文档库 最新最全的文档下载
当前位置:文档库 › Lingo求解DEA程序

Lingo求解DEA程序

Lingo求解DEA程序
Lingo求解DEA程序

MODEL:

! Data Envelope Analysis of Decision Maker Efficiency;

SETS:

DMU/BL HW NT OP YK EL/: ! Six schools;

SCORE; ! Each decision making unit has a;! score to be computed;

FACTOR/COST RICH WRIT SCIN/;

! There is a set of factors, input & output;

DXF( DMU, FACTOR): F; ! F( I, J) = Jth factor of DMU I;

! Weights used to compute DMU I's score;

DXFXD(DMU,FACTOR) : W;

ENDSETS

DATA:

! Inputs are spending/pupil, % not low income; ! Outputs are Writing score and Science score; NINPUTS = 2; ! The first NINPUTS factors are inputs;

! The inputs, the outputs;

!cost rich writ scin;

F= 8939 64.3 25.2 223 !BL;

8625 99 28.2 287 !HW;

10813 99.6 29.4 317 !NT;

10638 96 26.4 291 !OP;

6240 96.2 27.2 295 !YK;

4719 79.9 25.5 222; !EL; ENDDATA

! Try to make everyone's score as high as possible;

MAX = @SUM( DMU: SCORE);

! The LP for each DMU to get its score;

@FOR( DMU( I):

SCORE( I) = @SUM( FACTOR(J)|J #GT# NINPUTS: F(I, J)* W(I, J));

! Sum of inputs(denominator) = 1;

@SUM( FACTOR( J)| J #LE# NINPUTS:

F( I, J)* W( I, J)) = 1;

! Using DMU I's weights, no DMU can score better than 1;

@FOR( DMU( K):

@SUM( FACTOR( J)| J #GT# NINPUTS:

F( K, J) * W( I, J))

<= @SUM( FACTOR( J)| J #LE# NINPUTS:

F( K, J) * W( I, J))

)

);

! The weights must be greater than zero;

@FOR( DXFXD( I, J): @BND( .00001, X, 100000)); END

lingo程序与结果

程序: min=1.1*x+1.2*y+1.3*z+1.4*k; 290*a1+315*b1+350*c1+455*d1<=1850; 290*a1+315*b1+350*c1+455*d1>=1750; 290*a2+315*b2+350*c2+455*d2<=1850; 290*a2+315*b2+350*c2+455*d2>=1750; 290*a3+315*b3+350*c3+455*d3<=1850; 290*a3+315*b3+350*c3+455*d3>=1750; 290*a4+315*b4+350*c4+455*d4<=1850; 290*a4+315*b4+350*c4+455*d4>=1750; a1+b1+c1+d1<=5; a1+b1+c1+d1>=4; a2+b2+c2+d2<=5; a2+b2+c2+d2>=4; a3+b3+c3+d3<=5; a3+b3+c3+d3>=4; a4+b4+c4+d4<=5; a4+b4+c4+d4>=4; a1*x+a2*y+a3*z+a4*k>=15; b1*x+b2*y+b3*z+b4*k>=28; c1*x+c2*y+c3*z+c4*k>=21; d1*x+d2*y+d3*z+d4*k>=30; x>=y; y>=z; z>=k; @gin(x);@gin(y);@gin(z);@gin(k); @gin(a1);@gin(a2);@gin(a3);@gin(a4); @gin(b1);@gin(b2);@gin(b3);@gin(b4); @gin(c1);@gin(c2);@gin(c3);@gin(c4); @gin(d1);@gin(d2);@gin(d3);@gin(d4); 结果: Local optimal solution found. Objective value: 21.50000 Objective bound: 21.50000 Infeasibilities: 0.000000 Extended solver steps: 250 Total solver iterations: 14034 Variable Value Reduced Cost X 14.00000 1.100000 Y 4.000000 1.200000 Z 1.000000 1.300000 K 0.000000 1.400000 A1 1.000000 0.000000 B1 2.000000 0.000000 C1 0.000000 0.000000 D1 2.000000 0.000000 A2 0.000000 0.000000 B2 0.000000 0.000000 C2 5.000000 0.000000 D2 0.000000 0.000000 A3 2.000000 0.000000

lingo用法总结

ji例程1、 model: sets: quarters/1..4/:dem,rp,op,inv; endsets min=@sum(quarters:400*rp+450*op+20*inv); @for(quarters(i):rp<=40); @for(quarters(i)|i#gt#1: inv(i)=inv(i-1)+rp(i)+op(i)-dem(i);); inv(1)=10+rp(1)+op(1)-dem(1); data: dem=40 60 75 25; enddata end 例程2、 model: sets: quarters/1..4/:dem,rp,op,inv; endsets min=@sum(quarters:400*rp+450*op+20*inv); @for(quarters(i):rp<=40); @for(quarters(i)|i#gt#1: inv(i)=inv(i-1)+rp(i)+op(i)-dem(i);); inv(1)=a+rp(1)+op(1)-dem(1); data: dem=40 60 75 25; a=? enddata end ?LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。 ?LINGO中函数一律需要以“@”开头 ?Lingo中的每个语句都以分号结尾 ?用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数@free或@sub或@slb另行说明)。 ?以感叹号开始的是说明语句(说明语句也需要以分号结束)) ?理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。 ?一般来说,LINGO中建立的优化模型可以由5个部分组成,或称为5“段” (SECTION): (1)集合段(SETS):以“ SETS:” 开始,“ENDSETS”结束,定义

Lingo软件在求解数学优化问题的使用技巧

Lingo软件在求解数学优化问题的使用技巧 LINGO是一种专门用于求解数学规划问题的软件包。由于LINGO执行速度快,易于方便地输入、求解和分析数学规划问题,因此在教学、科研和工业界得到广泛应用。LINGO 主要用于求解线性规划、非线性规划、二次规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等。 LINGO的最新版本为LINGO7.0,但解密版通常为4.0和5.0版本,本书就以LINGO5.0为参照而编写。 1.LINGO编写格式 LINGO模型以MODEL开始,以END结束。中间为语句,分为四大部分(SECTION):(1)集合部分(SETS):这部分以“SETS:”开始,以“ENDSETS”结束。这部分的作用在于定义必要的变量,便于后面进行编程进行大规模计算,就象C语言在在程序的第一部分定义变量和数组一样。在LINGO中称为集合(SET)及其元素(MEMBER或ELEMENT,类似于数组的下标)和属性(A TTRIBUTE,类似于数组)。 LINGO中的集合有两类:一类是原始集合(PRIMITIVE SETS),其定义的格式为:SETNAME/member list(or 1..n)/:attribute,attribute,etc。 另一类是是导出集合(DERIVED SETS),即引用其它集合定义的集合,其定义的格式为: SETNAME(set1,set2,etc。):attribute,attribute,etc。 如果要在程序中使用数组,就必须在该部分进行定义,否则可不需要该部分。(2)目标与约束:这部分定义了目标函数、约束条件等。一般要用到LINGO的内部函数,可在后面的具体应用中体会其功能与用法。求解优化问题时,该部分是必须的。(3)数据部分(DA TA):这部分以“DA TA:”开始,以“END DA TA”结束。其作用在于对集合的属性(数组)输入必要的数值。格式为:attribut=value_list。该部分主要是方便数据的输入。 (4)初始化部分(INIT):这部分以“INIT:”开始,以“END INIT”结束。作用在于对集合的属性(数组)定义初值。格式为:attribute=value_list。由于非线性规划求解时,通常得到的是局部最优解,而局部最优解受输入的初值影响。通常可改变初值来得到不同的解,从而发现更好的解。 编写LINGO程序要注意的几点: 1.所有的语句除SETS、ENDSETS、DA TA、ENDDA TA、INIT、ENDINIT和MODEL,END 之外必须以一个分号“;”结尾。 2.LINGO求解非线性规划时已约定各变量非负。 LINGO内部函数使用详解。 LINGO建立优化模型时可以引用大量的内部函数,这些函数以“@”符号打头。 (1)常用数学函数 @ABS(X) 返回变量X的绝对数值。 @COS( X) 返回X的余弦值,X的单位为弧度 @EXP( X)

LINGO软件简介

LINGO 软件简介 LINGO 软件是一个处理优化问题的专门软件,它尤其擅长求解线性规划、非线性规划、整 数规划等问题。 一个简单示例 有如下一个混合非线性规划问题: ?????≥≤≤+++---+为整数 213 212 13213 2 2212121,;0,,210022..15023.027798max x x x x x x x x x x t s x x x x x x x 。 LINGO 程序(模型): max =98*x1+277*x2-x1^*x1*x2-2*x2^2+150*x3; x1+2*x2+2*x3<=100; x1<=2*x2; @gin (x1);@gin (x2);! Lingo 默认变量非负 (注意:@bin(x)表示x 是0-1变量;@gin(x)表示x 是整数变量;@bnd(L,x,U)表示 限制LxU ;@free(x)表示取消对x 的符号限制,即可正、可负。) 结果: Global optimal solution found. Objective value: Extended solver steps: 0 Total solver iterations: 45 Variable Value Reduced Cost X1 X2 X3 Row Slack or Surplus Dual Price 1 2 3 ———————— 非常简单! 在LINGO 中使用集合 为了方便地表示大规模的规划问题,减少模型、数据表示的复杂程度,LINGO 引进了“集合”的用法,实现了变量、系数的数组化(下标)表示。 例如:对?? ? ??? ? ==-++-==≤++∑=.,,;10)0(;4,3,2,1),()())()1()(;4,3,2,1,20)(..)} (20)(450)(400{min 4 ,3,2,1均非负INV OP RP INV I I DEM I OP I RP I INV I INV I I RP t s I INV I OP I RP I 求解程序: model : sets : mark/1,2,3,4/:dem,rp,op,inv;!也可以vmark/1..4/:dem,rp,op,inv;

一个使用Lingo求解多目标0-1整数规划问题答案

AK是一家空调制造商,其面临的需求增长很快。预计2001年,其全国的需求在南部将为180,000单位,在中部为120,000单位,在东部为110,000单位,在西部为100,000单位。DryIce在设计物流网络时,有四个备选的地点:New York, Atlanta, Chicago和San Diego。在这四个地点建厂,工厂的生产能力将要么为200,000单位,要么为400,000单位。工厂的年固定运营成本及从工厂所在地生产出产品并运往四个销售区域的生产和运输的单位成本如表所示。请为该设施网络的设计建立模型,并请对模型作简要说明。 设定变量如下表所示:其中M11 M12等一系列值为0.1变量,即可得到如下式子: m12+9200000*m22+232*x12+212*x22+230*x32+280*x42+5600000*m13+9300000*m 23+238*x13+230*x23+215*x33+270*x43+6100000*m14+10200000*m24+299*x14+2 80*x24+270*x34+225*x44; m11*200000+m21*400000>=x11+x21+x31+x41; m12*200000+m22*400000>=x12+x22+x32+x42; m13*200000+m23*400000>=x13+x23+x33+x43; m14*200000+m24*400000>=x14+x24+x34+x44; x11+x12+x13+x14>=110000; x21+x22+x23+x24>=180000; x31+x32+x33+x34>=120000; x41+x42+x43+x44>=100000; @bin(m11);@bin(m21);@bin(m12);@bin(m22);@bin(m13);@bin(m23);@bin(m14) ;@bin(m24); 通过运行LINGO得到如下结果:

LINGO软件简介

LINGO 软件简介 LINGO 软件是一个处理优化问题的专门软件,它尤其擅长求解线性规划、非线性规划、整数规划等问题。 一个简单示例 有如下一个混合非线性规划问题: ?????≥≤≤+++---+为整数 213 212 13213 2 2212121,;0,,210022..15023.027798max x x x x x x x x x x t s x x x x x x x 。 LINGO 程序(模型): max =98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2+150*x3; x1+2*x2+2*x3<=100; x1<=2*x2; @gin (x1);@gin (x2);! Lingo 默认变量非负 (注意:@bin(x)表示x 是0-1变量;@gin(x)表示x 是整数变量;@bnd(L,x,U)表示 限制L ≤x ≤U ;@free(x)表示取消对x 的符号限制,即可正、可负。) 结果: Global optimal solution found. Objective value: 9561.200 Extended solver steps: 0 Total solver iterations: 45 Variable Value Reduced Cost X1 6.000000 -76.70000 X2 31.00000 -151.2000 X3 16.00000 -150.0000 Row Slack or Surplus Dual Price 1 9561.200 1.000000 2 0.000000 0.000000 3 56.00000 0.000000 ———————— 非常简单! 在LINGO 中使用集合 为了方便地表示大规模的规划问题,减少模型、数据表示的复杂程度,LINGO 引进了“集合”的用法,实现了变量、系数的数组化(下标)表示。

lingo求解多目标规划__例题

实验二:目标规划 一、实验目的 目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。这些问题用线性规划求解就比较困难,因而提出了目标规划。熟悉目标规划模型的建立,求解过程及结果分析。 二、目标规划的一般模型 设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。设有l 个柔性目标约束,其目标规划约束的偏差是 ),...,2,1(,l i d d i i =-+。设有q 个优先级别,分别为q p p p ,...,21。在同一个优先级k p 中,有 不同的权重,分别记为),...,2,1(,l j w w kj kj =- + 。因此目标规划模型的一般数学表达式为: min ∑∑=+ +-- =+= l j j kj j kj q k k d w d w p z 1 1 );( s.t. ,,...2,1,),(1m i b x a n j i j ij =≥=≤∑= . ,...2,1,0,, ,...,2,1,, ,...2,1,1 l i d d n x o x l i g d d x c i i j i n j i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组 实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。

四、实验容及步骤 1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。目录和项目名推荐使用学生自己的学号。 2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。 例2.1: 某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。企业的经营目标不仅仅是利润,还需要考虑多个方面: (1) 力求使利润不低于1500元; (2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用; (4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。 在重要性上,设备C 是设备B 的3倍。 此题中只有设备A 是刚性约束,其余都是柔性约束。首先,最重要的指标是企业的利润,将它的优先级列为第一级;其次是Ⅰ、Ⅱ两种产品的产量保持1:2的比例,列为第二级;再次,设备B 、C 的工作时间要有所控制,列为第三级。在第三级中,设备B 的重要性是设备C 的3倍,因此它们的权重不一样,设备B 的系数是设备C 的3倍。 该计划问题可用数学模型表示为: 目标函数 min )33()(433322211+ +-+--+++++=d d d p d d p d p z 满足约束条件 2122x x + 12≤ 15003002001121=-+++-d d x x 022221=-+-+ - d d x x 14x 1633=-++ -d d

Lingo基本用法总结

Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件。 当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。 例1.1如何在LINGO中求解如下的LP问题: 在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后点击工具条上的按钮即可。 得到如下结果: 所以当x1为250,x2为100时目标函数得到最大值。 算术运算符 Lingo中变量不区分大小写,以字母开头不超过32个字符 算术运算符是针对数值进行操作的。LINGO提供了5种二元运算符: ^乘方﹡乘/除﹢加﹣减 LINGO唯一的一元算术运算符是取反函数“﹣”。 这些运算符的优先级由高到底为: 高﹣(取反) ^ ﹡/ 低﹢﹣ 运算符的运算次序为从左到右按优先级高低来执行。运算的次序可以用圆括号“()” 来改变。 例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值 在代码窗口中编写 min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后单击上面菜单lingo菜单下solve键即可。

lingo求解多目标规划__例题

实验二:目标规划 一、实验目的 目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。这些问题用线性规划求解就比较困难,因而提出了目标规划。熟悉目标规划模型的建立,求解过程及结果分析。 二、目标规划的一般模型 设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。设有l 个柔性目标约束,其目标规划约束的偏差是 ),...,2,1(,l i d d i i =-+。设有q 个优先级别,分别为q p p p ,...,21。在同一个优先级k p 中,有 不同的权重,分别记为),...,2,1(,l j w w kj kj =- +。因此目标规划模型的一般数学表达式为: min ∑∑=+ +--=+= l j j kj j kj q k k d w d w p z 1 1 );( s.t. ,,...2,1,),(1m i b x a n j i j ij =≥=≤∑= . ,...2,1,0,, ,...,2,1,, ,...2,1,1 l i d d n x o x l i g d d x c i i j i n j i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组 实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。

四、实验容及步骤 1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。目录和项目名推荐使用学生自己的学号。 2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。 例2.1: 某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。企业的经营目标不仅仅是利润,还需要考虑多个方面: (1) 力求使利润不低于1500元; (2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用; (4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。在重要性上,设备C 是设备B 的3倍。 此题中只有设备A 是刚性约束,其余都是柔性约束。首先,最重要的指标是企业的利润,将它的优先级列为第一级;其次是Ⅰ、Ⅱ两种产品的产量保持1:2的比例,列为第二级;再次,设备B 、C 的工作时间要有所控制,列为第三级。在第三级中,设备B 的重要性是设备C 的3倍,因此它们的权重不一样,设备B 的系数是设备C 的3倍。 该计划问题可用数学模型表示为: 目标函数 min )33()(433322211+ +-+--+++++=d d d p d d p d p z 满足约束条件 2122x x + 12≤ 15003002001121=-+++-d d x x 022221=-+-+ -d d x x 14x 1633=-++ -d d 155442=-++ -d d x 3,2,1,0,,,21=≥+ -i d d x x i i

2019年LINGO在多目标规划和最大最小化模型中的应用

LINGO 在多目标规划和最大最小化模型中的应用 在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。 一、多目标规划的常用解法 多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有: 1.主要目标法 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。 2.线性加权求和法 对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把) (x f i i i ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。 3.指数加权乘积法 设p i x f i ,,2,1),( =是原来的p 个目标,令 ∏==p i a i i x f Z 1)]([ 其中i a 为指数权重,把Z 作为新的目标函数。 4.理想点法 先分别求出p 个单目标规划的最优解*i f ,令 ∑-=2*))(()(i i f x f x h 然后把它作为新的目标函数。 5.分层序列法 将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。 这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不

足之处。例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。 二、最大最小化模型 在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。 最大最小化模型的目标函数可写成 )}(,),(),(max{min 21X f X f X f p X 或 )}(,),(),(min{max 21X f X f X f p X 式中T n x x x X ),,,(21 是决策变量。模型的约束条件可以包含线性、非线性的等式和不等式约束。这一模型的求解可视具体情况采用适当的方法。 三、用LINGO 求解多目标规划和最大最小化模型 1.解多目标规划 用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,从中找出理想的最优解,这样处理的最大优势是求解速度快,节省时间。 2.解最大最小化问题

Lingo的基本用法

LINGO的基本用法 一.集合的基本用法 集合(set)及其属性(attribute)的概念 基本集合与派生集合 集合名[/元素列表/][:属性列表]; 集合名(父集合列表)[/元素列表/][:属性列表]; 稠密集合与稀疏集合 元素过滤法 基本集合的隐式列举法: 数字型 1..n 字符数字型Car101..Car208 日期型MON..FRI 月份型OCT..JAN 年月型OCT2007..JAN2008 二.模型结构 (1)集合段从“sets:”到“endsets” (2)数据输入段从“data:”到“enddata” 属性=常数列表 (3)目标和约束段 MIN=表达式 (4)计算段从“calc:”到“endcalc”,对原始数据的计算处理 (5)初始段从“init:”到“endinit”,定义迭代初值用 属性=常数列表 (6)注释从感叹号到分号 三.函数 基本数学函数 @ABS(X) @COS(X) @EXP(X) @FLOOR(X) @LGM(X) @LOG(X) @MOD(X,Y) @POW(X,Y) @SIGN(X) @SIN(X) @SMAX(list) @SMIN(list) @SQR(X) @SQRT(X) @TAN(X) 其中@LGM(X) =ln(X-1)! 集合循环函数 @FOR @MIX @MIN @PROD @SUM 用法:集合函数名(集合名(集合索引列表)|条件:表达式组) 集合操作函数 @IN @IN(集合名,集合元素名,…集合元素名) @INDEX @INDEX(集合名,集合元素名)

@WRAP @WRAP(i,N),循环计数 @SIZE @SIZE(集合名) 变量定界函数 @BND(L,X,U) @BIN(X) @FREE(X) @GIN(X) 分别对变量取值限制:上下界,0-1值,取消非负限制,整数 概率分布函数 @PNS(X) 标准正态分布@PSL(X) 正态线性损失 @PBN(P,N,X) 二项分布@PHG 超几何分布 @PTD(N,X) t分布@PFD(N,D,X) F分布 @PPS(A,X) 泊松分布@PPL(A,X) 泊松线性损失 @PCX(N,X) X平方分布@RAND(seed) 随机数 服务系统函数 @PEL(A,X) @PFS(A,X,C) @PEB(A,X) 文件输入输出函数 @FILE(fn) @TEXT(…fn?) @OLE 结果报告函数 @ITERS() 返回迭代次数 @NEWLINE(n) 输出n个新行 @STRLEN(string) 返回字符串的长度 @NAME(reference) 返回变量名或行名 @WRITE 用于数据段,输出变量,字符串或换行 @WRITEFOR 是@WRITE在循环情况下的推广 @FORMAT 以格式描述符方式输出数值 @DUAL(varname) 返回解答中变量的判别数或结束行的影子价格@STATUS() 返回求解后的最后状态 其他函数 @IF @IF(条件,true结果,false结果) @WARN @WARN(‘text’,条件) @USER @USER(用户编写的函数dll或obj文件) 四.文件传输 通过文本文件传输数据 @FILE和@TEXT 通过Excel文件传输数据 @OLE

第1讲 Lingo软件入门(2014)

第1讲Lingo软件入门 司守奎 烟台市,海军航空工程学院数学教研室 Email:sishoukui@https://www.wendangku.net/doc/a813941932.html, 1 Lingo软件的基本语法 1.1 集合 集合部分的语法为 sets: 集合名称1/成员列表1/:属性1_1,属性1_2,…,属性1_n1; 集合名称2/成员列表2/:属性2_1,属性2_2,…,属性2_n2; 派生集合名称(集合名称1,集合名称2):属性3_1,…,属性3_n3; endsets 例26 sets: product/A B/; machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets 1.2 数据 数据部分的语法为 data: 属性1=数据列表; 属性2=数据列表; enddata 1.3 计算 计算段部分不能含有变量,必须是已知数据的运算。 calc: b=0; a=a+1; endcalc 1.4 模型的目标函数和约束条件 这里就不具体给出了,下面通过具体例子给出。 1.5 子模型 在LINGO 9.0 及更早的版本中,在每个LINGO 模型窗口中只允许有一个优化模型,可以称为主模型(MAIN MODEL)。在LINGO 10.0 中,每个LINGO 模型窗口中除了主模型外,用户还可以定义子模型(SUBMODEL)。子模型可以在主模型的计算段中被调用,这就进一步增强了LINGO 的编程能力。 子模型必须包含在主模型之内,即必须位于以“MODEL:”开头、以“END”结束的模块内。同一个主模型中,允许定义多个子模型,所以每个子模型本身必须命名,其基本语法是: SUBMODEL mymodel: 可执行语句(约束+目标函数); ENDSUBMODEL 其中mymodel 是该子模型的名字,可执行语句一般是一些约束语句,也可能包含目标函数,但不可以有自身单独的集合段、数据段、初始段和计算段。也就是说,同一个主模型内的变量都是全局变量,这些变量对主模型和所有子模型同样有效。 如果已经定义了子模型mymodel,则在计算段中可以用语句“@SOLVE( mymodel);”求解这个子模型。 2 Lingo函数 2.1 算术运算符

生产规划问题及LINGO求解

生产规划问题及LINGO求解 摘要:本文根据生产规划问题的特点,建立了满足生产规划的线性规划模型,并且利用lingo软件进行求解,提出了一种可以合理解决此类问题的数学方法,效果比较令人满意。 关键词:线性规划模型 lingo软件 中图分类号:tb114 文献标识码:a 文章编号: 1007-9416(2012)01-0073-01 1、问题的提出 某工厂是生产某种电子仪器的专业厂家,该厂是以销量来确定产量的1~6月份各个月生产能力、合同销量和单台仪器平均生产费用如表1所示。 又知上年末积压库存103台该仪器没售出.如果生产出的仪器当月不交货,则需要运到分厂库房,每台仪器需增加运输成本0.1万元,每台仪器每月的平均仓储费、维护留出库存80台.加班生产仪器每台增加成本1万元。试问应该如何安排1~6月份的生产,使总的生产成本(包括运输、仓储和维护)费用最少? 2、模型分析与假设 本模型的目标是使总的生产成本最小,其中总的生产成本包括正常生产仪器的费用、加班生产仪器的费用、当月不交货的运输费用及库存的仓储费、维护费.为此,我们作如下假设: (1)设第个月正常生产台。(2)设第个月加班生产台。(3)设第个

月不交货台。(4)设第个月售出上月库存台。(5)设第个月库存台。 (6)记第个月销量。(7)设第个月单台生产的费用。(8)记第个月正常生产能力。(9)记第个月加班生产能力。 3、模型的建立与求解 根据以上假设可知,第个月正常生产的成本为,第个月加班生产的成本为,第个月对不交货仪器的运输费为,第个月库存的仓储费及维护费为。 模型的目标函数为. 下面考虑本模型的限定条件 第个月销量的约束为 第个月正常生产能力的约束为: 第个月加班生产能力的约束为: 1~6月库存的约束为 于是问题的数学模型为 运行lingo软件求解模型,程序如下: model: sets: num_i/1..6/:b,c,d,e,x,y,z,w,h; endsets data: b=104,75,115,160,103,70;c=15,14,13.5,13,13,13.5;

LINGO的使用方法说明大全

LINGO的使用简介 LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法. LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示. 附表3-1 不同版本LINGO对求解规模的限制 版本类型总变量数整数变量数非线性变量数约束数 演示版 300 30 30 150 求解包 500 50 50 250 高级版 2000 200 200 1000 超级版 8000 800 800 4000 工业版 32000 3200 32000 16000 扩展版无限无限无限无限 3.1 LINGO程序框架 LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题. 一个LINGO程序一般会包括以下几个部分: (1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义. (2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定

LINGO软件简介

L I N G O软件简介 Document number:BGCG-0857-BTDO-0089-2022

LINGO 软件简介 LINGO 软件是一个处理优化问题的专门软件,它尤其擅长求解线性 规划、非线性规划、整数规划等问题。 一个简单示例 有如下一个混合非线性规划问题: ?????≥≤≤+++---+为整数 213 212 13213 2 2212121,;0,,210022..15023.027798max x x x x x x x x x x t s x x x x x x x 。 LINGO 程序(模型): max =98*x1+277*x2-x1^2-0.3*x1*x2- 2*x2^2+150*x3; x1+2*x2+2*x3<=100; x1<=2*x2; @gin (x1);@gin (x2);! Lingo 默认变量非负 (注意:@bin(x)表示x 是0-1变量;@gin(x)表示x 是整数变量;@bnd(L,x,U)表示限制L?x?U ;@free(x)表示取消对x 的符号限制,即可正、可负。) 结果: Global optimal solution found. Objective value: 9561.200 Extended solver steps: 0 Total solver iterations: 45

Variable Value Reduced Cost X1 6.000000 -76.70000 X2 31.00000 -151.2000 X3 16.00000 -150.0000 Row Slack or Surplus Dual Price 1 9561.200 1.000000 2 0.000000 0.000000 3 56.00000 0.000000 ————————非常简单! 在LINGO中使用集合 为了方便地表示大规模的规划问题,减少模型、数据表示的复杂程度,LINGO引进了“集合”的用法,实现了变量、系数的数组化(下标)表示。

lingo程序实例

例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。产销 model: !6发点8收点运输问题; sets: warehouses/wh1..wh6/:capacity; vendors/v1..v8/:demand; links(warehouses,vendors):cost,volume; endsets !目标函数域; min=@sum(links:cost*volume); !需求约束域; @for(vendors(j): @sum(warehouses(i):volume(i,j))=demand(j)); !产量约束; @for(warehouses(i): @sum(vendors(j):volume(i,j))<=capacity(i)); !数据域; data: capacity= 60 55 51 43 41 52 ; demand= ; cost=

; enddata end Global optimal solution found. Objective value: 664.0000 Infeasibilities: 0.000000 Total solver iterations: 15 Model Class: LP Total variables: 48 Nonlinear variables: 0 Integer variables: 0 Total constraints: 15 Nonlinear constraints: 0 Total nonzeros: 144 Nonlinear nonzeros: 0 Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.000000 CAPACITY( WH2) 55.00000 0.000000 CAPACITY( WH3) 51.00000 0.000000 CAPACITY( WH4) 43.00000 0.000000 CAPACITY( WH5) 41.00000 0.000000 CAPACITY( WH6) 52.00000 0.000000 DEMAND( V1) 35.00000 0.000000 DEMAND( V2) 37.00000 0.000000 DEMAND( V3) 22.00000 0.000000 DEMAND( V4) 32.00000 0.000000 DEMAND( V5) 41.00000 0.000000 DEMAND( V6) 32.00000 0.000000 DEMAND( V7) 43.00000 0.000000 DEMAND( V8) 38.00000 0.000000

LINGO使用说明(比较简单)

Lingo介绍 Lingo是美国LINDO系统公司(Lindo Symtem Inc)开发的求解数学规划系列软件中的一个(其他软件为LINGDO,GINO,What’s Best等),它的主要功能是求解大型线性、非线性和整数规划问题,目前的版本是lingo11.0。 lingo分为Demo、solve suite、hyper、industrial、extended等六类不同版本,只有Demo版本是免费的,其他版本需要向LINDO系统公司(在中国的代理商)购买,Lingo的不同版本对模型的变量总数、非线性变量个数、整型变量个数和约束条件的数量做出不同的限制(其中extended版本无限制)。 Lingo的主要功能特色为: (1)既能求解线性规划,也有较强的求解非线性规划的能力; (2)输入模型简练直观; (3)运行速度快、计算能力强; (4)内置建模语言,提供几十种内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型; (5)将集合的概念引入编程语言,很容易将实际问题转换为Lingo语言; (6)能方便地与excel、数据库等其他软件交换数据。 学校图书馆40本《lingo和excel在数学建模中的应用》,袁新生、邵大宏、郁时炼主编,科学出版社

Lingo 程序设计简要说明 在数学建模中会遇到如规划类的题型,在这种模型中总存在着一个目标,并希望这个目标的取值尽可能的大或小,同时与这个目标有关的一系列变量之间存在一些约束。在构造出目标函数和约束条件的表达式后,我们需要对求出这个最值和各变量的取值。一般我们用LINGO 来对模型进行求解,本文将通过举一个简单的例子,围绕这个例子逐步学习LINGO 的使用。LINGO 只是一个求解工具,我们主要的任务还是模型的建立! 当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。 示例:求解线性规划问题: max z=x1+x2+x3+x4+x5+x6+x7+x8 ???????????????≤≤≤≤≤≤269 + x88 + x72 + x66 + x55 + x47 + x38 + x28 + x16 15 6 + x87 + x7+ x65 + x54 + x44 + x34 + x25 + x15 444 + x86 + x77 + x68 + x58 + x45 + x32 + x27 + x14278 + x85 + x74 + x64 + x55 + x49 + x36 + x25 + x13389 + x84 + x75 + x62 + x57 + x46 + x35 + x28 + x1 2 154 + x8 3 + x79 + x66 + x55 + x45 + x3 4 + x27 + x1 求解这个模型的相应LINGO 程序代码如下: 程序一: max= x1+x2+x3+x4+x5+x6+x7+x8; x1 + 7*x2 + 4*x3 + 5*x4 + 5*x5 + 6*x6 + 9*x7 + 3*x8 + 415<=; 2*x1 + 8*x2 + 5*x3 + 6*x4 + 7*x5 + 2*x6 + 5*x7 + 4*x8 + 938<=; 3*x1 + 5*x2 + 6*x3 + 9*x4 + 5*x5 + 4*x6 + 4*x7 + 5*x8 + 827<=; 4*x1 + 7*x2 + 2*x3 + 5*x4 + 8*x5 + 8*x6 + 7*x7 + 6*x8 + 444<=; 5*x1 + 5*x2 + 4*x3 + 4*x4 + 4*x5 + 5*x6 + x7 + 7*x8 + 6 15<=; 6*x1 + 8*x2 + 8*x3 + 7*x4 + 5*x5 + 6*x6 + 2*x7 + 8*x8 + 926<=; 注:然后点击工具条上的按钮 即可。本模型的最优解为2.636364

相关文档