文档库 最新最全的文档下载
当前位置:文档库 › 第四章 曲线运动 万有引力定律 第Ⅲ单元

第四章 曲线运动 万有引力定律 第Ⅲ单元

第四章 曲线运动 万有引力定律 第Ⅲ单元
第四章 曲线运动 万有引力定律 第Ⅲ单元

第四章 曲线运动 万有引力定律 第Ⅲ单元 万有引力定律 人造地球卫星

巩固:夯实基础 一、万有引力定律

1.万有引力定律的内容和公式

(1)内容:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F=G

2

2

1r

m m ,其中G=6.67×10-11 N ·m 2/kg 2,叫引力常量,它是在牛顿发现万有引力定律一百多年后由英国物理学家卡文迪许利用扭秤装置测出的.

2.适用条件:公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点,均匀的球体也可视为质量集中于球心的质点,r 是球心间的距离. 二、应用万有引力定律分析天体的运动

1.基本方法:把天体的运动看成是匀速圆周运动,其向心力由万有引力提供.G 2R Mm =m r

v 2

=m

ω2R=m(

T

π2)2

R. 应用时可根据具体情况选用适当的公式进行分析或计算.

2.天体质量M 、密度ρ的估算:测出卫星绕天体做匀速圆周运动的半径R 和周期T ,由

G 2R Mm =m 224T πR 得(1)M=2

324GT R π,(2)ρ=V M =303

4R M π=302

3

3R GT R π(R 0为天体的半径).当卫星沿天体表面绕天体运行时,R=R 0,则ρ=2

3GT π

. 3.卫星的环绕速度、周期与半径R 的关系

(1)由G 2R Mm =m R v 2得v=R

GM

,可见,卫星的轨道半径R 越大,其绕行的线速度v 越

小.

(2)由2

R GMm =m 224T πR 得T=GM

R 3

24π,可见,卫星的轨道半径R 越大的卫星,其周期T 越长.(注意:上述讨论都是卫星稳定做匀速圆周运动的情况,而非变轨时的情况)

4.三种宇宙速度

(1)第一宇宙速度(环绕速度):v 1=7.9 km/s,是人造地球卫星的最小发射速度,也是人造地球卫星绕地球做圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2 km/s,是使物体挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3=16.7 km/s,是使物体挣脱太阳引力束缚的最小发射速度. 5.地球同步卫星

所谓地球同步卫星,是指相对于地面静止的和地球自转具有相同周期的卫星,T=24 h.同步卫星必须位于赤道正上方离地面高度h=3.6×104 km 处.

理解:要点诠释

考点一 重力和万有引力

重力是地面附近的物体受到地球的万有引力而产生的.由于地球自转角速度很小,所以物体的重力和地球对该物体的万有引力差别很小,一般可认为二者大小相等,即mg=G

20

R Mm

.式中g 为地球表面附近的重力加速度,R 0为地球的半径.所以在求第一宇宙速度时,可以用

G 20

R Mm

=m 021R v ,也可以用mg=m 02

1R v .

考点二 随地球自转的向心加速度和环绕运行的向心加速度

放于地面上的物体随地球自转所需的向心力由地球对物体的引力和地面支持力的合力提供;而环绕地球运行的卫星所需的向心力完全由地球对它的引力提供.两个向心力的数值相差很大.如质量为1 kg 的物体在赤道上随地球自转所需的向心力只有0.034 N ,而它所受地球引力约为9.8 N.对应的两个向心加速度的计算方法也不同.见后面[诱思·实例点拨]中的例5.

考点三 卫星在轨道变化期间相关物理量变化的讨论

例:一艘飞船绕地球做匀速圆周运动,假定在某时刻其绕行速度突然变小,它也不向外喷射气体,经过一段时间后飞船重新在另一轨道上稳定地做匀速圆周运动,从提供的向心力F 供与需要的向心力F 需之间的关系分析,当F 供≠F 需时,飞船将不能做固定轨道半径的匀速圆周运动.由于飞船的速度突然变小,在此瞬间由飞船的轨道半径不变,提供的向心力F 供

=2R GMm 将大于所需要的向心力F 需=m R

v 2,所以飞船将向低轨道上飞去,在此过程中,引力做正功,重力势能减少,因此飞船的动能增加.其速度变大,当F 供与F 需再次相等时,飞船重新开始做匀速圆周运动.通过上述分析也可知:要使飞船与高轨道的空间站对接,飞船应加速才可能. 链接·提示

(1)根据不同的需要,可以发射各种不同轨道的卫星,如极地卫星、太阳同步卫星、地球同步卫星等,对于任何轨道的人造地球卫星,其轨道平面一定通过地心.对于地球同步卫星,其轨道平面只能和赤道平面重合,且只能发射到特定的高度,以特定的速率运行. (2)双星天体的运动要明确它们的特点:①双星的角速度和周期是相同的,且它们的绕行方向相同;②双星的引力半径与双星各自的轨道半径不同,引力半径为双星轨道半径之和;③双星的圆周轨道共圆心.

(3)涉及万有引力的问题,首先要掌握万有引力定律及其应用,其次要理解宇宙速度和人造卫星的原理及其运行规律,特别是要熟练运用万有引力定律、牛顿第二定律及匀速圆周运动规律来分析有关人造地球卫星的问题. 考点四 运行速度和发射速度

对于人造地球卫星,由G 2r Mm =m r v 2得v=r

GM

,该速度指的是人造地球卫星在轨道

上的运行速度,其大小随轨道半径的增大而减小.如果卫星发射速度为

R

GM

,即第一宇宙

速度,则卫星绕地球表面运动;如果卫星的发射速度大于

R

GM

,则F 供

典例剖析

【例1】(2005江苏高考)某人造卫星运动的轨道可近似看作以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E k1、E k2分别表示卫星在这两个轨道上的动能,则…( )

A.r 1<r 2,E k1<E k2

B.r 1>r 2,E k1<E k2

C.r 1<r 2,E k1>E k2

D.r 1>r 2,E k1>E k2 解析:卫星因为受阻力作用而损失机械能,运行的轨道半径将减小,即r 1>r 2.当卫星落到低轨道上重新稳定做匀速圆周运动时,其v=

r

GM

,由于r 减小,则v 增大,故E k1<E k2,则B 选项正确. 答案:B

点评:卫星在稳定地做匀速圆周运动时,F 供=F 需;当卫星在变轨过程中,要根据F 供与F 需的大小关系判断卫星的轨道半径变化,并结合引力做功判断势能变化. 【例2】(2005全国高考理综Ⅰ)把火星和地球绕太阳运行的轨道视为圆周.由火星和地球绕太阳运动的周期之比可求得( ) A.火星和地球的质量之比 B.火星和太阳的质量之比

C.火星和地球到太阳的距离之比

D.火星和地球绕太阳运行速度大小之比

解析:由于火星和地球均绕太阳做匀速圆周运动,由开普勒第三定律,23

T

r =k,k 为与太阳质

量相关的常量,又v=

T

r

π2,则可知火星和地球到太阳的距离之比和运行速度大小之比,所以C 、D 选项正确. 答案:CD 点评:利用开普勒第三定律可便捷地找到结果,如果运用万有引力定律结合向心力公式也可

求出,因为2r GMm =m(T π2)2·r ,可得23T

r =2

4πGM =k. 【例3】(2005全国高考理综Ⅱ)已知万有引力常量G 、月球中心到地球中心的距离R 和月球

绕地球运行的周期T ,仅利用这三个数据,可以估算出的物理量有( )

A.月球的质量

B.地球的质量

C.地球的半径

D.月球绕地球运行速度的大小

解析:由G 2R Mm =m(T π2)2R,得M=2

3

24GT R π,可计算出地球的质量,又v=T R π2可计算出月

球绕地球运行速度的大小,所以B 、D 选项正确.

答案:BD 点评:掌握应用万有引力定律结合向心力公式分析天体的运动的基本方法是解决该问题的关键.

【例4】(2005北京高考理综)已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍.不考虑地球、月球自转的影响,由以上数据可推算出( ) A.地球的平均密度与月球的平均密度之比约为9∶8

B.地球表面重力加速度与月球表面重力加速度之比约为9∶4

C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8∶9

D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之比约为81∶4

解析:由ρ=33

4r

M π,可得21ρρ=3123

21r M r M =6481,A 选项错误.由G 2

r Mm

=mg ,可得21g g =212221r M r M =1681,B 选项错误.由G 2r Mm =m(T π2)2r,21T T =3213

12r M r M =9

8,C 选项正确.由v=

T r

π2可得

21v v =1

221T r T r =8729

,所以D 选项错误.

答案:C

点评:该题是一个典型的比值问题,在计算时要细致.

【例5】 同步卫星离地心距离为r,运行速率为v 1,加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )

A.21a a =R r

B.21a a =(r R )2

C.21v v =R r

D.2

1v v =(r R )21

解析:设地球质量为M ,同步卫星的质量为m 1;地球赤道上的物体质量为m 2,在地球表面

上空附近的物体质量为m 2′,根据向心力与角速度关系有:a 1=ω12r ① a 2=ω22·R ②.由于是同步卫星,则ω1为地球的自转角速度,地球赤道上的物体随地球一起自转,其角速度ω2也为地球自转角速度,则ω1=ω2 ③,故

21a a =R

r

,A 选项正确.由万有引力定律得,21r GMm =m 1r v 2

1 ④,G 22'R Mm =m 2

′R v 2

2 ⑤,解④⑤式得:2

1v v =r R

,故D 选项正确. 答案:AD

点评:本题的关键是区分三个研究对象:同步卫星、地球赤道上随地球自转的物体及在地球表面上空附近的地球卫星;以及区分两个匀速圆周运动:一个是随地球自转的匀速圆周运动,另一个是绕地球的卫星的匀速圆周运动.

【例6】(2005广东高考)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:

同步卫星绕地心做圆周运动,由G 2h Mm =m(22T π)2h ,得M=2

2

3

24GT h π. (1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果.

(2)请根据已知条件再提出两种估算地球质量的方法并解得结果. 解析:(1)上面结果是错误的,地球的半径R 在计算过程中不能忽略. 正确的解法和结果: G

2

)

(h R Mm +=m(22T π)2

(R+h) 得M=

2

2

3

2)(4GT h R +π.

(2)方法一:对月球绕地球做圆周运动,由

2r GMm =m(12T π)2r ,得M=2

1

3

24GT r π. 方法二:在地面附近重力近似等于万有引力,由

G 2R

Mm =mg ,得M=G gR 2.

答案:见解析

点评:(1)卫星绕地球运行的轨道半径是两球心间的距离,即地球的半径不能忽略.(2)在地球表面,物体的重力可近似看作等于万有引力,即mg=G 2

R

Mm ,将g=2R GM

称为黄金代换式,此式很重要.

2020版高考物理大一轮复习第四章曲线运动万有引力与航天2第一节曲线运动运动的合成与分解课后达标能力提升

第一节曲线运动运动的合成与分解 (建议用时:40分钟) 一、单项选择题 1.如图所示,在一次消防演习中,消防队员要借助消防车上的梯子爬到高处进行救人.为了节省救援时间,当消防车匀速前进的同时,人沿倾斜的梯子匀加速向上运动,则关于消防队员相对地面的运动,下列说法中正确的是() A.消防队员做匀加速直线运动 B.消防队员做匀变速曲线运动 C.消防队员做变加速曲线运动 D.消防队员水平方向的速度保持不变 解析:选B.以地面为参考系,消防员同时参与水平方向的匀速运动和斜向上的匀加速运动,其合运动为匀变速曲线运动,A、C错,B对,由运动的合成与分解知识可知水平方向的速度变大,D错. 2.各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的() 解析:选D.由于货物在水平方向做匀速运动,在竖直方向做匀减速运动,故货物所受的合外力竖直向下,由曲线运动的特点:所受的合外力要指向轨迹凹侧可知,对应的运动轨迹可能为D. 3.(2019·河南名校联考)如图所示,这是质点做匀变速曲线运动的轨迹的示意图.已知质点在B点的加速度方向与速度方向垂直,则下列说法中正确的是()

A.C点的速率小于B点的速率 B.A点的加速度比C点的加速度大 C.C点的速率大于B点的速率 D.从A点到C点加速度与速度的夹角先增大后减小,速率是先减小后增大 解析:选C.质点做匀变速曲线运动,B点到C点的过程中加速度方向与速度方向夹角小于90°,所以,C点的速率比B点速率大,故A错误,C正确;质点做匀变速曲线运动,则加速度大小和方向不变,所以质点经过C点时的加速度与A点的相同,故B错误;若质点从A点运动到C点,质点运动到B点时速度方向与加速度方向恰好互相垂直,则有A点速度与加速度方向夹角大于90°,C点的加速度方向与速度方向夹角小于90°,故D错误. 4.(2019·天津河西区模拟)如图所示,A、B是两个游泳运动员,他们隔着水流湍急的河流站在岸边,A 在上游的位置,且A的游泳技术比B好,现在两个人同时下水游泳,要求两个人尽快在河中相遇,试问应采取下列哪种方式比较好() A.A、B均向对方游(即沿图中虚线方向)而不考虑水流作用 B.B沿图中虚线向A游;A沿图中虚线偏上方向游 C.A沿图中虚线向B游;B沿图中虚线偏上方向游 D.A、B均沿图中虚线偏上方向游;A比B更偏上一些 解析:选A.游泳运动员在河里游泳时同时参与两种运动,一是被水冲向下游,二是沿自己划行方向的划行运动.游泳的方向是人相对于水的方向.选水为参考系,A、B两运动员只有一种运动,由于两点之间线段最短,所以选A. 5.(2019·鄂州模拟)一轻杆两端分别固定质量为m A和m B的两个小球A和B(可视为质点).将其放在一个光滑球形容器中从位置1开始下滑,如图所示,当轻杆到达位置2时球A与球形容器球心等高,其速度大小为v1,已知此时轻杆与水平方向夹角为θ=30°,B球的速度大小为v2,则()

第三节万有引力定律

第六章 曲线运动 第3节 万有引力定律 【学习目标】 编写:温敬霞 审核: 1.了解万有引力定律发现的思路和过程 2.理解万有引力定律,知道它的适用范围 3.会用万有引力定律解决简单的引力计算问题,知道公式中r 的物理意义 4. 引力常量G 的物理意义及万有引力定律发现的意义 【课堂探究】 一. 万有引力定律提出的背景 通过上节的学习,我们知道:行星绕太阳匀速圆周运动所需的向心力由太阳与行星间的引力 来提供的,从而使得行星不能飞离太阳; 那么现在我们来进一步思考: ⑴. 地面上的物体,如苹果,被抛出后总要落回地面,是什么力使得苹果不离开地球呢? ————是否也是由于地球对苹果的引力造成的? ————地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢? ⑵. 进一步设想: 如果物体延伸到月球那么远,物体是否也会向月球那样围绕地球运动? 太阳吸引行星的力; 地球吸引月球的力; 是否是同一性质的力?遵循相同的规律? 地球吸引苹果的力; 这个想法的正确性要由事实来检验 二. 万有引力的检验 思考:“月 地检验”基本思路是怎样的? 假设维持月球绕地球运动的力与使苹果下落的力是同一种力,同样遵循F =G 2r Mm 因为 r 月 = r 地 所以 F 月= F 地 根据牛顿第二定律 所以a 月= g 地

已知:月球与地球之间的距离r=3.8×108m ,月 T=27.3天,重力加速度28.9s m g 求: 三. 万有引力定律 1.定律内容: 2. 公式 3. 万有引力定律的适用条件 【典型例题】 例题1. 既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否考虑物体间的万有引力? 例题2. 大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系。大麦哲伦云的质量是太阳质量的1010倍,即2.0×1040㎏,小麦哲伦云的质量是太阳质量的109倍,两者相距5×104 光年,求它们之间的引力。 g a 月

2019届高考物理一轮复习第四章曲线运动第三节圆周运动随堂检测新人教版

第三节 圆周运动 1. (2016·高考全国卷Ⅱ)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于 Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所 示.将两球由静止释放.在各自轨迹的最低点 ( ) A .P 球的速度一定大于Q 球的速度 B .P 球的动能一定小于Q 球的动能 C .P 球所受绳的拉力一定大于Q 球所受绳的拉力 D .P 球的向心加速度一定小于Q 球的向心加速度 解析:选C.小球从释放到最低点的过程中,只有重力做功,由机械能守恒定律可知, mgL =12 mv 2,v =2gL ,绳长L 越长,小球到最低点时的速度越大,A 项错误;由于P 球的质 量大于Q 球的质量,由E k =12 mv 2 可知,不能确定两球动能的大小关系,B 项错误;在最低点, 根据牛顿第二定律可知,F -mg =m v 2 L ,求得F =3mg ,由于P 球的质量大于Q 球的质量,因此 C 项正确;由a =v 2 L =2g 可知,两球在最低点的向心加速度相等,D 项错误. 2.(多选) (2015·高考浙江卷)如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( ) A .选择路线①,赛车经过的路程最短 B .选择路线②,赛车的速率最小 C .选择路线③,赛车所用时间最短 D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等

2021高考物理课标版一轮教材研读 夯基提能作业:第四章第1讲 曲线运动 运动的合成与分解

第四章曲线运动万有引力与航天 考纲要求考情统计 2019年2018年2017年1.运动的合成与分解Ⅱ课标Ⅰ·T21:重 力与万有引力的关系、天体密度的计算 课标Ⅱ·T14:万有引力定律的应用 课标Ⅱ·T19:平抛运动的分析课标Ⅲ·T15:天体运动参量的比较课标Ⅰ·T20:双星 问题的分析 课标Ⅱ·T16:天体 密度的计算 课标Ⅲ·T15:地球 卫星运行周期的比 较 课标Ⅲ·T17:平抛 运动规律的求解 课标Ⅰ·T15:平 抛运动水平方向 的运动规律 课标Ⅱ·T17:平 抛运动与圆周运 动的综合问题 课标Ⅱ·T19:天 体椭圆运动中运 动参量的分析 课标Ⅲ·T14:天 体对接后轨道运 动的变化分析 2.抛体运动Ⅱ 3.匀速圆周运动、角速度、线速 度、向心加速度 Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 6.万有引力定律及其应用Ⅱ 7.环绕速度Ⅱ 8.第二宇宙速度和第三宇宙速度Ⅰ 9.经典时空观和相对论时空观Ⅰ 备考题型要点:①平抛运动规律的考查;②竖直平面内的圆周运动模型、锥体运动的临界问题等;③平抛运动、圆周运动与功能关系的综合考查;④天体质量、密度的计算;⑤卫星运动的各物理量间的比较;⑥卫星的发射与变轨问题 第1讲曲线运动运动的合成与分解

一、曲线运动 1.速度的方向:质点在某一点的速度,沿曲线在这一点的①切线方向。 2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是②变速运动。 3.曲线运动的条件:物体所受③合力的方向跟它的速度方向不在同一条直线上或它的④加速度方向与速度方向不在同一条直线上。 二、运动的合成与分解 1.运算法则:位移、速度、加速度都是矢量,故它们的合成与分解都遵循⑤平行四边形定则。 2.合运动和分运动的关系 (1)等时性:合运动与分运动经历的时间⑥相等。 (2)独立性:一个物体同时参与几个分运动时,各分运动⑦独立进行,不受其他分运动的影响。 (3)等效性:各分运动叠加起来与合运动有完全⑧相同的效果。 1.判断下列说法对错。 (1)速度发生变化的运动,一定是曲线运动。(?) (2)做曲线运动的物体加速度一定是变化的。(?) (3)做曲线运动的物体速度大小一定发生变化。(?) (4)曲线运动可能是匀变速运动。(√) (5)两个分运动的时间一定与它们的合运动的时间相等。(√) (6)只要两个分运动为直线运动,合运动一定是直线运动。(?)

第一讲 曲线运动

第一讲 曲线运动 一、曲线运动的位移 1.定义:物体运动轨迹是曲线的运动,称为曲线运动。例如:抛体运动,天体运动等。 2. 曲线运动的位移 如图1,建立直角坐标系,设OA 长为l ,?cos l x A =,?sin l y A =而路程长为OA 的长。 例1、关于曲线运动的位移,下列说法正确的是( ) A.曲线运动的位移是曲线 B.只要曲线运动不停止,曲线运动的位移就一定越来越大 C.曲线运动的位移不可能是零 D.做曲线运动的指点在一段时间内水平位移时4m ,竖直分位移是3m ,则其位移大小为5m 二、曲线运动的速度(一定为变速运动) 1.方向:AB 之间的位移不断减小直到A 、B 重合时,速度的方向即为A 点的切线方向。 2.大小:如图1所示,则 θcos v v x =,θsin v v y =,x y v v =θtan 22y x v v v += 例2、翻滚过山车是大型游乐园里比较刺激的一种娱乐项目.如图所示,翻滚过山车(可看成质点)从高处冲下,过M 点时速度方向如图所示,在圆形轨道内经过A 、B 、C 三点,下列说法正确的是( ) A .过山车做匀速运动 B .过山车做变速运动 C .过山车受到的合力等于零 D .过山车经过A 、C 两点时的速度方向相同 三、运动的合成与分解 1.合成、分解都遵循平行四边形定则(位移x 、速度v 、加速度a 均可按此方法分解和合成) 分解:①按效果分解;②正交分解。 A x A y A B 图1

2.合运动与分运动关系 ①独立性:各分运动互不影响 ②等时性:同时开始,同时接受 ③等效性:合运动与分运动效果相同 ④同体性:各分运动都是同一物体运动 ⑤矢量性:平行四边形定则 四、物体做曲线运动的条件 ( 1 )运动学角度:a 与0v 不共线 (2)动力学角度:合F 与0v 不共线 2、合力方向与运动轨迹关系:合力指向曲线的凹侧。 例3.如图所示,红蜡块可以在竖直玻璃管内的水中匀速上升,速度为v ,若在红蜡块从A 点开始匀速上升的同时,玻璃管从AB 位置由静止开始水平向右做匀加速直线运动,加速度大小为a ,则红蜡块的实际运动轨迹可能是图中的( ) A.直线PQ B.曲线Q C.曲线R D.无法确定 例4.关于曲线运动的条件,下列说法正确的是( ) A .物体受变力作用才能做曲线运动; B .物体受恒力作用也可能做曲线运动; C .物体所受合力为零也可能做曲线运动; D .物体所受合力不为零就一定做曲线运动。 五、曲线运动的实例分析 21,v v 匀速时 1v 匀速,2v 加速运动 θtan ,,x y v v x y t v y t v x x y y x ==== x a v ,y t v ,y at x y y 2 121222222=== (轨迹为直线) (轨迹为曲线) 例6.(1)某研究性学习小组进行了如下实验:如图所示,在 一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的 小圆柱体R 。将玻璃管的开口端用胶塞塞紧后竖直倒置且与Y 轴重合,在R 从坐标原点以速度0v =3cm/s 匀速上浮的同时, 、条件 1

高中物理必修二第四章曲线运动知识点题型

第四章曲线运动 第一节曲线运动 一、曲线运动 1.概念 运动轨迹(路径)是曲线的运动。 2.特点 (1)某点瞬时速度的方向沿轨迹上这一点的切线为向, (2)速度方向时刻在改变所以是变速运动,必有加速度,合力一定不为零,可能是恒力,也可能是变力。 加速度可以是不变的-------匀变速曲线运动,如平抛运动 加速度可以是变化的-------变加速曲线运动,如圆周运动 【例】做曲线运动的物体,在运动过程中,一定变化的物理量是( ) A速率 B.速度 C.加速度 D.合外力 【例】(多选)下列对曲线运动的理解正确的是( ) A.物体做曲线运动时,加速度一定变化 B.做曲线运动的物体不可能受恒力作用 C.曲线运动可以是匀变速曲线运动 D.做曲线运动的物体,速度的大小可以不变

3.合力与轨迹,速度的关系 (1)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在合力方向与速度方向之间,速度方向与轨迹相切,合力方向指向曲线的"凹“侧. 【例】如图所示,一质点做曲线运动从M点到N点速度逐渐减小,当它通过P点时,其速度和所受合外力的方向关系可能正确的是() A. B. C. D. (2)速率变化情况判断:当合力方向与速度方向的夹角为锐角时,物体的速率将增大; 当合力方向与速定方向的夹角为钝角时,物体的速率将减小;当合力方向与速度方向始终垂直时,物体的速率将保持不变。 4.物体做曲线运动的条件 (1)条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解(指位移、速度、加速度的分解与合成) 1.合运动:物体相对地面的真实运动。 2.分运动:物体同时参与的两个方向的运动。

人教版必修二 第六章第3节万有引力定律同步练习

6.3万有引力定律同步练习 1.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M ,半径为R.则物体与地球间的万有引力是( ) A .零 B .无穷大 C.GMm R 2 D .无法确定 2.物理学发展历程中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是 A. 白尼 B. 第谷 C. 开普勒 D. 伽利略 3.以下说法符合物理史实的是 A. 开普勒提出行星运动的三大定律,牛顿测出了万有引力常量G 的数值 B. 牛顿第三定律为我们揭示了自然界中存在的惯性及惯性定律 C. 亚里士多德认为只有力作用在物体上,物体才会运动 D. 伽利略通过理想斜面实验得出,物体在不受摩擦力的情况下,会作减速运动,直至停止运动 4.一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( ) A .恒星的质量为v 3 T 2πG B .行星的质量为4π2v 3 GT 2 C .行星运动的轨道半径为vT 2π D .行星运动的加速度为2πv T 5.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( ) A .1∶6400 B .1∶80 C .80∶1 D .6400∶1 6.假设有一“太空电梯”悬在赤道上空某处,相对地球静止,如图所示,那么关于“太空电梯”,下列说法正确的是( )

A .“太空电梯”各点均处于完全失重状态 B .“太空电梯”各点运行周期随高度增大而增大 C .“太空电梯”上各点线速度与该点离地球球心距离的开方成反比 D .“太空电梯”上各点线速度与该点离地球球心距离成正比 7.设地球表面重力加速度为g 0,物体在距离地心4R(R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则 g g 为( ) A .1 B. 19 C. 14 D. 116 8.对于万有引力定律的表达式F = 12 2 Gm m r ,下列说法中正确的是( ) A .公式中的G 为比例常数,无单位 B .m 1与m 2之间的相互作用力,总是大小相等,方向相反,是一对作用力和反作用力 C .当r 趋近于0时,F 趋向无穷大 D .当r 趋近于0时,公式不成立 9.关于万有引力,下列说法中正确的是( ) A .万有引力只有在研究天体与天体之间的作用时才有价值 B .由于一个苹果的质量很小,所以地球对它的万有引力几乎可以忽略 C .地球对人造卫星的万有引力远大于卫星对地球的万有引力 D .地球表面的大气层是因为万有引力的约束而存在于地球表面附近 10.科技日报北京2017年9月6日电,英国《自然天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞。科学研究表明,当天体的逃逸速度(即第二宇宙速度,为第一宇宙速度的倍)超过光速时,该天体就是黑洞。已知某天体与地球的质量之比为k ,地球的半径为R ,地球卫星的环绕速度(即第一宇宙速度)为v 1,光速为c ,则要使该天体成为黑洞,其半径应小于( ) A. B. C. D.

第四章 曲线运动教案

第四章 曲线运动教案 第一课时 曲线运动的条件 运动的合成和分解 教学目标: 1、掌握曲线运动的条件及速度方向及受力特点。 2、掌握运动的合成和分解的规律,各分运动具有的独立性、同时性、等效性。 3、掌握由分运动的性质判断合运动性质的方法。 教学过程:一 、知识归纳 1、 物体在曲线运动中的速度方向时刻在改变,某点的速度方向总是曲线的切线方 向。物体做曲线运动的条件是:物体所受到合力的方向跟物体的速度方向不在一直线上。所受到的合外力的方向总指向曲线凹的一侧如图1所示。 2、 分运动和合运动是一种等效替代关系,其理论基础是运动的独 立性原理,即任何一个运动.......堵都..可以看作是几个独立进行的分.............运动的合....成. 。其运算法则是平行四边形定则。分清合运动与分运动是解决问题的关键。物体相对于参考系的实际..运动(位移、速度)为合运动。 3、 已知分运动确定合运动性质的方法是:由平行四边形定则求出合运动的初速度及 加速度再由二者的方向关系确定其运动性质。 二、典型例题分析 1、曲线运动产生的条件 【例1】 下列几种说法中正确的是……………………………………………( C ) A 、 物体受到变力作用一定做曲线运动; B 、 物体受到恒力作用一定做匀变速直线运动; C 、 当物体所受到合外力方向与速度方向有夹角时,一定做曲线运动; D 、 当物体所受到合外力方向不断改变时,一定做曲线运动。 [解析]:物体做直线运动还是曲线运动,不取决于物体所受到的力是恒力还是变力;取决于物体所受到的力和速度方向是在同一条直线上,还是成一夹角,故A 、B 错,而C 对。对于D 来说,“合外力方向不断改变”要从两种情况考虑,一种是合力与速度方向夹角不断改变,应做曲线运动;另一种是合外力的方向始终与速度方向在同一条直线,有时与速度方向相同,有时与速度方向相反,做直线运动。故D 错。 [总结与提高] :物体做直线运动还是曲线运动,取决于物所受到的力和速度方向是在同一条直线上,还是成一夹角!! 2、 曲线运动的特点 图1

2013山东物理高考一轮复习第四章第1讲课时曲线运动 运动的合成与分解课时活页(含详解)

课时知能训练 一、选择题(本题共10小题,每小题7分,共70分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得7分,选对但不全的得4分,有选错的得0分.) 1.一质点在某段时间内做曲线运动,则这段时间内() A.速度一定在不断地改变,加速度也一定不断地改变 B.速度一定在不断地改变,加速度可以不变 C.速度可以不变,加速度一定在不断地改变 D.速度可以不变,加速度也可以不变 【解析】做曲线运动的物体速度方向一定在不断地改变,但加速度可以不变,如平抛运动,故选项B正确. 【答案】 B 2.(2010·江苏高考)如图4-1-12所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度() 图4-1-12 A.大小和方向均不变 B.大小不变,方向改变 C.大小改变,方向不变 D.大小和方向均改变 【解析】由于始终保持悬线竖直,所以橡皮水平方向上的运动与铅笔的速度相同,橡皮在竖直方向上运动的速度大小应等于水平速度大小,所以橡皮的合运动仍为匀速直线运动,选项A正确.【答案】 A 3.小钢球m以初速度v0在光滑水平面上运动,后受到磁极的侧向作用力而做曲线运动,从M点运动到N点,如图4-1-13所示.过轨迹上M、N两点的切线MM′和NN′将轨迹MN上方的空间划分

为四个区域,由此可知,磁铁可能处在哪个区域 图4-1-13 A.①区B.③区 C.②或④区D.均不可能 【解析】曲线运动中,物体的运动轨迹偏向合力所指的方向;由图可知,磁铁只能在轨迹MN下方的区域内,故答案只能选D. 【答案】 D 4.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y 方向上的分运动速度随时间变化的规律如图4-1-14所示.关于物体的运动,下列说法正确的是() 图4-1-14 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 【解析】由v-t图象可以看出,物体在x方向做匀速直线运动,在y方向做匀变速直线运动,故物体做曲线运动,A正确,B错误;物体的初速度为v0=v2x+v2y=302+(-40)2m/s=50 m/s,C 正确,D错误. 【答案】AC 5.某人骑自行车以4 m/s的速度向正东方向行驶,天气预报报道当时是正北风,风速也是4 m/s, 则骑车人感觉的风速方向和大小() A.西北风,风速4 m/s B.西北风,风速4 2 m/s C.东北风,风速4 m/s D.东北风,风速4 2 m/s 【解析】若无风,人向东骑车

第一讲 曲线运动

第一讲曲线运动 1.曲线运动的定义 物体运动轨迹是曲线的运动,叫做曲线运动。 2.曲线运动中速度的方向 (1)速度方向:质点在做曲线运动时,在某一位置的速度方向就是曲线在这一点的切线方向。 (2)曲线运动中速度方向的特点:一是速度时刻改变;二是速度方向总是沿切线方向。 友情提醒:判断一种运动是直线运动还是曲线运动,关键是看轨迹。如果轨迹是直线,则物体做直线 运动;反之,物体做曲线运动。 3.曲线运动的性质 (1)运动性质:曲线运动是一种变速运动 (2)曲线运动中加速度的物理意义 ①沿速度方向的加速度分量描述速度大小变化的快慢; ②垂直速度方向的加速度分量描述速度方向变化的快慢。 友情提醒:切线的方向有两个,速度方向的指向与质点的走向有关,所以曲线运动质点的速度方 向应沿切线并偏向下一时刻位置的方向。 4.曲线运动的条件 (1)物体做曲线运动的条件:当运动物体所受合外力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。 (2)对曲线运动的条件的理解 ①从动力学角度来看,当物体所受合外力方向跟物体的速度方向不在同一直线上时,物体就做曲线运动。 ②从运动学角度来看,当物体的加速度方向跟它的速度方向不在同一直线上,物体就做曲线运动。 (3)曲线运动中力的作用效果 ①沿速度方向的合外分量仅改变速度的大小;

b ②垂直速度方向的合外分量仅改变速度的方向。 (4)利用曲线运动的条件判断恒力的方法 ①作出初始位置物体运动速度的方向,并出与速度方向重合的一条直线。 ②依据物体运动轨迹的弯曲情况,物体所受合外力的方向就所作直线有轨迹的一方。 ③同理作出末位置物体所受外力的方向范围,将两范围合在一起,其公共区域即为恒力方向的范围。 5.曲线运动的轨迹特点 做曲线运动的物体,总是要受到与运动方向不在同一直线上的力的作用,使其运动轨迹发生改变,其改变后的轨迹处在运动方向与合外力方向构成的夹角之间,且合外力方向指向轨迹的凹侧。 6.对物 体运动性质的判断 (1)当合外力的方向跟物体的速度方向在同一直线上时,物体做直线运动。 (2)当合外力的方向跟物体的速度方向始终垂直时,物体做速度大小不变,方向不断改变的曲线运动,此时的合外力仅改变速度的方向,不改变速度的大小。 (3)当合外力的方向跟速度的方向既不在同一直线上也不垂直时,物体将做曲线运动。若合外力方向和速度方向之间的夹角为θ时,当0≤θ<90°时,物体速度不断增大;当90°<θ≤180°时,物体速度不断减小。 (4)曲线运动分为匀变速曲线运动和非匀变速曲线运动。物体曲线运动的具体形式,决定于物体所受合外力是恒力还是变力,与物体的运动轨迹无关。如果物体受到的合外力为恒力,物体具有恒定的加速度,则物体做交变速曲线运动;如果物体受到的合外力为变力,物体的加速度是变化的,则物体做非匀变速曲线运动。 题型一:曲线运动中的速度方向 【例题1】如图所示,物体在恒力F 的作用下,沿曲线由A 运动到B ,到达B 点时突然使物体所受到的力反向且大小不变(即由力F 变为-F ),对于在此力作用下物体的运动情况,下列说法正确的是( ) A .物体不可能沿曲线 B a 运动 B .物体不可能沿直线B b 运动 C .物体不可能沿曲线B c 运动 D .物体不可能沿原曲线由B 返回A 【课堂训练】如图所示,一位跳水队员从高台做“反身翻腾两周半”动作时头部的运动轨迹,最后运动员沿竖直方向以速度 v 入水,整个运动过程中在哪几个位置头部的速度方向与入水时的速度方向相同?在哪几个位置与的方向相反?把这些位置在图中标出来。 题型二:物体运动性质的判断

第四章 曲线运动(A)(解析版)

优创卷·一轮复习单元测评卷 第四章 曲线运动 A 卷 名校原创基础卷 一、选择题(本题共8小题,每小题4分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.) 1.(2020·江西省月考)我国“嫦娥一号”探月卫星经过无数人的协作和努力,终于在2007年10月24日晚6点多发射升空.如图所示,“嫦娥一号”探月卫星在由地球飞向月球时,沿曲线从M 点向N 点飞行的过程中,速度逐渐减小.在此过程中探月卫星所受合力方向可能的是( ) A. B. C. D. 【答案】A 【解析】 “嫦娥一号”探月卫星从M 点运动到N ,曲线运动,必有力提供向心力,向心力是指向圆心的;“嫦娥一号”探月卫星同时减速,所以沿切向方向有与速度相反的合力;向心力和切线合力与速度的方向的夹角要大于90°,BCD 错误,A 正确。 故选A 。 2.(2020·赣榆月考)如图所示,长为L 的轻直棒一端可绕固定轴O 转动,另一端固定一质量为m 的小球,小球搁在水平升降台上,升降平台以速度v 匀速上升。下列说法正确的是( ) A.小球做匀速圆周运动 B.当棒与竖直方向的夹角为α时,小球的速度为cos v C.棒的角速度逐渐增大

D.当棒与竖直方向的夹角为α时,棒的角速度为sin v L α 【答案】D 【解析】 A.小球受重力、平台的弹力和杆的作用力,因为升降平台以速度v 匀速上升,平台的弹力和杆的作用力变化,即小球受到的合力大小变化,小球做的不是匀速圆周运动,A 错误; BCD.棒与平台接触点的实际运动即合运动方向是垂直于棒指向左上,如图所示 合速度 =v L ω实 沿竖直向上方向上的速度分量等于v sin v L ωα= 所以 sin sin v v v L ωαα = = 实, 平台向上运动,夹角增大,角速度减小,BC 错误D 正确。 故选D 。 3.(2020·江西省月考)如图所示,质量相同的两个小球a 、b 分别从斜面顶端A 和斜面中点B 沿水平方向抛出。恰好都落在斜面底端。不计空气阻力,下列说法正确的是( ) A.小球a 、b 做平抛的初速度大小之比为2:1 B.小球a 、b 到达斜面底端时的位移大小之比为1:1 C.小球a 、b 运动过程中速度变化量的方向不相同

第一讲 曲线运动-春期拔高

春期强化 第一讲 曲线运动 【突破点一】曲线运动 突然施加一恒力 1. (多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( BC ) A .质点速度的方向总是与该恒力的方向相同 B .质点速度的方向不可能总是与该恒力的方向垂直 C .质点加速度的方向总是与该恒力的方向相同 D .质点单位时间内速率的变化量总是不变 2. 在光滑的水平面上有一质量为2kg 的物体,在几个共点力的作用下做匀速直线运动.现突然将与速度反方向的2N 的力水平旋转90°.则下列关于物体运动情况的叙述正确的是( C ) A .物体做速度大小不变的曲线运动 B .物体做加速度为1m /s 2的匀变速曲线运动 C .物体做速度越来越大的曲线运动 D .物体做非匀变速曲线运动,其速度越来越大 v 的渐变情况 3. (多选)一质量为m 的质点起初以速度v 0做匀速直线运动,在t =0时开始受到恒力F 作用,速度大小先减小后增大,其最小值为v =0.5v 0,由此可判断( AD ) A .质点受到恒力F 作用后一定做匀变速曲线运动 B .质点受到恒力F 作用后可能做圆周运动 C .t =0时恒力F 方向与速度v 0方向间的夹角为60° D .恒力F 作用3mv 02F 时间时质点速度最小 4. 如图所示的曲线为一质点在恒定合外力作用下运动的一段轨迹,质点由A 到B 的时间与质点由B 到C 的时间相等,已知C B B A ,则下列判断正确的是( C ) A .该质点做非匀变速运动 B .该质点在这段时间内可能做加速运动 C .两段时间内该质点的速度变化量相等 D .两段时间内该质点的速度变化量不等 5. 如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D 点时速度方向与加速度方向恰好互相垂直,则质点从A 点运动到E 点的过程中,下列说法中正确的是( A ) A .质点经过C 点的速率比D 点的大 B .质点经过A 点时的加速度方向与速度方向的夹角小于90° C .质点经过 D 点时的加速度比B 点的大 D .质点从B 到 E 的过程中加速度方向与速度方向的夹角先增大后减小

第四章曲线运动作业卷

第四章曲线运动 一轮复习教学案(曲线运动作业卷) 1、直升飞机现已广泛应用于突发性灾难的救援工作,如图所示为救助飞行队将一名在海上遇险的渔民接到岸上的情景,为了达到最快速的救援效果,飞机一边从静止匀加速收拢缆绳提升渔民,将渔民接近机舱,一边沿着水平方向匀速飞向岸边,则渔民的运动轨迹是( ) 1.B 解析:根据题意可知,渔民具有了竖直向上的加速度,即所受合外力方向竖直向上,又因为水平方向做匀速运动,即速度与合外力不共线,所以做曲线运动,合力方向应指向其运动轨迹的凹侧,故只有选项B正确。 考点:本题主要考查了运动的合成与分解、力与运动的关系问题。 2、从地面上同时抛出两小球,A沿竖直向上,B沿斜向上方,它们同时到达最高点,不计空气阻力。则( ) A.A先落到地面上B.B的加速度比A的大 C.A上升的最大高度比B大D.抛出时B的初速度比A大 考点:本题主要考查了匀变速直线运动规律、运动的合成与分解的应用问题。 3、如图10所示,一个质量为0.6 kg的小球以某一初速度从P点水平抛出,恰好从光滑圆 弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R=0.3 m,θ=60°,小球到达A点时的速度v A=4 m/s.(取g=10 m/s2)求:

图10 (1)小球做平抛运动的初速度v 0; (2)P 点与A 点的水平距离和竖直高度; (3)小球到达圆弧最高点C 时对轨道的压力. 解析 (1)小球到A 点的速度如图所示,小球做平抛运动的初速度v 0等于v A 的水平分速度. 由图可知v 0=v x =v A cos θ=4×cos 60°=2 m/s. (2)由图可知,小球运动至A 点时竖直方向的分速度为v y =v A sin θ=4×sin 60°=2 3 m/s , 设P 点与A 点的水平距离为x ,竖直高度为h ,则 v y =gt ,v 2y =2gh , x =v 0t ,联立以上几式解得x ≈0.69 m ,h =0.6 m .(3)取A 点为重力势能的零点,由机械能守恒定律得 12m v 2A =12m v 2C +mg (R +R cos θ), 代入数据得v C =7 m/s 设小球到达圆弧最高点C 时,轨道对它的弹力为F N ,由圆周运动向心力公式得F N +mg =m v 2C R , 代入数据得F N =8 N , 由牛顿第三定律可知,小球对轨道的压力大小F N ′=F N =8 N ,方向竖直向上. 答案 (1)2 m/s (2)0.69 m 0.6 m (3)8 N 方向竖直向上

第四章 曲线运动会考练习

第四章 曲线运动 一、选择题 1.下列说法中正确的是 ( ) A 、某点瞬时速度的方向就在曲线上该点的切线上 B 、变速运动一定是曲线运动 C 、匀变速直线运动可以不看成为两个分运动的合运动 D 、曲线运动不一定是变速运动 2.做曲线运动的物体在运动的过程中一定发生变化的物理量是 ( ) A 、速率 B 、速度 C 、加速度 D 、合外力 3.做曲线运动的物体,在其轨迹上某一点的加速度方向 ( ) A 、为通过该点的曲线的切线方向 B 、与物体在这点所受的合外力方向垂直 C 、与物体在这点速度方向一致 D 、与物体在这点速度方向的夹角一定不为零 4.关于运动的合成有下列说法,不正确的是 ( ) A 、合运动的位移为分运动位移的矢量和 B 、合运动的速度为分运动速度的矢量和 C 、合运动的加速度为分运动加速度的矢量和 D 、合运动的时间为分运动的时间之和 5.平抛物体的运动可以看成 ( ) A 、水平方向的匀速运动和竖直方向的匀速运动的合成 B 、水平方向的匀加速运动和竖直方向的匀速运动的合成 C 、水平方向的匀速运动和竖直方向的自由落体运动的合成 D 、水平方向的匀加速运动和竖直方向的自由落体运动的合成 6.对于平抛运动(不计空气阻力,g 为已知),下列条件中可以确定物体初速度的是( ) A 、已知水平位移 B 、已知下落高度 C 、已知飞行时间 D 、已知落地速度的大小和方向 7.从同一高度以不同的速度水平抛出的两个物体落到地面的时间 ( ) A 、速度到的物体时间长 B 、速度小的物体时间长 C 、落地时间一定相同 D 、由质量大小决定 8.在匀速圆周运动中,下列物理量发生变化的是 ( ) A 、周期 B 、向心力 C 、转速 D 、角速度 9.一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是 ( ) A 、轨道半径越大线速度越大 B 、轨道半径越大线速度越小 C 、轨道半径越大线周期越大 D 、轨道半径越大线速度越小 10.关于质点做匀速圆周运动的下列说法正确的是 ( ) A 、由r v a 2 =可知,a 与r 成反比 B 、由r a 2?=可知,a 与ω成正比 C 、由r v =ω可知,ω与r 成反比 D 、由T πω2=可知,ω与T 成反比 11.下列关于圆周运动的各种说法中,正确的是 ( ) A 、匀速圆周运动是速度不变匀速曲线运动 B 、匀速圆周运动是加速度恒定的匀加速曲线运动 C 、做圆周运动的物体所受到的合外力一定指向圆心 D 、做匀速圆周运动的物体是速度和加速度不断改变的变速运动

万有引力定律公开课教案

第二节万有引力定律 【教材分析】 本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. 【三维目标】 一、知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、过程与方法 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 【教学重点】 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. 【教学难点】 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. 【教学方法】 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. 【教学用具】 多媒体课件 【课时安排】 1课时 【教学设计】 导入 本节课主要以启发式教学为主。首先通过前面知识 的回顾和提出问题使学生产生对引力是否同一性质的探 究兴趣。 问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用? 【新课教学】 课件展示:画面1:八大行星围绕太阳运动 画面2:月球围绕地球运动 演示3:地面上的人向上抛出物体,物体总落回地面

第1讲 曲线运动 运动的合成与分解

限时规范训练 [基础巩固题组] 1.关于两个运动的合成,下列说法正确的是() A.两个直线运动的合运动一定也是直线运动 B.不同方向的两个匀速直线运动的合运动一定也是匀速直线运动 C.小船渡河的运动中,小船对地的速度一定大于水流速度 D.小船渡河的运动中,水流速度越大,小船渡河所需时间越短 解析:选B.两个直线运动可以合成为直线运动(匀速直线+匀速直线),也可以合成为曲线运动(匀变速直线+匀速直线),故选项A错误;两个分运动为匀速直线运动,没有分加速度,则合运动一定是匀速直线运动,则选项B正确;小船对地的速度是合速度,其大小可以大于水速(分速度),等于水速,或小于水速,故选项C错误;渡河时间由小船垂直河岸方向的速度决定,由运动的独立性知与水速的大小无关,选项D错误. 2.(多选)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 解析:选BC.质点原来做匀速直线运动,说明所受合外力为0,当对其施加一恒力后,恒力的方向与原来运动的速度方向关系不确定,则质点可能做直线运动,也可能做曲线运动,但加速度的方向一定与该恒力的方向相同,且加速度大小不变,选项B、C正确,A错误; 可知,质点单位时间内速度的变化量Δv总是不变的,但速率的变化量不确定,D 由a=Δv Δt 错误. 3.如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE匀速运动.现从t=0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t1时刻,乘客看到雨滴从B处离开车窗,乙种状态启动后t2时刻,乘客看到雨滴从F处离开车窗,F为AB的中点.则t1∶t2为()

人教版必修二第六章第三节万有引力定律同步训练(包含答案)

6.3 万有引力定律同步训练 一.选择题 1.要使两物体间的万有引力减小到原来的1/4,不能采用的方法是( ) A. 使两物体的质量各减小一半,距离保持不变 B. 使两物体间的距离增至原来的 2 倍,质量不变 C. 使其中一个物体的质量减为原来的一半,距离不变 D. 使两物体的质量及它们之间的距离都减为原来的1/4 2.下列说法中正确的是( ) A. 牛顿发现了万有引力定律,开普勒发现了行星的运动规律 B. 人们依据天王星偏离万有引力计算的轨道,发现了冥王星 C. 海王星的发现和哈雷彗星的“按时回归”确定了万有引力定律的地位 D. 牛顿根据万有引力定律进行相关的计算发现了海王星和冥王星 3.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半 径 r 1 上时运行线速度为 v 1,周期为 T 1,后来在较小的轨道半径 r 2 上时运行线速度为 v 2, 周期为 T 2,则它们的关系是 A .v 1﹤v 2,T 1﹤T 2 C .v 1﹤v 2,T 1﹥T 2 B .v 1﹥v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 4.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 5.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 ( )

55-第四章曲线运动万有引力

第四章曲线运动万有引力 [高考走向] 本章内容在高考题中常有出现,题型多为选择和填空题。考查重点是对概念和规律的理解和运 用。内容主要集中在平抛运动和天体、人造卫星的运动规律等方面,且均有一定难度。本章的圆周运动经常与电磁场、洛仑兹力等内容结合起来考查。 [知识点拔] 1.本章的理论核心是运动合成和分解的平行四边形法则,因为运动中的速度和位移都是矢量,如平抛运动的轨迹为曲线(抛物线),可以把它分解为水平方向的匀速直线运动和竖直方向的自由落体运动这两个分运动(直线运动)来解决。又如船渡河的运动,可以看为船自身的划行和随河水漂流两个分运动的合成等。 2.各分运动具有独立性,即一个分运动不受另一分运动的影响,分运动和合运动具有等时性。 3.天体的运行轨道为椭圆,但我们在解决这类问题时,常简化为匀速圆周运动来处理,其向心力都是来自天体之间的万有引力。 [典型例题] [例1]某人在静水中划行速度V1=1.8m/s,若他在水速V2=3m/s的河中匀速划行。求: (1)他怎样划行才能使他在最短时间内到达对岸? (2)若要使船的实际划行轨迹最短,他应该怎样划行? 分析:船参与了自身划行和随水河流两个分运动,若要使小船的划行时间最短,只要小船垂直河岸方向的速度最大即可,据此可求出小船的划行方向。至于船的划行轨迹最短的路线,并非为垂直河岸横渡,这是因为V水>V船无法满足为使小船横渡时向上的速度分量来平衡水流速度。根据水速和划行速度的合速度方向可确定轨迹最短措行方向。 解:(1)如图所示,设船头朝上与河岸之间的夹角为θ, 将V1分解为平行于河岸的速度V∥和垂直河岸的速度V⊥,显 然D=V⊥t=V1sinθt即 t=D/(V1sinθ)

相关文档
相关文档 最新文档