文档库 最新最全的文档下载
当前位置:文档库 › 写出下列线性规划问题的对偶问题(10分)

写出下列线性规划问题的对偶问题(10分)

写出下列线性规划问题的对偶问题(10分)
写出下列线性规划问题的对偶问题(10分)

命题人: 教研室主任: 第1页

一、写出下列线性规划问题的对偶问题(10分)

二、求解下列线性规划问题(15分)

三、分配甲、乙、丙、丁四个人去完成A 、B 、C 、D 、E 五项任务,每个人完成各项任务的时间如下表所示。由于任务数多于人数,故考虑任务E 必须完成,其它4项中可任选3项完成,试确定最优分配方案,使完成任务的总时间为最少。(15分)

四、某河流中有几个岛屿,如下图所示。从两岸至各岛屿及各岛屿之间的桥梁编号如下图所示,在一次敌对的军事演习中,问至少应炸断几座及哪几座桥梁,才能完全切断两岸的交通联系(15分)

?????≥≥+≥++++=0

x ,

x ,x 62x 3x 82x 4x x x 3x 2x minz 321

213

21

321??????

?≥≤=++≤++≥++++=无约束321

321

3213213

21x 0,x ,0x 53x 4x x 3

3x x 2x

2

4x 3x x 4x 2x 2x minz )1(?????

??????==≥===≥=∑∑∑∑====n),1,j m;,1,(i 0x )n ,1,j (b x m),1,(i a x x c minz )2(ij m

1

i j

ij n

1j i

ij m 1i n

1

j ij

ij

命题人: 教研室主任: 第2页

五、试根据下表所提供的条件,绘制出网络计划图(10分)

六、甲、乙、丙三个城市每年分别需要煤炭320、250

、350万吨,由A 、B 两处煤矿负责供应。已知煤炭年供应量为A —400万吨,B —450万吨。有煤矿至各城市的单位运价如下表所示: 单位:万元/万吨。由

于需大于求,经研究平衡决定,甲城市供应量可减少0~30万吨,乙城市需要量应全部满足,丙城市供应量不少于270万吨。试写出该运

输问题的数学模型并用表上作业法求其初始解(15分)

七、某一警卫部门,共有8支巡逻队,负责3个要害部位,A 、B 、

C 的警卫巡逻。对每个部位可分别派2~4支巡逻队,并且派出的

巡逻队数不同,各部位预期在一段时间内可能的损失有差别,具体

数字见下表,问该警卫部门应往各部位分别派多少支巡逻队,使总

的预期损失为最小?试建立动态规划模型并求解。(共20分)

A

1

2

3

4

5

6

8

7

9

10

11

12

13

B

C

D

E

F

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

线性规划的对偶原理

线性规划的对偶原理 3.1 线性规划的对偶问题 一、 对偶问题的提出 换位思考 家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大 213050max x x z += ?? ? ??≥≤+≤+0 ,50212034212121x x x x x x 某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。他 需要与家具厂谈判付给该厂每个工时的价格。如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少。 目标:租金最少;1y -付给木工工时的租金;2y -付给油漆工工时的租金 2150120min y y w += 所付租金应不低于家具厂利用这些资源所能得到的利益 1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收 入 502421≥+y y 2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收 入 30321≥+y y 3)付给每种工时的租金应不小于零 0,021≥≥y y 二、 原问题与对偶问题的数学模型 1. 对称形式的对偶

原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。 原问题: ?? ? ??≥≥=0min X b AX CX z 对偶问题: ?? ? ??≥≤=0max Y C YA Yb w 2. 非对称形式的对偶 若原问题的约束条件全部是等式约束(即线性规划的标准型),即 ?? ? ??≥==0min X b AX CX z 则其对偶问题的数学模型为 ?? ? ??≤=是自由变量Y C YA Yb w max 可把原问题写成其等价的对称形式: min z =CX AX ≥b AX ≤b X ≥0 即 min z =CX ? ? ????-A A X ≥??????-b b X ≥0 设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。根据对称形式的对偶模型,写出上述问题的对偶问题:

考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s.t. 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问 1 题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s.t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s.t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s.t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

线性规划问题求解

高中线性规划问题简析 何江南 数学与信息学院学科教学专业 2014级 摘要:线性规划问题是高中阶段一个比较重要的知识点,它是在学习了不等式的基础上,对不等式的应用及延伸。解决线性规划问题是沟通几何知识和代数知 识的桥梁是,数形结合思想的集中体现。高中线性规划一般考的比较简单,但类 型比较多,比较繁琐。因而高中阶段很多学生线性规划这个知识点掌握的不够好, 在考试中经常失分。本文主要针对高中阶段学生作图难的情况,总结了可行域的 画法、简单的线性规划问题的分类、以及解决一些简单线性规划问题的简便方法。 关键词:线性规划问题;作图;分类;简便方法 一、线性规划问题在中学的作用和地位 线性规划这节课是在学习了直线方程和不等式的基础上,介绍直线方程的一 个简单应用,反映了对数学知识在实际应用方面的重视.在实际生活中,经常会 遇到在一定的人力、物力、财力等资源条件下,如何精打细算巧安排的问题.用 最少的资源取得最大的效益就是线性规划研究的基本内容.中学所学的线性规划 体现了数学的工具性、应用性,同时渗透了化归、数形结合的数学思想。因此, 本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决实际问 题能力的一种途径,更是加强学生应用意识的良好素材;其次就是为高等数学的 学习打下基础;而且线性规划问题也经常在高考中出现。 二、线性规划问题的求解步骤 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解;有的是以应用题的形式给出,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解。 在解此类题目时要注意,在实际问题中有些隐含的约束条件,因此在寻找约束条件的时候一定要把所有的约束条件全,还有的题目直接给出约束条件,要求求出目标函数的最优解,相对于第一类问题来说,此类问题相对简单,因为不必去找约束条件。 可行域的画法: 准确的画出可行域是求解线性规划问题的前提,画出可行域最根本的问题是确定二元一次不等式所表示的区域,确定二元一次不等式所表示的平面区域有

线性规划的对偶问题

线性规划的对偶问题 Last revised by LE LE in 2021

第二章线性规划的对偶问题 习题 写出下列线性规划问题的对偶问题 (1) max z =10x 1+ x 2 +2x 3 (2) max z =2x 1 + x 2 +3x 3 + x 4 st. x 1+ x 2 +2 x 3 ≤10 st. x 1 + x 2 + x 3 + x 4 ≤5 4x 1+ x 2 + x 3 ≤20 2x 1 - x 2 +3x 3 =-4 x j ≥0 (j=1,2,3) x 1 - x 3 + x 4 ≥1 x 1 ,x 3 ≥0,x 2 ,x 4 无约束 (3) min z =3x 1+2 x 2 -3x 3 +4x 4 (4) min z =-5 x 1 -6x 2 -7x 3 st. x 1-2x 2 +3x 3 +4x 4 ≤3 st. -x 1 +5x 2 -3x 3 ≥15 x 2 +3x 3 +4x 4 ≥-5 -5x 1 -6x 2 +10x 3 ≤20 2x 1-3x 2 -7x 3 -4x 4 =2 = x 1 - x 2 - x 3 =-5 x 1≥0,x 4 ≤0,x 2, ,x 3 无约束 x 1 ≤0, x 2 ≥0,x 3 无约束 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0); (4)模型中全部x1用3 1 'x代换。 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x 1+2x 2 + x 4 ≥3 3x 1+ x 2 + x 3 + x 4 ≥6 x 3 + x 4 =2 x 1 + x 3 ≥2 x j ≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x 1 +x 3 + x 4 ≤8 y 1 2x 1+2x 2 +x 3 +2x 4 ≤12 y 2 x j ≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x 1+4 x 2 +2x 3 ≤60 2x 1+ x 2 +2x 3 ≤40 x 1+3x 2 +2x 3 ≤80 x j ≥0 (j=1,2,3)(1)写出其对偶问题

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划习题

第一章 线性规划习题 1. 将下列线性规划问题变换成标准型,并列出初始单纯形表。 1) min Z =-3x 1+4x 2-2x 3+5x 4 s.t.???????≥≥+-+-≤-++-=-+-. ,0,,22321432244321432143214321无约束x x x x x x x x x x x x x x x x 2) max S =z x /p k s.t.???? ????? ==≥=-=-=∑∑∑===).,...,2,1;,...,2,1(0),,...,2,1(1, 1 11 m k n i x n i x x a z ik m k ik n i m k ik ik k 2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题: min Z =2x 1+3x 2+x 3 s.t.??? ??≥≥+≥++.0,,,623,8243 212 1321x x x x x x x x 并指出该问题的解属哪一类解。 3. 【表1-6】是某求极大化线性规划问题计算得到单纯形表。表中无人工变量, a 1, a 2, a 3, d , c 1, c 2为待定常数。试说明这些常数分别取何值时,以下结论成立。 1) 表中解为唯一最优解; 2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解; 4) 表中解非最优,为对解进行改进,换入变量为x 1,换出变量为x 6。 表1-6 4. 某饲料厂用原料A 、B 、C 加工成三种不同牌号的饲料甲、乙、丙。已知各 种牌号饲料中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号的饲料的单位加工费及售价如【表1-7】所示。 表1-7

线性规划的对偶问题

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5 4x1+x2+x3≤20 2x1-x2+3x3=-4 x j≥0 (j=1,2,3)x1-x3+x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上; (3)目标函数改变为max z=λCX(λ≠0); 'x代换。 (4)模型中全部x1用3 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+x4≥3 3x1+x2+x3+x4≥6 x3 +x4=2 x1 +x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;

线性规划的对偶问题

第二章 线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 ⑴ max z = 10x i + X 2 + 2x 3 st. x i + X 2 + 2 X 3W 10 4x i + X 2 + X 3 W 20 X > 0 (j = 1,2,3) (3) min z = 3x i + 2 X 2 — 3x 3 + 4x 4 st. x i -2x 2+ 3x 3+ 4x 4W 3 X 2 + 3X 3 + 4X 4》一5 2x i — 3x 2 — 7x 3 — 4x 4= 2 = x i >0, X 4W 0, X 2,, X 3 无约束 (2) max z = 2x i + x 2+ 3x 3+ x 4 st. x i + x 2+ x 3 + x 4 W 5 2x i - x 2+ 3x 3 =- 4 X i — X 3 + X 4> i X i , X 3 > 0, X 2, X 4 无约束 (4) min z =— 5 x i — 6x 2— 7x 3 st. — X i + 5X 2— 3X 3 > i5 — 5X i — 6X 2+ i0X 3 W 20 X i — X 2 — X 3=— 5 X i W 0, X 2>0 , X 3 无约束 2.2已知线性规划问题 max z = CX , AX=b , X >0。分别说明发生下列情况时,其对偶问题的解的 变化: (1 )问题的第k 个约束条件乘上常数 入(炉0); (2) 将第k 个约束条件乘上常数 入(苗0)后加到第r 个约束条件上; (3) 目标函数改变为 max z = 2CX (入工0); 4)模型中全部 X i 用 3 X'i 代换。 2.3 已知线性规划问题 min z = 8X i + 6X 2+ 3X 3+ 6X 4 st. x i + 2X 2 + X 4》3 3x i + X 2 + X 3+ X 4 A 6 X 3 + X 4= 2 X i + X 3 A 2 X j A 0(j =i,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为 X*=(i ,i ,2,0) ,试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题 min z = 2X i + X 2+ 5X 3+ 6X 4 对偶变量 st. 2X i + X 3+ X 4W 8 y i 2X i + 2X 2+ X 3+ 2X 4W i2 y 2 X j A 0(j =i,2,3,4) 其对偶问题的最优解 y i *=4; y 2*=i ,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题 maX z = 2X i + 4X 2+ 3X 3 st. 3X i +4 X 2+ 2X 3W 60 2X i + X 2+ 2X 3W 40 X i + 3X 2+ 2X 3W 80 X j A 0 (j = i,2,3) ( i )写出其对偶问题 ( 2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; ( 3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶 问题的解; ( 4)比较( 2)和( 3)计算结果。 2.6已知线性规划问题 max z = 10x i + 5x 2

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x1+40 x2 +80 x3 s.t. 3 x1 +2 x2 + x3 2 4x1 +x2 +3x3 4 2x1 +2x2 +2x3 3 x1 , x2 , x3 0 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。解:(1)设对应于上述约束条件的对偶变量分别为y1,y2, y3 ;则由原问题和对偶问题,可以直接写出对偶问题为: Max Z'=2 y1+4 y2+3 y3 s.t 3y1+4 y2+2 y3 60 2y1+y2+2 y3 40 y1 +3y2 +2 y3 80 y1,y2,y3 0 (2)用对偶单纯形法求解原问题(添加松弛变量x4 ,x5 , x6 )MaxZ= -60 x1 -40x2-80x3 +0x4 +0x5 +0x6 s.t -3x1 -2x2- x3+ x4 =-2 -4x1-x2-3x3+x5=-4 -2 x1-2 x2-2 x3+x6=-3

X i, X2 , X3 0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4, -3)=-4,故x为换出变量。换入变量的确定,计算得15,40, 80/3,故x i为换入变量。 由表可知,X6为换出变量。X2为换入变量。然后继续画单纯形表:

X i, X2 , X3 0

可得X4为换出变量,X3为换入变量。继续做单纯形表: 所以此问题的最优解为X= (11/10,19/30, 1/10),此对偶问题的最优解为Y二(16,12,30),原问题的最小值为118/3. (3)MaxZ '2 y1+4 y2 +3 y +0 y +0 * +0 y S.t 3 y1+4 y2+2 y3+ y4=60 2 y1 + y2 +2 y 3 + y =40 y1 +3y2+2 出 + y6=80 y1, y2, y3, y4, y5, y6 0 然后建立单纯形表,可得

线性规划单纯形法(例题)

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ? ? ??≥=+ +=+++++=?? ? ??≥≤+≤++=0 ,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量, 选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-= =?+?-==?+?-==?+?-=σσσσ 为出基变量。 为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110 120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 4 33 4341522max , )4 3,415(),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

利用excel软件求解线性规划问题

下面我们通过一个例子来解释怎样用“规划求解”来求解数学规划问题。 例1 公司通常需要确定每月(或每周)生产计划,列出每种产品必须生产的数量。具体来说就是,产品组合问题就是要确定公司每月应该生产的每种产品的数量以使利润最大化。产品组合通常必须满足以下约束: ● 产品组合使用的资源不能超标。 ● 对每种产品的需求都是有限的。我们每月生产的产品不能超过需求的数量,因为生产过剩就是浪费(例如,易变质的药品)。 下面,我们来考虑让某医药公司的最优产品组合问题。该公司有六种可以生产的药品,相关数据如下表所示。 设该公司生产药品1~6的产量分别为126,,,x x x (磅),则最优产品组合的线性规划模型为 123456 123456123456123456max 6 5.3 5.4 4.2 3.8 1.86543 2.5 1.545003.2 2.6 1.50.80.70.316009609281041..977108410550,16j z x x x x x x x x x x x x x x x x x x x x x s t x x x x j =++++++++++≤??+++++≤??≤?≤??≤??≤?≤??≤??≥≤≤? 下面用规划求解加载宏来求解这个问题: 首先,如下如所示,在Excel 工作表内输入目标函数的系数、约束方程的系数、右端常数项;

其次,选定目标函数单元、可变单元、约束函数单元,定义目标函数、约束函数 其中,劳动力约束函数的定义公式是“=MMULT(B3:G3, J5:J10)”,原料约束函数的定义公式是“=MMULT(B4:G4,J5:J10)”,目标函数的定义公式是“MMULT(B5:G5, J5:J10)”。 注:函数MMULT(B3:G3, J5:J10)的意义是:单元区B3:G3表示的行向量与单元区J5:J10表示的列向量的内积。这一要特别注意的是,第一格单元区必须是行,第二格单元区必须是列,并且两个单元区所含的单元格个数必须相等。 最后,打开规划求解参数设定对话框设定模型 (1)(2)目标函数和可边单元的设定很简单,在此就不再赘述 (3)约束条件的设定 (3.1) 约束条件1234561234566543 2.5 1.545003.2 2.6 1.50.80.70.31600x x x x x x x x x x x x +++++≤??+++++≤? 的设定: 系数矩阵 目标函数的系数 系数矩阵右端常数 可变单元 约束函数单元 目标函数单元

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性 规划问题 The final edition was revised on December 14th, 2020.

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 .-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 . 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX . ???≥=0X b AX 则标准型(LP)为 Max z=CX . ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y . ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶问题的转化及其应用 摘要 线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解. 关键词:线性规划;原问题;对偶问题;转化

Linear Programming is the Original Problem and the Transformation of the Dual Problem and Applications Abstract: Linear programming in operational research is research earlier, rapid development and wide application, the method is an important branch of mature, it is one of the scientific management of auxiliary people mathematical method. Can from different angles to linear programming dual problem for policy makers to provide more scientific theory basis. This article mainly probes into the linear programming problem and the relationship between the dual problem, linear programming problem and the transformation of the dual problem, the application of linear programming dual problem. This article is the complex of the original problem into its dual problem to be solved, simplifies the linear programming problem, enables us to rapidly find the optimal solution of linear programming problem. Keywords: linear programming; the original problem; the dual problem; conversion

运筹学--线性规划问题最优解的确定与改进

线性规划问题最优解的确定与改进 线性规划是运筹学的一个重要分支。自1947年丹捷格(G.B.Dantzig )提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。线性规划最优解求解问题,在《运筹学》本科版给出了图解法和单纯形法。 一般线性规划问题的标准型为: 1 max (14)n j j i z c x ==-∑ 1,1,2(15)0,1,2,(16) n i j j i j j a x b i m x j n ===-≥=-?∑???? 满足约束条件(1-5)式、(1-6)式的解12(,,,)T n X x x x = ,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为最优解。 2009年中国科教创新导刊,第三十期李高秀写的《线性规划中最优解的准确确定》中详细介绍了图解法的过程,图解法适合于二元线性规划问题,对于多元线性规划问题图解法相对较难。 图解法过程: 1 线性目标函数最值的分析 对于线性目标函数Z=ax+by ,若b ≠0时,目标函数可变为a z y x b b =-+,则是直线a z y x b b =-+在y 轴上的截距。 (1)b>0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的截距 z b 最大时z 最大;当z b 最小时z 最小。 (2)b<0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的 截距z b 最大时z 最小;当z b 最小时z 最大。 由以上两点可知,要求线性目标函数z=ax+by 的最大最小值要注意y 的系数b 的正负和平移直线在y 轴上的截距。 2 在图上分别作出约束函数和目标函数,平移目标函数线到可行域的交点时,要把目标函数的斜率与相交于这一点的直线的斜率进行比较 上述的最值分析是确定平移目标函数的大概方向,而这次是确定最优解的确凿位置。斜率比较大

《运筹学》使用Excel求解线性规划问题

第三节 使用Excel 求解线性规划问题 利用单纯形法手工计算线性规划问题是很麻烦的。office 软件是一目前常用的软件,我们可以利用office 软件中的Excel 工作表来求解本书中的所有线性规划问题。对于大型线性规划问题,需要应用专业软件,如Matlab ,Lindo ,lingo 等,这些软件的使用这里我们不作介绍,有需要的,自己阅读有关文献资料。 用Excel 工作表求解线性规划问题,我们需要先设计一个工作表,将线性规划问题中的有关数据填入该工作表中。所需的工作表可按下列步骤操作: 步骤1 确定目标函数系数存放单元格,并在这些单元格中输入目标函数系数。 步骤2 确定决策变量存放单元格,并任意输入一组数据。 步骤3 确定约束条件中左端项系数存放单元格,并输入约束条件左端项系数。 步骤4 在约束条件左端项系数存放单元格右边的单元格中输入约束条件左端项的计算公式,计算出约束条件左端项对应于目前决策变量的函数值。 步骤5 在步骤4的数据右边输入约束条件中右端项(即常数项)。 步骤6 确定目标函数值存放单元格,并在该单元格中输入目标函数值的计算公式。 例 建立如下线性规划问题的Excell 工作表: 12 121 21212max 1502102310034120..55150,0 z x x x x x x s t x x x x =++≤??+≤??+≤??≥? 解:下表是按照上述步骤建立的线性规划问题的Excell 工作表。 其中: D4=B2*B4+C2*C4, D5=B2*B5+C2*C5 , D6=B2*B6+C2*C6, C7= B2*B1+C2*C1 。 建立了Excel 工作表后,就可以利用其中的规划求解功能求相应的线性规划问题的解。求解步骤如下: 步骤1 单击[工具]菜单中的[规划求解]命令。 步骤2 弹出[规划求解参数]对话框,在其中输入参数。置目标单元格文本框中输入目标单元格;[等于]框架中选中[最大值\最小值]单选按钮。 步骤3 设置可变单元格区域,按Ctrl 键,用鼠标进行选取,或在每选一个连续区域后,在其后输入逗号“,”。 步骤4 单击[约束]框架中的[添加]按钮。 步骤5 在弹出的[添加约束]对话框个输入约束条件. 步骤6 单击[添加]按钮、完成一个约束条件的添加。重复第5步,直到添加完所有条件 步骤7 单击[确定]按钮,返回到[规划求解参数]对话框,完成条件输入的[规划

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s、t、3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问题 1 与对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s、t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s、t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以瞧到,检验数行对应的对偶问题的解就是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3、 (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s、t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

相关文档
相关文档 最新文档