙?H2O 石膏水化硬化后的化学成分:CaSO4˙2H2O 6.高强石膏与建筑石膏相比水化速度慢,水化热低,需水量小,硬化体的强度高。这是由于高强石膏为α型半水石膏, 建筑石膏为β型半水石膏。β型半水石膏结晶较差,常为细小的纤维状或片状聚集体,内比表面积较大;α型半水石膏结晶完整,常是短柱状,晶粒较粗大,聚集体的内比表面积较小。 7.石灰的熟化,是生石灰与水作用生成熟石灰的过程。特点:石灰熟化时释放出大量热,体积增大1~2.5倍。应 用:石灰使用时,一般要变成石灰膏再使用。CaO+H2O Ca(OH)2+64kJ 8.陈伏:为消除过火石灰对工程的危害,将生石灰和水放在储灰池中存放15天以上,使过火灰充分熟化这个过程 叫沉伏。陈伏期间,石灰浆表面应保持一层水,隔绝空气,防止发生碳化。 9.石灰的凝结硬化过程:(1)干燥结晶硬化:石灰浆体在干燥的过程中,因游离水分逐渐蒸发或被砌体吸收,浆体 中的氢氧化钙溶液过饱和而结晶析出,产生强度并具有胶结性(2)碳化硬化:氢化氧钙与空气中的二氧化碳在有水分存在的条件下化合生成碳酸钙晶体,称为碳化。由于空气中二氧化碳含量少,碳化作用主要发生在石灰浆体与空气接触的表面上。表面上生成的CaCO3膜层将阻碍CO2的进一步渗入,同时也阻碍了内部水蒸气的蒸发,使氢氧化钙结晶作用也进行的缓慢。碳化硬化是一个由表及里,速度相当缓慢的过程。

机械制造工程学测试试习题及答案(答案在后面

欢迎阅读 机械制造工程学试卷 一、选择题 (每题2分,共20分) 1、磨削加工中,工件表层因受高温影响,金相组织发生变化,金属比重从7.75转变为7.78,则表面产生残余_________。 A.拉应力???? B.压应力??? C.拉应力、压应力都有可能。 2、主轴加工采用两中心孔定位,能在一次安装中加工大多数表面,符合________ 。 A. 3 A. 4、由n 5。 6 7 8 9、在相同的磨削条件下,以下哪种材料的工件磨削以后得到的表面粗糙度数值最小。 A.20钢?? B.铝???? C.铜?? D.铸铁 10、如图,欲在其上钻孔O l 及O 2 ,要O 1 O 2 与A面平行,孔O及其它表面均已加工,工件厚度为8mm, 保证设计尺寸A 1、A 2 的最合理的定位方案是??? ?。 ?二、名词解释 (每题3分,共12分) ?1.工序 ?2.机械加工精度

?3.六点定位原理 ?4.磨削烧伤 ??三、简答题:(共14分) 1、根据六点定位原理,试分析下图中各个定位元件所消除的自由度。并指出属于何种定位方式(指完全定位、不完全定位、过定位、欠定位)? (8分) (参考坐标轴x,y,z已标注在图中。) ?2. 在车床上加工芯轴时,精车外圆 A 及台肩面 B,再光刀 A 及 B,经检测发现 B 对 A 有垂直度 (共8 ,该 。 m,且,公差对称配置于分布曲线的中点,求该工件的合格品率;并计算工艺能力系数Cp。(共8分)? 数值表: 参考答案及评分标准 一、选择题(每题2分,共20分) 1、A 2、B 3、C 4、A 5、C 6、B 7、A 8、C 9、D 10、D

机械制造工程原理练习题

《机械制造工程基础》课程习题解答 一、填空: 1. 表面发生线的形成方法有轨迹法、成形法、相切法和展成法四种。 2. 从形态上看,切屑可以分为带状切屑、节状切削、粒状切削、和崩碎切削四种类型。 3. 刀具耐用度是指刀具从开始切削至达到磨损量达到磨钝标准为止所使用的切削时间,用T表示 4.切削时作用在刀具上的力,由两个方面组成:1)三个变形区内产生的弹性变形抗力和塑性变形抗力;2)切屑、工件与刀具间的摩擦阻力。 5.刀具磨损可以分为四类: 硬质点划痕、冷焊粘结、扩散磨损和化学磨损。 6.刃磨后的刀具自开始切削直到磨损量达到磨钝标准为止所经历的总切削时间,称为刀具寿命。 7.磨削过程中磨粒对工件的作用包括摩擦阶段、耕犁阶段和形成阶段三个阶段。 8.靠前刀面处的变形区域称为第二变形区,这个变形区主要集中在和前刀面接触的切屑底面一薄层金属内。 9. 牛头刨床的主运动是工作台带动工件的直线往复移动,进给运动是的间歇移动。 11.零件的加工精度包含尺寸精度、形状精度和位置精度等三方面的内容。 12、切削过程中,切削层金属的变形大致可划分为三个区域。 13、切屑沿前刀面排出时进一步受到前刀面的挤压和摩擦,使靠近前刀面处的金属纤维化、基本上和前刀面平行,这一区域称为第二变形区。 14、在一般切削速度范围内,第一变形区的宽度仅为0.02mm—0.2mm,切削速度越高、其宽度越小,故可近似看成一个平面,称剪切面。 15、切削过程中,阻滞在前刀面上的积屑瘤有使刀具实际前角增大的作用(参见图2-19),使切削力减小,使加工表面粉糙度增大。 16、在无积屑瘤的切削速度范围内,切削层公称厚度hD越大,变形系数Ah越小。 17、加工塑性金属时,在切削厚度较小、切削速度较高、刀具前角较大的工况条件下常形成节状切屑切屑;在切削速度较低、切削厚度较大、刀具前角较小时常产生节状切屑切屑,又称挤裂切屑;在切屑形成过程中,如剪切面上的剪切应力超过了材料的断裂强度,切屑单元从被切材料上脱落,形成粒状切屑;切削脆性金属时,由于材料塑性很小、抗拉强度较低,刀具切入后,切削层金属在刀具前刀面的作用下,未经明显的塑性变形就在拉应力作用下脆断,形成形状不规则的崩碎切屑。 18、研究表明,工件材料脆性越大、切屑厚度越大、切屑卷曲半径越小,切屑就越容易折断。 19、切削力来源于两个方面:克服切削层材料和工件表面层材料对弹性交形、塑性变形的抗力;克服刀具与切屑、刀具与工件表面间摩擦阻力所需的力。 20、为了便于测量和应用可将切削合力F分解为Fc、Fp和Ff三个互相垂直的分力。 22、在切削层面积相同的条件下,采用大的进给量f比采用大的背吃刀量αp的切削力小。 23、前角增大,切削力下降。切削塑性材料时,ro对切削力的影响较大;切削脆性材料时,由于切削变形很小,ro对切削力的影响不显著。 30、刀具磨损机制有:硬质点划痕,冷焊粘结,扩散磨损,化学磨损。 31、刀具的破损形式分为脆性破损和塑性破损。脆性破损有:崩刃,碎断,剥落,裂纹破损等。 32.在砂轮的磨削过程中磨粒对工件的作用包括滑擦、耕犁和形成切屑三种阶段。 33.机床误差是由机床的制造误差、安装误差和使用中的磨损引起的,其中对加工精度影响最大的三种几何误差是主轴回转误差、导轨误差和传动误差。

土木工程材料知识点整理(良心出品必属精品)

土木工程材料复习整理 1.土木工程材料的定义 用于建筑物和构筑物的所有材料的总称。 2.土木工程材料的分类 (一)按化学组成分类:无机材料、有机材料、复合材料 (二)按材料在建筑物中的功能分类:承重材料、非承重材料、保温和隔热材料、吸声和隔声材料、防水材料、装饰材料等(三)按使用部位分类:结构材料、墙体材料、屋面材料、地面材料、饰面材料等 3.各级标准各自的部门代号列举 GB——国家标准 GBJ——建筑行业国家标准 JC——建材标准 JG——建工标准 JGJ——建工建材标准 DB——地方标准 QB——企业标准 ISO——国际标准 4.材料的组成是指材料的化学成分、矿物成分和相组成。 5.材料的结构 宏观结构:指用肉眼或放大镜能够分辨的粗大组织。其尺寸在10-3m级以上。 细观结构:指用光学显微镜所能观察到的材料结构。其尺寸在10-3-10-6m级。 微观结构:微观结构是指原子和分子层次上的结构。其尺寸在10-6

-10-10m 级。微观结构可以分为晶体、非晶体和胶体三种。 6.材料的密度、表观密度、堆积密度、密实度与孔隙率、填充率与空隙率的概念及计算 密度:材料在绝对密实状态下,单位体积的质量。(质量密度) 密实体积:不含有孔隙和空隙的体积(V)。 g/cm3 表观密度:材料在自然状态下,单位体积的质量。(体积密度) 表观体积:含有孔隙但不含空隙的体积(V0)。(用排水法测得的扣除了材料内部开口孔隙的体积称为近视表观体积,也称视体积。 ㎏/m3或g/cm3 堆积密度:材料在堆积状态下,单位体积的质量。(容装密度) 堆积体积:含有孔隙和空隙的体积(V0’)。 ㎏/m3 密实度:密实度是指材料体积内,被固体物质所充实的程度。 v m = ρv o m = 0ρ' 00 v m ='ρ00100%100%V D V ρρ =??=%100101??-=W V V m m W ρ

机械制造工程原理思考题答案修订稿

机械制造工程原理思考 题答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

第一章金属切削的基本要素 一、基本概念 发生线:一般的基本表面都可以看作是一条母线沿着一条导线运动形成的,母线和导线统称为形成表面的发生线。 形成发生线的四种方法:轨迹法、成形法、相切法、展成法。 简单运动和复合成型运动及其本质区别是什么:旋转运动或直线运动称为简单运动。由多个简单运动构成复合运动。复合运动各个部分必须保持严格的相对运动关系是相互依存,而不是独立的。简单运动之间是互相独立的没有严格相对运动关系。 主运动进给运动:主运动是道具与工件之间的主要相对运动,进给运动配合主运动,使切削加工保持不断地进行,形成具有所需几何形状的以加工表面。 工件的三总表面:待加工表面、已加工表面、过渡表面。 切削用量三要素:切削速度Vc、进给量f和切削深度ap。 刀具角度参考系的组成:参考系可分为刀具标注角度参考系和刀具工作角度参考系,前者由主运动方向确定,后者由合成切削运动方向确定。 工具角度的定义、改变原因和改变值:按照切削加工的实际情况,在刀具工作角度参考系中所确定的角度称为工作角度,进给运动和切削刃上选定点安装高低对工作角度影响。 切削层参数:切削层的尺寸称为切削层参数。 金属切除率:刀具在单位时间内从工件上切除的金属的体积。 主要角度定义及图示(前后角、主副偏角、刃倾角):*前角:基面和前刀面的夹角。是刀具的锋利程度。我们把铁屑流经过的面成为前刀面。*后角:切削平面和后刀面的夹角。主要影响摩擦和刀具强度。*主偏角:主切削刃和刀具进给方向的夹角。影响刀具的强度,和影响背向力,主偏角减小,背向力越大,机床的消耗率也越大,并且主偏角还会影响表面粗糙度。*副偏角、副切削刃与进给方向的反方向的夹角即为副偏角。同样影响强度,摩擦,以及表面粗糙度。刃倾角:是控制流屑的方向。主切削刃和基面的夹角。 二、简答题 2、刀具材料应具备的性能; 硬度,耐磨,耐热,强度和韧性,减摩性,导热,热膨胀,工艺性,经济型 3、高速钢和硬质合金性能对比; 硬质合金硬度随温度升高而降低,700-800℃大部分合金与高速钢常温硬度相当 硬质合金是脆性材料,韧性不足,高速钢好 高速钢导热性低于硬质合金 硬质合金线膨胀系数比高速钢小得多 硬质合金与钢发生冷汗的温度高于高速钢 4、YT 、YG两类硬质合金的牌号及应用; YT(WC-TiC-Co):碳素钢,合金钢的加工 YG(WC-Co):铸铁,有色金属及其合金精加工,半精加工,不能承受冲击载荷 5、常用的刀具材料有哪些? 高速钢,硬质合金,陶瓷,金刚石,立方氮化硼 三、问答题 1、形成发生线的方法有哪些?

工程材料知识点总结

第一章 1.三种典型晶胞结构: 体心立方: Mo 、Cr 、W 、V 和 α-Fe 面心立方: Al 、Cu 、Ni 、Pb 和 β-Fe 密排六方: Zn 、Mg 、Be 体心立方 面心立方 密排六方 实际原子数 2 4 6 原子半径 a r 4 3= a r 4 2= a r 21= 配位数 8 12 12 致密数 68% 74% 74% 2.晶向、晶面与各向异性 晶向:通过原子中心的直线为原子列,它所代表的方向称为晶向,用晶向指数表示。 晶面:通过晶格中原子中心的平面称为晶面,用晶面指数表示。 (晶向指数、晶面指数的确定见书P7。) 各向异性:晶体在不同方向上性能不相同的现象称为各向异性。 3.金属的晶体缺陷:点缺陷、线缺陷、面缺陷 4.晶体缺陷与强化:室温下金属的强度随晶体缺陷的增多而迅速下降,当缺陷增多到一定数量后,金属强度又随晶体缺陷的增加而增大。因此,可以通过减少或者增加晶体缺陷这两个方面来提高金属强度。 5..过冷:实际结晶温度Tn 低于理论结晶温度To 的现象称为过冷。 过冷度 n T T T -=?0 过冷度与冷却速度有关,冷却速度越大,过冷度也越大。 6.结晶过程:金属结晶就是晶核不断形成和不断长大的过程。 7.滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿着原子排列最密的晶面和晶向发生了相对滑移,滑移面两侧晶体结构没有改变,晶格位向也基本一致,因此称为滑移变形。 晶体的滑移系越多,金属的塑性变形能力就越大。 8.加工硬化:随塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度显著提高,塑性和韧性显著降低,这称为加工硬化。 9.再结晶:金属从一种固体晶态过渡到另一种固体晶态的过程称为再结晶。 作用:消除加工硬化,把金属的力学和物化性能基本恢复到变形前的水平。 10.合金:两种或两种以上金属元素或金属与非金属元素组成的具有金属特性的物质。 11.相:合金中具有相同化学成分、相同晶体结构并有界面与其他部分隔开的均匀组成部分称为“相”。 分类:固溶体和金属间化合物 第二章 1.铁碳合金相图(20分) P22

13-11机械制造装备设计-部分习题解答

“机械制造装备设计”部分习题解答 第一章: 1-3 柔性化指的是什么?试分析组合机床、普通机床、数控机床、加工中心和柔性制造系统的柔性化程度。其柔性表现在哪里? 答:机械制造装备的柔性化是机床可以调整以满足不同工件加工的性能。柔性化包括产品结构柔性化和功能柔性化。 按照柔性化从高到低排列应为:普通机床、数控机床、加工中心、FMS、组合机床(专用机床)。 普通机床柔性化表现在功能多、适应性强,为功能柔性化;数控机床和加工中心改变加工程序即可适应新的需要,结构柔性化;FMS加工效率较高,改变调度和程序可适应新的需要,为结构柔性化;组合机床(专用机床)生产率高,专门设计,适应性差,基本上无柔性。 1-9 机械制造装备设计有哪些类型?它们的本质区别是什么? 答:机械制造装备设计类型有创新设计、变型设计和模块化设计三种类型。 它们的本质区别:创新设计是一种新的理论、概念的设计,变型设计是在原设计基础上改变部分部件、参数或者结构的设计,模块化设计是采用预先设计的模块进行组合的一种设计方法。 目前大多为变型设计,模块化设计缩短了新产品设计开发的时间,创新设计的产品很少。 1-15 设计的评价方法很多,结合机械制造装备设计,指出哪些评价方法较为重要,为什么? 答:设计的评价方法有:技术经济评价、可靠性评价、人机工程学评价、结构工艺性评价、产品造型评价、标准化评价六种。 对于机械制造装备设计,这六种评价方法按重要程度由高向低排队一般是:可靠性评价、人机工程学评价、结构工艺性评价、标准化评价、技术经济评价、产品造型评价。其原因是机械制造装备投资较大,使用周期较长。为了保证产品质量、降低成本、提高可靠性和竞争能力,六种评价都是不可缺少的。 可靠性评价对产品质量与可靠性进行评价;人机工程学评价产品设计在人机工程方面的合理性;结构工艺性评价是对产品结构便于加工制造的性能进行评价,以降低生产成本,缩短生产时间;技术经济评价综合评价产品技术的先进性和经济的合理性;标准化评价是在标准化方面对产品进行评价;而产品造型评价是对产品的外观设计的合理性和新颖性进行评价。 1-17可靠性指的是什么?有哪些可靠性衡量指标?它们之间有哪些数值上的联系? 答:可靠性是指产品在规定的条件和规定的时间内,完成规定任务的能力。 衡量指标有:可靠度R(t)、累计失效概率F(t)、失效率、平均寿命和平均无故障工作时间、可靠寿命、维修度、修复率、平均修复时间等(P37-38)。 它们之间的主要联系:F(t)=1-R(t)。 1-18 从系统设计的角度,如何提高产品的可靠性? 答:从系统设计角度,提高产品可靠性要提高其组成各单元的可靠性水平,因此要进行系统和单元可靠性的预测。(P39) 此外要将系统可靠性指标合理分配到各组成单元中,明确各组成单元的可靠性设计要求。(P42) 第二章: 2-4 机床系列型谱含意是什么? 答:先选择用量大的机床为“基型系列”,然后在此基础上派生出若干“变型系列”,基型和变型

机械制造工程原理教案

机械制造工程原理 教案

绪论 一、课程概述 1、课程名称:机械制造工程原理 2、课程内容: 3、学习目的:培养专业人材 4、基本要求:识记 理解 应用 二、制造行业现状 发展快,要求高,专业人员缺乏 现代制造的目标:高质量、高效率、低成本和自动化 第一章工件的定位夹紧与夹具设计本章内容:第一节工件在机床上的安装 第二节夹具概念 第三节定位原理 第四节工件在夹具中的夹紧 第五节夹具举例 第一节工件在机床上的安装 一、安装概念

定位:把工件安放在机床工作台上或夹具中,使它和刀具之间有相对正确的位置。夹紧:工件定位后,将工件固定,使其在加工过程中保持定位位置不变。 二、工件在机床或夹具上的三种安装方式 1、直接找正安装 2、划线找正安装 3、夹具安装 夹具安装指直接由夹具来保证工件在机床上的正确位置,并在夹具上直接夹紧工件。

第二节夹具概念 一、夹具的概念 机床夹具是将工件进行定位、夹紧,将刀具进行导向或对刀,以保证工件和刀具间的相对运动关系的附加装置,简称夹具。 二、夹具的基本构成 夹具构成:1、定位元件;2、夹紧装置;;3、导向元件和对刀装置;4、连接元件;5、夹具体; 6、其它元件及装置。 三、夹具的分类 1、通用夹具 2、专用夹具 3、成组夹具 4、组合夹具 5、随行夹具 第三节定位原理 一、六点定位原理 长方体六点定位

三、定位方法 1、平面定位 ⑴支承钉 固定支承钉 可调支承钉

自定位支承 辅助支承 辅助支承和可调支承的区别:辅助支承是在工件定位后才参与支承的元件,其高度是由工件确定的,因此它不起定位作用,但辅助支承锁紧后就成为固定支承,能承受切削力。辅助支承主要用来在加工过程中加强被加工部位的刚度和提高工作的稳定性,通过增加一些接触点防止工件在加工中变形,但又不影响原来的定位。 ⑵支承板

工程材料总复习知识点

第二章材料的性能 一、1)弹性和刚度 弹性:为不产生永久变形的最大应力,成为弹性极限 刚度:在弹性极限范围内,应力与应变成正比,即:比例常数E称为弹性模量,它是衡量材料抵抗弹性变形能力的指标,亦称为刚度。 2)强度 屈服点与屈服强度是材料开始产生明显塑性变形时的最低应力值,即: 3)疲劳强度:表示材料抵抗交变应力的能力,即: 脚标r 为应力比,即: 对于对称循环交变应力,r= —1 时,这种情况下材料的疲劳代号为 4)裂纹扩展时的临界状态所对应的应力场强度因子,称为材料的断裂韧度,用K IC表示 二、材料的高温性能: 1、蠕变的定义:是指在长时间的恒温下、恒应力作用下,即使应力小于该温度下的屈服点,材料也会缓慢的产生塑性变形的现象,而导致的材料断裂的现象称为蠕变断裂 2、蠕变变形与断裂机理:材料的蠕变变形主要通过位错滑移、原子扩散及晶界滑动等机理进行的;而蠕变断裂是由于在晶界上形成裂纹并逐渐扩展而引起的,大多为沿晶断裂。 3、应力松弛:指承受弹性变形的零件,在工作中总变形量应保持不变,但随时间的延长而发生蠕变,从而导致工作应力自行逐渐衰减的现象 4、蠕变温度:指金属在一定的温度下、一定的时间内产生一定变形量所能承受的最大应力 5、持久强度:指金属在一定温度下、一定时间内所能承受最大断裂应力 第三章:金属结构与结晶 三种常见金属晶格:体心立方晶格,面心立方晶格、密排六方晶格 晶格致密度和配位数 晶面和晶向分析 1、晶面指数 2、晶向指数 3、晶面族和晶向族 4、晶面和晶向的原子密度第四章:二元合金相图(计算组织组成物的相对含量及相的相对量) 1、二元合金相图的建立 2、二元合金的基本相图 1)匀晶相图(枝晶偏析:由于固溶体一般都以树枝状方式结晶,先结晶的树枝晶轴含高熔点的组元较多;后结晶的晶枝间含低熔点组元较多,故把晶内偏析又称为枝晶偏析) 2)共晶相图 3)包晶相图 4)共晶相图 3、铁碳合金 铁碳合金基本相 1)铁素体 2)奥氏体 3)渗碳体 4)石墨 第五章金属塑性变形与再结晶 1、单晶体塑性变形形式 1)滑移 2)孪生 2、加工硬化:随着变形程度的增加,金属的强度、硬度上升而塑性、韧性下降,即为冷变形强化,也称加工硬化。 3、铁的最低再结晶温度为4500C,故即使它在4000C的加工变形仍应属于冷变形;铅的再结晶温度在00C以下,故它在室温的加工变形为热变形 第六章:金属热处理及材料改性 1、本质粗晶粒钢:对于碳素钢,奥氏体晶粒随加热温度升高会迅速长大,这类钢称为本质粗晶粒钢 2、马氏体类型的转变 1)马氏体组织形态和性能:马氏体组织形态主要有两种基本类型:一种是板条状马氏体,也称低碳马氏体;另一种是在片状马氏体,也称高碳马氏体。 2)马氏体性能:马氏体塑性韧性主要取决于碳的过饱和度和亚结构。低碳板条状马氏体的韧性塑性相当好。 3、过冷奥氏体连续转变 曲线图CCT曲线与TTT曲线比较:共析钢和过共析钢连续冷却时,由于贝氏体转变孕育期大大增长,因而有珠光体转变区而无贝氏体转变

《土木工程材料》知识点

《土木工程材料》重要知识点 关注各章习题:选择题、判断题、是非题 一、材料基本性质 (1)基本概念 1.密度:材料在绝对密实状态下单位体积下的质量; 2.体积密度:材料在自然状态下单位体积(包括材料实体及开口孔隙、闭口孔隙)的质量,俗称容重; 3.表观密度:单位体积(含材料实体及闭口孔隙体积)材料的干质量,也称视密度; 4.堆积密度:散粒状材料单位体积(含物质颗粒固体及其闭口孔隙、开口孔隙体积以及颗粒间孔隙体积)物质颗粒的质量; 5.孔隙率:材料中的孔隙体积占自然状态下总体积的百分率 6.空隙率:散粒状材料在堆积体积状态下颗粒固体物质间空隙体积(开口孔隙与间隙之和)占堆积体积的百分率; 7.强度:指材料抵抗外力破坏的能力(材料在外力作用下不被破坏时能承受的最大应力) 8.比强度:指材料强度与表观密度之比,材料比强度越大,越轻质高强; 9.弹性:指材料在外力作用下产生变形,当外力取消后,能够完全恢复原来形状的性质; 10.塑性:指在外力作用下材料产生变形,外力取消后,仍保持变形后的形状和尺寸,这种不能恢复的变形称为塑性变形; 11.韧性:指在冲击或震动荷载作用下,材料能够吸收较大的能量,同时也能产生一定的变形而不破坏的性质; 12.脆性:指材料在外力作用下,无明显塑性变形而突然破坏的性质; 13.硬度:指材料表面抵抗其他物体压入或刻划的能力; 14.耐磨性:材料表面抵抗磨损的能力; 15.亲水性:当湿润角≤90°时,水分子之间的内聚力小于水分子与材料分子之间的相互吸引力,这种性质称为材料的亲水性; 16.憎水性:当湿润角>90°时,水分子之间的内聚力大于水分子与材料分子之间的吸引力,这种性质称为材料的憎水性;

机械制造工程学课后作业答案

o (部 分 解 答) 1. 试画出下图所示切断刀的正交平面参考系的标注角度 。、。、K r 、K r 、s (要求标出假定主 运动方向V c 、假定进给运动方向V f 、基面P 和切削平面P s ) 3.如下图所示,镗孔时工件内孔直径为 50mm ,镗刀的几何角度为。10, s 0, o 8, K r 75。若镗刀在安装时刀尖比工件中心高 h 1mm ,试检验 镗刀的工作后角 解答: 在背平面(切深剖面) 带入数值,求得: tan oe tan ( o o )cos s COS ( s s ) ⑵ HT200 铸件精车;(A. YG3X(K01)) ⑶ 低速精车合金钢蜗杆;(B. W18Cr4V ) ⑷ 高速精车调质钢长轴;(G. YT30(P01)) ⑸ 中速车削淬硬钢轴;(D YN10(P05)) ⑹加工冷硬铸铁。(F . YG6X(K10》 A . YG3X(K01) B . W18Cr4V C . YT5(P30) D . YN10(P05) E . YG8(K30) F . YG6X(K10) G . YT30(P01) 7 .简要说明车削细长轴时应如何合理选择刀具几何角度(包括 K r 、 代入(1)式求得:tan oe 第二次作业部分答案: 6.试按下列条件选择刀具材料或编 ⑴45钢锻件粗车;(C. YT5(P30T^ P-P 内: ( 0.151 ,

1) K r :细长轴刚性不足,取90°; 2) s :取正刃倾角。(0~5°) 3) o :刚性不足的情况下,前角应取正值,并根据不同的材质尽可能取 较大的值。 4) o :刚性不足的情况下,后角应取正值,并根据不同的材质尽可能取 较小的值。 第四次作业部分解答: 4.在三台车床上分别用两顶尖安装工件,如下图所示,各加工一批细长轴,加工后经测量发现1 号车床产品出现腰鼓形,2号车床产品出现鞍形,3 号车床产品出现锥形,试分析产生上述各种形状误差的主要原因。 解答: (a) 主要原因:工件刚性差,径向力使工件产生变形,“让刀”;误差复映。 (b) 主要原因:工件回转中心(前后顶尖)与走刀方向(导轨)不平行,如:两顶尖在垂直方向不等高、机床导轨磨损等;工件刚性强,但床头、尾座刚性差;误差复映等。(c) 主要原因:刀具的磨损;机床前后顶尖在水平方向偏移;误差复映等。 5.在车床上车削一批小轴,经测量实际尺寸大于要求的尺寸从而必须返修的小轴数占24 %,小于要求的尺寸从而不能返修的小轴数占2%,若小轴的直径公差T 0.16mm,整批工件的实际尺寸按正态分布,试确定该工序的均方差,并判断车刀的调整误差为多少?

《工程材料基础》知识点汇总

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。 2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料; 一维材料:线性纤维材料,如光导纤维; 二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜; 三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等; 3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。 4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性; 陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性; 高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能; 半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。 5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。 6.晶体结构主要分为7个晶系、14种晶格; 7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw]; 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。 8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。 9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。 10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。 11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。 12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。 13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。 14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分; 合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系; 固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相; 金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。 15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象; 弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。 16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应; 共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应; 包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应; 共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。 17.铁素体(F):碳溶于α-Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770℃以下有磁性; 奥氏体(A):碳溶于γ-Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性; 渗碳体(Fe3C):含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大; 珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间; 莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。 18.包晶反应:1495℃时发生,有δ-Fe(C=0.10%)、γ-Fe(C=0.17%或0.18%,图中J点)、液相(C=0.53%或0.51%,图中B点)三相共存;δ-Fe(固体)+L(液体)=γ-Fe(固体) 共晶反应:1148℃时发生,有A(C=2.11%)、Fe3C(C=6.69%)、液相L(C=4.3%)三相共存;Ld→Ae+Fe3Cf(恒温1148℃) 共析反应:727℃时发生,有A(C=0.77%)、F(C=0.0218%)、Fe3C(C=6.69%)三相共存;As→Fp+Fe3Ck(恒温727℃)

机械制造工程原理课后答案

2-13 1.刀具磨损有三个阶段:1初级磨损阶段,2正常磨损阶段,3剧烈磨损阶段。 2.刀具磨钝标准有:刀具磨损后将影响切削力,切削温度和加工质量,因此必须根据加工情况规定一个最大磨损值,这就是刀具的磨钝标准。 3.制定刀具磨钝的依据:(1)工艺系统刚性,工艺系统刚性差,VB应取小值。如车削刚性差的工件,应控制在VB=0.3mm左右。(2)工件材料。切削难加工材料,如高温合金,不锈钢,钛合金等,一般应取较小的VB值;加工一般材料,VB值可取大一些。(3)加工精度和表面质量。加工精度和表面质量要求高时,VB应取小值。(4)工件尺寸。加工大型工件,为了避免频繁换刀,VB应取大值。 4.刀具使用寿命:刃磨好的刀具资开始切削直到磨损量达到磨钝标准为止的净切削时间,称为刀具的使用寿命。 5.使用寿命与切削量的关系:综合V c=A/T M或v c T m=A,f=B/T n和a p=C/T p(试中:B,C为系数:n,p为指数。)可以得到刀具使用公式的三因素公式: T=C T/v c1/m f1/n a p1/p,v c=C V/T m f yv a p xv或式中:C T,C V分别为与工件材料,刀具材料和其他切削条件有关的系数;指数x v=m/p,y v=m/n,系数C T,C V和指数x v,y v可在有关手册中查得。 6.确定刀具使用寿命的原则和方法:工件材料和刀具材料的性能对刀具的使用寿命影响最大。切削速度,进给量,切削深度以及刀具的几何参数对刀具的使用寿命都有影响。在这里用单因数法来建立v c ,a p,f与刀具使用寿命T的数学关系。 7.在确定刀具使用寿命后,如何选定切削用量:由T=C T/v c1/m f1/n a p1/p和T=C T/v c5f2.25a p0.15可知,一般情况下1/m>1/n>1/p或m

工程材料知识点

第一章材料的结构与组成 1、填写出下表中三种典型金属的基本参数 2、根据刚性模型,计算体心立方、面心立方及密排六方晶格的致密度。 体心立方:首先在一个晶胞中总共有8*1/8+1=2个原子,这个两个原子的体积为V1=2*4/ 3πr^3,而晶胞体积为V2=a^3。 根据晶胞中的原子分布可知,体心立方密排方向为[111],从而可以得到4r=a*√3。根据上述可以计算其致密度为η=V1/V2=π*√3/8=68%。 面心立方:一个胞共有8*1/8+6*1/2=4个原子,这个两个原子的体积为V1=4*4/3πr^3, 而晶胞体积为V2=a^3。面心立方密排方向为[110],从而有4r=a*√2。根据上述可以计算其致密度为η=V1/V2=π*√2/6=74%。 密排六方:4/3πr^6/a^3=(4/3πx(a/2)^6)/6x(√3a/4)xc=0.74 3、晶粒的大小对材料力学性能有哪些影响?用哪些方法可使液态金属结晶后获得细晶粒? 晶粒度的大小对金属材料的力学性能有很大影响。金属材料晶粒越小,其综合力学性能越好,即强度、硬度、塑性、韧性越高。 细化液态金属结晶晶粒的方法:增大过冷度、变质处理、振动或搅拌。 4、什么是过冷度?过冷度和冷却速度有什么关系? 金属在实际结晶过程中,从液态必须冷却到理论结晶温度(T0)以下才开始结晶,这种现象

称为过冷。理论结晶温度T0和实际结晶温度T1之差△T,称为过冷度。金属结晶时的过冷度并不是一个恒定值,而是与冷却速度有关,冷却速度越大,过冷度就越大,金属的实际结晶温度也就越低。 5、实际金属晶体存在哪些缺陷?对材料性能有何影响? 晶体缺陷有点缺陷、线缺陷、面缺陷三种缺陷。 其中点缺陷包括空位、间隙原子、置换原子。 线缺陷包括刃型位错、螺型位错。 面缺陷包括晶体的表面、晶界、亚晶界、相界。 它们对力学性能的影响:使得金属塑性、硬度以及抗拉压力显著降低等等。 第二章材料的力学行为 1、说明下列力学性能指标的名称、单位及其含义。E、Re、Rm、ReL、Rr0. 2、R-1、A、Z、αk、HBW、HRC。

相关文档
相关文档 最新文档